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Abstract The joint activity of neural populations is high dimensional and complex. One strategy

for reaching a tractable understanding of circuit function is to seek the simplest dynamical system

that can account for the population activity. By imaging Aplysia’s pedal ganglion during fictive

locomotion, here we show that its population-wide activity arises from a low-dimensional spiral

attractor. Evoking locomotion moved the population into a low-dimensional, periodic, decaying

orbit - a spiral - in which it behaved as a true attractor, converging to the same orbit when evoked,

and returning to that orbit after transient perturbation. We found the same attractor in every

preparation, and could predict motor output directly from its orbit, yet individual neurons’

participation changed across consecutive locomotion bouts. From these results, we propose that

only the low-dimensional dynamics for movement control, and not the high-dimensional population

activity, are consistent within and between nervous systems.

DOI: 10.7554/eLife.27342.001

Introduction
The increasing availability of large scale recordings of brain networks at single neuron resolution pro-

vides an unprecedented opportunity to discover underlying principles of motor control. However,

such long-sought data sets are revealing a new challenge - the joint activity of large neural popula-

tions is both complex and high dimensional (Ahrens et al., 2012; Cunningham and Yu, 2014;

Yuste, 2015). Population recordings have as many dimensions as neurons, and each neuron’s activity

can have a complex form. What strategies can we use to expose the hoped-for simplifying principles

operating beneath the turbulent surface of real-world brain activity? One route is dimension reduc-

tion (Briggman et al., 2006; Cunningham and Yu, 2014; Kobak et al., 2016), which focuses on

identifying the components of activity that co-vary across the members of a neural population, shift-

ing the focus from the high dimensional recorded data to a low-dimensional representation of the

population.

Such low-dimensional signals within joint population activity have been described in neural circuits

for sensory encoding (Mazor and Laurent, 2005; Bartho et al., 2009), decision-making

(Briggman et al., 2005; Harvey et al., 2012; Mante et al., 2013), navigation (Seelig and Jayara-

man, 2015; Peyrache et al., 2015), and movement (Levi et al., 2005; Ahrens et al., 2012;

Kato et al., 2015). Implicit in such dimension reduction approaches is the hypothesis that the high-

dimensional population activity being recorded, while highly heterogenous, is derived from a sim-

pler, consistent low-dimensional system (Brody et al., 2003; Churchland et al., 2010; Kato et al.,

2015; Miller, 2016). We sought to directly test this hypothesis by identifying the simplest dynamical

system that can account for high dimensional population activity.
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A useful model to address these questions is the neural control of movement. Movement arises

from the mass action of neuron populations (Georgopoulos et al., 1986; Getting, 1989;

Ahrens et al., 2012; Portugues et al., 2014; Yuste, 2015; Petersen and Berg, 2016). While indi-

vidual neuron activity can correlate with specific aspects of movement (Chestek et al., 2007;

Hatsopoulos et al., 2007; Churchland et al., 2010, 2012), the embedded low dimensional signals

in population recordings (Briggman et al., 2005; Levi et al., 2005; Kato et al., 2015) and the inter-

mittent participation of individual neurons across repeated movements in both vertebrates

(Carmena et al., 2005; Huber et al., 2012) and invertebrates (Hill et al., 2010, 2015) together sug-

gest that only the collective population activity, and not specifics of single neuron firing, are key to

movement control. If so, then finding the underlying dynamical system will be necessary for a parsi-

monious theory of the neural control of movement (Briggman and Kristan, 2008).

In order to identify the simplest dynamical system underlying population activity in movement

control, we imaged large populations at single-neuron, single-spike resolution in the pedal ganglion

of Aplysia during fictive locomotion (Figure 1A). The pedal ganglion presents an ideal target for

testing hypotheses of movement control as it contains the pattern generator (Jahan-Parwar and

Fredman, 1979, 1980), motorneurons (Hening et al., 1979; Fredman and Jahan-Parwar, 1980)

and modulatory neurons (Hall and Lloyd, 1990; McPherson and Blankenship, 1992) underlying

locomotion. Moreover, its fictive locomotion is sustained for minutes, ideal for robustly characteris-

ing population dynamics. Using this model system, here we find its low-dimensional, underlying

dynamical system, test if the low-dimensional signal encodes movement variables, and determine

the contribution of single neurons to the low-dimensional dynamics.

We show that evoking fictive locomotion caused heterogenous population spiking activity, but

under which always lay a low-dimensional, slowly decaying periodic orbit. This periodic trajectory

met the convergence and perturbation criteria for an attractor. Crucially, we identify the attractor as

a stable, decaying spiral in every preparation. We decoded motorneuron activity directly from the

low-dimensional orbit, showing that it directly encodes the relevant variables for movement. Yet we

eLife digest In all animals, neurons in the brain work together to generate movement. From a

slug’s ability to crawl, to your ability to move your hand, movement is dependent on hundreds or

thousands of neurons being active at the same time. Rhythmic movements such as crawling or

swimming show this clearly: groups of neurons fire together and remain silent together in a

repeating sequence, producing waves of muscle contraction. But do we need to understand the

activity of each of the hundreds or thousands of individual neurons to know how they generate

these movements?

Bruno et al. argue that we do not, and propose instead that brain circuits that generate

movement show a few set patterns of activity. By recording the activity of a population of neurons,

we can identify the pattern of activity that generates a particular movement. To illustrate this point,

Bruno et al. examined the network of neurons that drives the rhythmic crawling movement of the

sea slug Aplysia.

The results show that the network of neurons seems to contain many different patterns of activity

during crawling. Yet collectively these different patterns are reflections of a simpler hidden system, a

spiral of ever-decreasing, oscillating activity. This pattern is referred to as a spiral attractor because

whenever the network is activated, the overall pattern of activity is always pulled into this spiral

regardless of its starting point. The same applies whenever the network is disturbed. The key thing

to note, however, is that individual neurons within the network do not show the same activity each

time the network is active. This means that only the spiral attractor itself, and not the contribution of

the individual neurons, is constant every time the sea slug crawls.

What do we need to know to understand the brain? The results presented by Bruno et al.

suggests that identifying the hidden systems that underlie seemingly complex and varying neural

activity is the key to understanding how brains generate movement. This may also be true for how

brains form memories, make decisions, and give rise to sight, hearing and touch.

DOI: 10.7554/eLife.27342.002
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found that individual neurons varied their participation in the attractor between bouts of locomotion.

Consequently, only the low-dimensional signal and not the high-dimensional population activity was

consistent within and between nervous systems. These findings strongly constrain the possible

implementations of the pattern generator for crawling in Aplysia; and by quantifying the attractor

they make possible future testing of how short- and long-term learning change properties of that

attractor. Collectively, these results provide experimental support for the long-standing idea that

neural population activity is a high-dimensional emergent property of a simpler, low-dimensional

dynamical system.
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Figure 1. Population dynamics during fictive locomotion. (A) Voltage-sensitive dye recording of the pedal ganglion (Pd) network in an isolated central

nervous system preparation (top) using a photodiode array (blue hexagon). The array covered the dorsal surface of the ganglion (bottom). Ce: cerebral

ganglion; Pl: pleural ganglion; Pd9/10: pedal nerve 9/10. (B) Stimulus protocol. Three escape locomotion bouts were evoked in each preparation by

stimulation of tail nerve Pd9. Parameters are given for the stimulus pulse train. (C) Example population recording. Raster plot of 160 neurons before and

after Pd9 nerve stimulation. Neurons are grouped into ensembles of similarly-patterned firing, and ordered by ensemble type (colors) - see Materials

and methods. (D) Power spectra of each population’s spike-trains, post-stimulation (grey: mean spectrum of each bout; black: mean over all bouts). (E)

Network firing rate over time (grey: every bout; black: mean; red bar: stimulation duration. Bins: 1 s). (F) Terminology and schematic illustration of the

necessary conditions for identifying a periodic attractor (or ‘cyclical’ attractor). Left: to characterise the dynamics of a N-dimensional system, we use the

joint activity of its N units at each time-point t – illustrated here for N ¼ 2 units. The set of joint activity points in time order defines the system’s

trajectory (black line). Right: the three conditions for identifying a periodic attractor. In each panel, the line indicates the trajectory of the joint activity of

all units in the dynamical system, starting from the solid dot. The manifold of a dynamical system is the space containing all possible trajectories of the

unperturbed system – for periodic systems, we consider the manifold to contain all periodic parts of the trajectories (grey shading). In (condition 3), the

dashed line indicates where the normal trajectory of the system would have been if not for the perturbation (red line). See Figure 1—figure

supplement 1 for a dynamical model illustrating these conditions.

DOI: 10.7554/eLife.27342.003

The following figure supplement is available for figure 1:

Figure supplement 1. Necessary and sufficient conditions of a periodic attractor.

DOI: 10.7554/eLife.27342.004
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Results
We sequentially evoked three bouts of fictive locomotion in each of 10 isolated central nervous sys-

tem preparations (Figure 1B). Each bout of locomotion was evoked by short stimulation of the tail

nerve P9, mimicking a sensory stimulus to the tail that elicits the escape locomotion response

(Hening et al., 1979); in intact animals, a strong tail stimulus typically elicits a two-part escape

behavior consisting of several cycles of a vigorous arching gallop, followed by several minutes of a

more sedate rhythmic crawl (Jahan-Parwar and Fredman, 1979; Flinn et al., 2001). We imaged the

dorsal pedal ganglion 30 s before through to 90 s after the evoking stimulus, aiming to capture the

population dynamics initiating and driving the initial gallop before the transition to the crawl.

Recorded populations from the pedal ganglion comprised 120–180 neurons each, representing

» 10% of the network in each recording. The population recordings captured rich, varied single neu-

ron dynamics within the ganglion’s network following the stimulus (Figure 1C). A dominant, slow

(� 0:1 Hz) oscillation in neural firing (Figure 1D) is consistent with the periodic activity necessary to

generate rhythmic locomotion. But the variety of single neuron dynamics (Bruno et al., 2015)

(Figure 1C) and the slowly decaying population firing rate (Figure 1F) post-stimulus hint at a more

complex underlying dynamical system driving locomotion than a simple, consistent oscillator.

Seeking the simplest dynamical system to account for these data, we first show here that the joint

activity of the population meets the necessary conditions for a periodic attractor (Figure 1F). We

identified these as: (1) applying a driving force causes the system’s activity to fall onto a stable, peri-

odic orbit; (2) repeatedly driving the system causes convergence of its activity to the same orbit; and

(3) the system should return to the periodic orbit after the end of transient perturbation. Figure 1—

figure supplement 1 demonstrates these conditions in a dynamical model of a neural periodic

attractor.

Joint population activity forms a low-dimensional periodic orbit
We first established that under the heterogenous population activity evoked by the tail-nerve stimu-

lation there was a low dimensional periodic trajectory, consistent with there being a periodic

attractor in the pedal ganglion. Projections of a population’s joint activity into three dimensions typi-

cally showed that stimulation caused a strong deviation from the spontaneous state, which then set-

tled into repeated loops (Figure 2A). Capturing a significant proportion (80%) of the population

variance generally required 4–8 embedding dimensions (Figure 2B), representing a dimension

reduction by more than a factor of 10 compared to the number of neurons. Thus, throughout our

analysis, we projected each evoked program into the number of embedding dimensions needed to

capture at least 80% of the variance in population activity (4–8 dimensions: inset of Figure 2B). How-

ever, we cannot directly visualise this space; therefore we could not tell by visual inspection if the

low-dimensional trajectory repeatedly returned to the same position, and so was truly periodic.

To determine whether population activity in higher dimensions reached a stable periodic orbit,

we made use of the idea of recurrence (Lathrop and Kostelich, 1989; Marwan et al., 2007). For

each time-point in the low-dimensional trajectory of the population’s activity, we check if the trajec-

tory passes close to the same point in the future (Figure 2C). If so, then the current time-point

recurs, indicating that the joint activity of the population revisits the same state at least once. The

time between the current time-point and when it recurs gives us the period of recurrence. A strongly

periodic system would thus be revealed by its population’s trajectory having many recurrent points

with similar recurrence periods; random or chaotic dynamics, by contrast, would not show a single

clustered recurrence period.

Plotting recurrent time-points showed that the evoked low-dimensional population activity typi-

cally recurred with a regular period (example in Figure 2D). We found strongly periodic recurrence

on the scale of 10–15 s in many but not all of the 30 evoked population responses (Figure 2E,F).

This reflected the range of stimulation responses from strongly periodic activity across the popula-

tion to noisy, stuttering, irregular activity (Figure 2—figure supplement 1). Nonetheless, despite

this heterogeneity across stimulus responses, the activity of almost all populations was dominated

by a single periodic orbit (Figure 2E), robust to the choice of threshold for defining recurrence (Fig-

ure 2—figure supplement 2).
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Joint population activity meets the conditions for a periodic attractor
The trajectory of a periodic dynamical system remains within a circumscribed region of space – the

manifold – that is defined by all the possible states of that system. (We schematically illustrate a

manifold by the grey shading in Figure 1F (condition 2), and demonstrate the manifold of our model

periodic attractor network in panel C of Figure 1—figure supplement 1). If the population

responses of the pedal ganglion are from an underlying periodic attractor, then the population’s

joint activity should rapidly reach and stay on its manifold when evoked; reach the same manifold
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Figure 2. Population dynamics form a low-dimensional periodic orbit. (A) Projection of one evoked population

response into three embedding dimensions, given by its first three principal components (PCs). Dots: start of

recording (black) and stimulation (pink); spontaneous activity is shown in grey. Smoothed with 2 s boxcar window.

(B) Proportion of population variance explained by each additional embedding dimension, for every evoked

population response (n ¼ 30; light-to-dark grey scale indicates stimulations 1 to 3 of a preparation). We chose a

threshold of 80% variance (red line) to approximately capture the main dimensions: beyond this, small gains in

explained variance required exponentially-increasing numbers of dimensions. Inset: Histogram of the number of

PCs needed to explain 80% variance in every recorded population response. (C) Quantifying population dynamics

using recurrence. Population activity at some time t is a point in N-dimensional space (black circle), following some

trajectory (line and open circles); that point recurs if activity at a later time t þ n passes within some small threshold

distance �. The time n is the recurrence time of point t. (D) Recurrence plot of the population response in panel A.

White squares are recurrence times, where the low-dimensional dynamics at two different times passed within

distance �. We defined � as a percentile of all distances between points; here we use 10%. Stimulation caused the

population’s activity to recur with a regular period. Projection used 4 PCs. (E) Histograms of all recurrence times in

each population response (threshold: 10%), ordered top-to-bottom by height of normalised peak value. Vertical

line indicates the minimum time we used for defining the largest peak as the dominant period for that population

response. Right: density of time-points that were recurrent, and density of recurrence points with times in the

dominant period. (F) Periodic orbit of each evoked population response, estimated as the mean recurrence time

from the dominant period.

DOI: 10.7554/eLife.27342.005

The following figure supplements are available for figure 2:

Figure supplement 1. Range of dynamics in the evoked locomotion programs.

DOI: 10.7554/eLife.27342.006

Figure supplement 2. Robustness of the periodic orbits.

DOI: 10.7554/eLife.27342.007
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every time it is evoked; and return to the manifold when perturbed (these three conditions are sche-

matically illustrated in Figure 1F; see Figure 1—figure supplement 1 for the corresponding exam-

ples from the dynamical model).

We found that almost all evoked population responses quickly reached a state of high recurrence,

within one oscillation period (Figure 3A), and were thereafter dominated by recurrence, indicating

they quickly reached and stayed on the manifold.

But does each population response from the same preparation reach the same manifold? The key

problem in analysing any putative attractor from experimental data is identifying when the
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Figure 3. Low dimensional population dynamics meet the conditions for a periodic attractor. (A) Distribution of the time the population dynamics took

to coalesce onto the attractor from the stimulation onset, and the subsequent stability of the attractor (measured by the proportion of recurrent points).

Colours indicate evoked responses from the same preparation. The coalescence time is the mid-point of the first 5 s sliding window in which at least

90% of the points on the population trajectory recurred in the future. (B) Projection of three sequential population responses from one preparation onto

the same embedding dimensions. Dots are time of stimulus offset. (C) Sequential population responses fall onto the same manifold. Dots indicate

distances between pairs of population responses in the same preparation; color indicates preparation. Control distances are from random projections

of each population response onto the same embedding dimensions - using the same time-series, but shuffling the assignment of time series to

neurons. This shows how much of the manifold agreement is due to the choice of embedding dimensions alone. The two pairs below the diagonal are

for response pairs (1,2) and (1,3) in preparation 4; this correctly identified the unique presence of apparent chaos in response 1 (see Figure 3—figure

supplement 1). (D) Distances between pairs of population responses from the same preparation in three states: the end of spontaneous activity (at

stimulus onset); between stimulation onset and coalescence (the maximum distance between the pair); and after both had coalesced (both reaching the

putative attractor manifold; data from panel C). (E) Example neuron activity similarity matrices for consecutively evoked population responses. Neurons

are ordered according to their total similarity in stimulation 2. (F) Correlation between pairs of neuron similarity matrices (Data) compared to the

expected correlation between pairs of matrices with the same total similarity per neuron (Control). Values below the diagonal indicate conserved

pairwise correlations between pairs of population responses within the same preparation. The two pairs on the diagonal are response pairs (1,3) and

(2,3) in preparation 7; this correctly identified the unique presence of a random walk in response 3 (see Figure 3—figure supplement 1). (G)

Spontaneous divergence from the trajectory. For one population response, here we plot the density of recurrence points (top) and the mean recurrence

delay in 5 s sliding windows. Coalescence time: grey line. The sustained ‘divergent’ period of low recurrence (grey shading) shows the population

spontaneously diverged from its ongoing trajectory, before returning. Black dot: pre-divergence window (panel I). (H) Breakdown of spontaneous

perturbations across all population responses. Returned: population activity became stably recurrent after the perturbation. (I) Returning to the same

manifold. For each of the 17 ‘Returned’ perturbations in panel H, the proportion of the recurrent points in the pre-divergence window that recurred

after the divergent period, indicating a return to the same manifold or to a different manifold.

DOI: 10.7554/eLife.27342.008

The following figure supplements are available for figure 3:

Figure supplement 1. Convergence and non-convergence to the same manifold.

DOI: 10.7554/eLife.27342.009

Figure supplement 2. Spontaneous perturbations of ongoing programs.

DOI: 10.7554/eLife.27342.010
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experimentally-measured dynamics are or are not on the attractor’s manifold, whether due to pertur-

bations of the system or noise in the measurements. Moreover, we cannot directly compare time-

series between evoked responses because, as just demonstrated, each response may reach the man-

ifold at different times (see also panel C in Figure 1—figure supplement 1). Thus the set of recur-

rent time-points allowed us to identify when the joint population activity was most likely on the

attractor’s manifold, and then to make comparisons between population responses.

To determine if sequentially-evoked responses from the same preparation reached the same

manifold, we projected all 3 population responses into the same set of embedding dimensions,

using only the recurrent points (Figure 3B; Figure 3—figure supplement 1 shows these results are

robust to other projections). Falling on the same manifold would mean that every recurrent point in

one population response’s trajectory would also appear in both the others’ trajectories, if noiseless.

Consequently, the maximum distance between any randomly chosen recurrent point in population

response A and the closest recurrent point in population response B should be small. We defined

small here as being shorter than the expected distance between a recurrent point in A and the clos-

est point on a random projection of the activity in the same embedding dimensions. Despite the

inherent noise and limited duration of the recordings, this is exactly what we found: pairs of evoked

population responses from the same preparation fell close to each other throughout (Figure 3C),

well in excess of the expected agreement between random projections of the data onto the same

embedding dimensions.

We also checked that this convergence to the same manifold came from different initial condi-

tions. The initiating stimulation is a rough kick to the system – indeed a fictive locomotion bout can

be initiated with a variety of stimulation parameters (Bruno et al., 2015) – applied to ongoing spon-

taneous activity. Together, the stimulation and the state of spontaneous activity when it is applied

should give different initial conditions from which the attractor manifold is reached. We found that

the stimulation caused population responses within the same preparation to diverge far more than

in either the spontaneous activity or after coalescing to the manifold (Figure 3D). Thus, a wide range

of initial driven dynamics in the pedal ganglion population converged onto the same manifold.

Previous studies have used the consistency of pairwise correlations between neurons across con-

ditions as indirect evidence for the convergence of population activity to an underlying attractor

(Yoon et al., 2013; Peyrache et al., 2015). The intuition here is that neurons whose activity contrib-

utes to the same portion of the manifold will have simultaneous spiking, and so their activity will cor-

relate across repeated visits of the population’s activity to the same part of the manifold. To check

this, we computed the pairwise similarity between all neurons within an evoked population response

(Figure 3E), then correlated these similarity matrices between responses from the same preparation.

We found that pair-wise similarity is indeed well-preserved across population responses in the same

preparation (Figure 3F). This also shows that the apparent convergence to the same manifold is not

an artefact of our choice of low-dimensional projection.

In many population responses, we noticed spontaneous perturbations of the low-dimensional

dynamics away from the trajectory (examples in Figure 3—figure supplement 2), indicated by sud-

den falls in the density of recurrent points (Figure 3G). That is, perturbations could be detected by

runs of contiguous points on the population trajectory that were not recurrent. As each spontaneous

perturbation was a cessation of recurrence in a trajectory accounting for 80% of the co-variation

between neurons, each was a population-wide alteration of neuron activity (see example rasters in

Figure 3—figure supplement 2). In most cases (90%), the population dynamics returned to a recur-

rent state after the spontaneous perturbation (Figure 3H; Figure 3—figure supplement 2, panel B),

consistent with the pertubation being caused by a transient effect on the population The two pertur-

bations that did not return to a recurrent state were consistent with the end of the evoked fictive

locomotion and a return to spontaneous activity (Figure 3—figure supplement 2, panel A). Of those

that returned, all but three clearly returned to the same manifold (Figure 3I); for those three, the

spontaneous perturbation appeared sufficient to move the population dynamics into a different peri-

odic attractor (Figure 3—figure supplement 2, panel C). Potentially, these are the known transitions

from the escape gallop to normal crawling (Flinn et al., 2001). The low dimensional dynamics of the

pedal ganglion thus meet the stability, manifold convergence, and perturbation criteria of a periodic

attractor network.
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Heterogenous population activity arises from a common attractor
While these results show the existence of a periodic orbit on an attractor in the evoked population

responses, they cannot address whether these arise from the same putative attractor within and, cru-

cially, between animals. To determine if there is a common underlying attractor despite the hetero-

geneity in spiking patterns across the population responses (Figure 2—figure supplement 1), we

introduced a statistical approach to quantifying the low-dimensional trajectory. We first fitted a lin-

ear model of the local dynamics around each time point in the low-dimensional projection (see Mate-

rials and methods). For each N-dimensional point PðtÞ in this projection, we fitted the N-dimensional

model _P� ¼ AP� to the trajectory forwards and backwards in time from point PðtÞ. In this model, the

change in the trajectory over time _P� in the neighbourhood of point PðtÞ is determined by the values

of the N � N matrix A. The maximum eigenvalue of A thus tells us whether the trajectory around

point PðtÞ is predominantly expanding or contracting in the N-dimensional projection, and whether

or not it is rotating (Strogatz, 1994).

By fitting the linear model to each point on the trajectory we obtained time-series of the maxi-

mum eigenvalues, describing the local dynamics at each point along the trajectory. The time-series

of eigenvalues typically showed long periods of similar magnitude eigenvalues, corresponding to the

recurrent points (Figure 4A). Consequently, by then averaging over the eigenvalues obtained only

for recurrent points, we could potentially capture the dynamics of the underlying attractor. Doing

so, we found that the evoked population responses had highly clustered maximum eigenvalues

(Figure 4B,C), and thus highly similar underlying dynamics despite the apparent heterogeneity of

spike-train patterns between them. The dominance of negative complex eigenvalues implies the

pedal ganglion network implements a contracting periodic orbit - it is a stable spiral attractor

(Figure 4D).

In most population responses, the low-dimensional trajectory had negative, complex eigenvalues

in all embedding dimensions, meaning that the spiral attractor completely characterised the popula-

tion dynamics (Figure 4—figure supplement 1). Intriguingly, a few population responses had a posi-

tive real eigenvalue in one low-variance dimension (Figure 4—figure supplement 1), implying a

simultaneous minor expansion of the population trajectory. This corresponded to the appearance of

a small sub-set of neurons with increasing firing rates (Figure 4E).

The identification of a stable spiral makes a clear prediction for what should and should not

change over time in the dynamics of the population. The negative complex eigenvalues mean that

the magnitude of the orbit decays over time, corresponding to the decreasing population spike rate

in most evoked responses (Figure 1E). However, a stable spiral indicates only a decrease in magni-

tude; it does not mean the orbital period is also slowing. Consequently, the presence of a stable spi-

ral attractor predicts that the magnitude and period of the orbit are dissociable properties in the

pedal ganglion network.

We checked this prediction using the linear model. The linear model estimated a mean orbital

period of around 10 s (Figure 4C), consistent with the directly-derived estimate from the recurrent

points (Figure 2F). This indicated the linear model was correctly capturing the local dynamics of

each program. But our linear model also gave us a time-series of estimates of the local orbital period

(Figure 5A), which we could use to check whether the orbital period was changing during each

evoked response. We found that the population responses included all possible changes in periodic

orbit: slowing, speeding up, and not changing (Figure 5B). As predicted there was no relationship

between the contraction of the periodic orbit and its change in period (Figure 5C).

The locomotion motor program can be decoded from the low-
dimensional orbit
Collectively, these periodic, decaying dynamics are ethologically consistent with locomotion that

comprises a repeated sequence of movements that decays in intensity over time (Jahan-Parwar and

Fredman, 1979; Flinn et al., 2001; Marinesco et al., 2004). If this putative low-dimensional periodic

attractor is the ‘motor program’ for locomotion, then we should be able to decode the locomotion

muscle commands from its trajectory. In 3 of the 10 preparations we were able to simultaneously

record activity from the P10 nerve that projects to the neck muscles (Xin et al., 1996) for all three

evoked population responses. The spiking of axons in this nerve should correspond to the specific
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Figure 4. The pedal ganglion contains a spiral attractor. (A) Example time-series from one population response of the real (top) and imaginary (bottom)

component of the maximum eigenvalue for the local linear model. Points are averages over a 5 s sliding window. Red bar indicates stimulus duration.

(B) Dominant dynamics for each evoked population response. Dots and lines give means �2 s.e.m. of the real and imaginary components of the

maximum eigenvalues for the local linear model. Colours indicate responses from the same preparation. Black dot gives the mean over all population

responses. Grey shaded regions approximately divide the plane of eigenvalue components into regions of qualitatively different dynamics: fixed point

attractor; stable spiral (bottom-right schematic); unstable spiral (top-right schematic). (C) As panel B, converted to estimates of orbital period and rate

of contraction. (Note that higher imaginary eigenvalues equate to faster orbital periods, so the ordering of population responses is flipped on the x-axis

compared to panel B). (D) A preparation with a visible spiral attractor in a three-dimensional projection. Each line is one of the three evoked population

responses, colour-coded by time-elapsed since stimulation (grey circle). The periodicity of the evoked response is the number of loops in the elapsed

time; loop magnitude corresponds to the magnitude of population activity. The approximate dominant axis of the spiral’s contraction is indicated.

Bottom: corresponding raster plot of one evoked response. Neurons are clustered into ensembles, and colour-coded by the change in ensemble firing

rate to show the dominance of decreasing rates corresponding to the contracting loop in the projection. (E) As panel D, but for a preparation with

simultaneously visible dominant spiral and minor expansion of the low-dimensional trajectory. The expansion corresponds to the small population of

neurons with increasing rates.
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Figure 4 continued on next page
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neck contraction portion of the cyclical escape locomotion. We thus sought to decode the spiking of

P10 directly from the low-dimensional population trajectory (Figure 6A).

We first confirmed that each recorded neural population did not appear to contain any motor-

neurons with axons in P10, which could make the decoding potentially trivial (Figure 6—figure sup-

plement 1). To then decode P10 activity, we used a statistical model that predicts the firing rate of

nerve P10 at each time point, by weighting and summing the recent history (up to 100 ms) of the tra-

jectory in the low dimensional space, and using a non-linearity to convert this weighted sum into a

firing rate. We controlled for over-fitting using cross-validation forecasting: we fit the model to a 40

s window of trajectory data, and predicted the next 10 s of P10 activity (Figure 6B). By sliding the

window over the data, we could assess the quality of the forecast over the entire recording

(Figure 6C).

The model could accurately fit and forecast P10 activity from the low-dimensional trajectory in all

nine population responses (Figure 6D). Emphasising the quality of the model, in Figure 6D we plot

example forecasts of the entire P10 recording based on fitting only to the first 40 s window, each

example taken from the extremes we obtained for the fit-quality metrics. Notably, in one recording

the population response shutdown half-way through; yet despite the model being fit only to the 40 s

window containing strong oscillations, it correctly forecasts the collapse of P10 activity, and its slight

rise in firing rate thereafter. Thus, the low dimensional trajectory of the periodic attractor appears to

directly encode muscle commands for movement.

To confirm this, we asked whether the encoding – as represented by the P10 activity – was truly

low-dimensional. The successful decoding of future P10 activity was achieved despite needing only

3–5 embedding dimensions to account for 80% variance in the population activity for these nine

recordings (Figure 6—figure supplement 2). Increasing the number of embedding dimensions to

account for 90% variance, at least doubling the number of embedding dimensions, did not improve

the forecasts of P10 activity (Figure 6—figure supplement 2). These results suggest that the low

dimensional population trajectory is sufficient to encode the locomotion muscle commands.

Figure 4 continued

The following figure supplement is available for figure 4:

Figure supplement 1. Further properties of the spiral attractor.

DOI: 10.7554/eLife.27342.012
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Figure 5. The spiral attractor dissociates changes in oscillation period and firing rate. (A) Example of a change in

the local estimate of the periodic orbit over a population response; here, slowing over time (n ¼ 57 points are

each averages over a 5 s sliding window; � is weighted Spearman’s rank correlation - see Materials and methods;

P from a permutation test). Changes in the periodic orbit were assessed only after coalescence to the manifold

(grey line). (B) Histogram of correlations between time elapsed and local estimate of the periodic orbit for each

population response (positive: slowing; negative: speeding up). Red bars correspond to population responses with

P<0:01 (permutation test). Number of local estimates ranged between 31 and 72 per population response. (C)

Relationship between the change in periodic orbit over time and the rate of contraction for each population

response (Pearson’s R; n ¼ 30 responses).

DOI: 10.7554/eLife.27342.013
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Variable neuron participation in stable motor programs
If the low-dimensional trajectory described by the joint activity of the population just is the motor

program for locomotion, then how crucial to this program are the firing of individual neurons

(Katz et al., 2004; Carmena et al., 2005; Hill et al., 2012; Huber et al., 2012; Carroll and Ramirez,

2013; Hill et al., 2015)? Having quantified the motor program as the low-dimensional activity trajec-

tory, we could uniquely ask how much each neuron participated in each evoked program. We quan-

tified each neuron’s participation as the absolute sum of its weights on the principal axes

(eigenvectors): large total weights indicate a dominant contribution to the low-dimensional trajec-

tory, and small weights indicate little contribution. So quantified, participation is a contextual mea-

sure, giving the contribution to the population trajectory of both a neuron’s firing rate and its

synchrony with other neurons, relative to the rate and synchrony of all other neurons in the popula-

tion (Figure 7—figure supplement 1).

Every population response had a long-tailed distribution of participation (Figure 7A), indicating

that a minority of neurons dominated the dynamics of any given response. Nonetheless, these neu-

rons were not fixed: many with high participation in one population response showed low participa-

tion in another (Figure 7B,C). To rule out noise effects on the variability of participation (for
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Figure 6. Motor output can be decoded directly from the low-dimensional trajectory of population activity. (A) An

example two-dimensional projection of one population’s response trajectory, color-coded by simultaneous P10

firing rate. In this example pair of dimensions, we can see nerve P10 firing is phase-aligned to the periodic

trajectory of population activity. (B) Example fit and forecast by the statistical decoding model for P10 firing rate.

Grey bar indicates stimulation time. (C) For the same example P10 data, the quality of the forecast in the 10 s after

each fitted 40 s sliding window. Match between the model forecast and P10 data was quantified by the fits to both

the change (R: correlation coefficient) and the scale (MAE: median absolute error) of activity over the forecast

window. (D) Summary of model forecasts for all nine population responses with P10 activity (main panel). Dots and

lines show means �2 s.e.m. over all forecast windows (N ¼ 173). Three examples from the extremes of the forecast

quality are shown, each using the fitted model to the first 40 s window to forecast the entire remaining P10 time-

series. The bottom right example is from a recording in which the population response apparently shutdown half-

way through. Inset, lower left: summary of model fits in the training windows; conventions as per main panel.

DOI: 10.7554/eLife.27342.014

The following figure supplements are available for figure 6:

Figure supplement 1. Ruling out P10 motorneurons in the recorded population.

DOI: 10.7554/eLife.27342.015

Figure supplement 2. Increasing the dimensionality of state-space did not improve the P10 decoding model.

DOI: 10.7554/eLife.27342.016
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example, due to the finite duration of recording), we fitted a noise model to the change in participa-

tion separately for each preparation (Figure 7D,E). Every preparation’s pedal ganglion contained

neurons whose change in participation between responses well-exceeded that predicted by the

noise model (Figure 7F). Consequently, the contribution of single neurons was consistently and

strongly variable between population responses in the same preparation.

We also tested for the possibility that hidden within the variation between programs is a small

core of neurons that are strongly participating, yet invariant across programs. Such a core of phasi-

cally active neurons may, for example, form the basis of a classical central pattern generator. How-

ever, in our observed portion of the ganglion we found no evidence for a core of strongly

participating, invariant, and phasically active neurons across the preparations (Figure 7—figure sup-

plement 2).

These data show that a neuron’s role within the locomotion motor program is not fixed, but leave

open the question of whether single neuron variability causes variation in the program itself. In our

analysis, variation between sequentially-evoked population responses is quantified by the distance
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Figure 7. Single neuron participation varies within and between evoked locomotion bouts. (A) Distributions of single neuron participation per evoked

population response. We plot the distribution of participation for all neurons in a population (grey line), expressed as a percentage of the maximum

participation in that population’s response. Black line gives the mean over all 30 population responses. (B) Change in participation between evoked

locomotion bouts. Each dot plots one neuron’s maximum participation over all three evoked population responses, against its maximum change in

participation between consecutive responses (n ¼ 1131 neurons). (C) Two example neurons with variable participation between responses, from two

different preparations. (D) Distribution of the change in participation between responses for one preparation. (E) Detecting strongly variable neurons.

Gaussian fit (red) to the distribution of change in participation (black) from panel D. Neurons beyond thresholds (grey lines) of mean �3SD of the fitted

model were identified as strongly variable. (F) Proportion of identified strongly variable neurons per preparation. (G) Distance between pairs of

population responses as a function of the total change in neuron participation between them. Each dot is a pair of responses from one preparation; the

distance between them is given as a proportion of the mean distance between each response and a random projection (<1: closer than random

projections), allowing comparison between preparations (Figure 3C). Black dots are excluded outliers, corresponding to the pairs containing response

1 in preparation 4 with apparent chaotic activity (Figure 3—figure supplement 1). (H) Distance between pairs of population responses as a function of

the distance between the distributions of participation (panel A). Conventions as for panel G.

DOI: 10.7554/eLife.27342.017

The following figure supplements are available for figure 7:

Figure supplement 1. Participation captures both rate and synchrony effects.

DOI: 10.7554/eLife.27342.018

Figure supplement 2. Testing for an invariant central pattern generator.

DOI: 10.7554/eLife.27342.019
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between their low-dimensional projections (as in Figure 3C). We found that the distance between a

pair of population responses did not correlate with either the total change in neuron participation

between the two responses (Figure 7G) or the distance between their participation distributions

(Figure 7H). The execution of the motor program is thus robust to the participation of individual

neurons.

Participation maps identify potential locations of the pattern generator
network
To get some insight into the physical substrate of the attractor, we plotted maps of the participation

of each neuron in each preparation. We found that neurons with strong participation across the

three evoked population responses were robustly located in the caudo-lateral quadrant of the gan-

glion (Figure 8A,B). Maps of the right ganglion also indicated strong participation in the rostro-

medial quadrant; due to the low numbers of maps for each side, it is unclear whether this is a true

asymmetry of the ganglia or simply reflects sampling variation. Neurons with highly variable partici-

pation between population responses (Figure 8C,D) were similarly found in the caudo-lateral quad-

rants of both ganglia. Strongly participating neurons were thus confined to specific regions of the

pedal ganglion’s network.

These data are consistent with a network-level distribution of the attractor, with a particularly

strong contribution from the caudo-lateral quadrant. Encouragingly, from a different data-set we

previously described this region as containing neural ensembles that generated a cyclical packet of

neural activity, which moved in phase with activity from the neck-projecting P10 nerve (Bruno et al.,

2015). Consequently, both those data and our new data support our hypothesis that the pattern

generator for locomotion is predominantly located in the caudo-lateral network.
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Figure 8. Mapping of participation in the attractor across the ganglion network. Here we plot neuron location with

respect to the photodiode array (yellow hexagon). Each plot pools neurons from preparations of the left (n ¼ 4

preparations) or right (n ¼ 4) ganglia. A,B Maps of maximum participation across the three evoked population

responses for left (A) and right (B) ganglion recordings. The area of each marker is proportional to the neuron’s

maximum participation. Neurons are colour coded (light orange to dark red) by the quintile of their participation

across all preparations. C,D As for panels (A,B), but plotting the range of participation across the three evoked

population responses.
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Discussion
Locomotion networks provide a tractable basis for testing theories of neural dynamics (Lewis and

Kristan, 1998; Briggman et al., 2005; Levi et al., 2005; Briggman and Kristan, 2006; Berg et al.,

2007; Bruno et al., 2015; Petersen and Berg, 2016), as they couple complex dynamics with clearly

defined outputs. We took advantage of this to comprehensively test the idea that high-dimensional

population activity arises from an underlying low-dimensional dynamical system: to determine what

dynamical system accounts for the population activity, whether its low-dimensional signal encodes

movement, and how single neuron activity relates to that signal. We showed here that Aplysia’s

pedal ganglion contains a spiral attractor, that the low-dimensional signal it generates directly enco-

des muscle commands, and yet individual neurons vary in their participation in the attractor.

A consistent low-dimensional spiral attractor
Testing the idea that high-dimensional population activity contains a low-dimensional signal has only

been possible in the last decade or so, due to the necessary combination of large-scale multi-neuron

recording and dimension reduction approaches (Brown et al., 2004; Briggman et al., 2006;

Cunningham and Yu, 2014; Kobak et al., 2016). Landmark studies have used this combination to

project high-dimensional population activity into a more tractable low-dimensional space. In this

space, studies have shown how activity trajectories are different between swimming and crawling

(Briggman et al., 2005); distinguish olfactory (Mazor and Laurent, 2005), auditory (Bartho et al.,

2009), and visual (Mante et al., 2013) stimuli; and distinguish upcoming binary choices

(Harvey et al., 2012). Here we have gone a step further than previous studies by not only observing

such low-dimensional signals, but explicitly testing for the first time the type of dynamical system

that gives rise to the low-dimensional trajectories and its consistency between animals.

Across all 30 evoked population responses examined here, there was a remarkable heterogeneity

of spike-train patterns, from visually evident widespread oscillations to noisy, stuttering oscillations

in a minority of neurons (Figure 2—figure supplement 1). Yet our analysis shows that underpinning

this heterogeneity is the same dynamical system: a low-dimensional, decaying, periodic orbit. We

found a remarkably consistent periodicity and rate of orbital decay across evoked responses within a

preparation and between preparations. The stability of these dynamics, and the convergence of

population activity to the same manifold, are all consistent with the expected behaviour of a true

attractor. Our data thus suggest that only the low-dimensional system and not the high-dimensional

population activity are consistent within and between nervous systems.

We advance the hypothesis that the properties of the spiral attractor fully determine the parame-

ters of the escape gallop: its frequency, physical distance per cycle, and duration. In this hypothesis,

the orbital period of the attractor determines the period of the rhythmic gallop – the sequential

activity of the neurons in each orbit thus driving the sequential contraction of the muscles driving

the escape gallop (Bruno et al., 2015). Further, the amplitude of the orbital period, corresponding

to the spike rate of the neural population, could determine the strength of muscle contraction dur-

ing the escape gallop, allowing control of the physical distance covered by each arching movement.

Finally, the contraction rate of the attractor determines the duration of the escape: the faster the

contraction rate, the shorter the escape gallop’s duration. The variation of these attractor properties

between animals then determines the natural variability in the escape gallop. It follows that changes

to parameters of the escape gallop caused by neuromodulation should correlate with changes to

the orbital period and/or contraction rate of the attractor. For example, the reported increase in gal-

lop duration by systemic injection of serotonin (Marinesco et al., 2004) should correlate with a

decreased contraction rate of the attractor. Future work could test this hypothesis by determining

the effects of neuromodulators on the spiral attractor’s properties and correlating those with read-

outs of the escape gallop.

Treating a neural circuit as a realisation of a dynamical system takes the emphasis away from the

details of individual neurons - their neurotransmitters, their ion channel repertoire - and places it

instead on their collective action. This allows us to take a Marr-ian perspective (Marr, 1982), which

neatly separates the computational, algorithmic, and implementation levels of movement control.

The computational problem here is of how to generate rhythmic locomotion for a finite duration; the

algorithmic solution is a decaying periodic attractor - a spiral; and the implementation of that

attractor is the particular configuration of neurons in the pedal ganglion - one of many possible
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implementations (Kleinfeld and Sompolinsky, 1988; Pasemann, 1995; Eliasmith, 2005; Rokni and

Sompolinsky, 2012). Indeed, a spiral attractor is potentially a general solution to the problem of

how to generate a finite rhythmic behaviour.

Insights and challenges of variable neuron participation
We saw the separation of these levels most clearly in the variable participation of the individual neu-

rons between evoked bouts of fictive locomotion. The projection of the pedal ganglion network’s

joint activity into a low dimensional space captured the locomotion motor program independently of

any single neuron’s activity. Even the most strongly participating neurons in a given population

response could more than halve their participation in other evoked responses. These results suggest

that the pedal ganglion’s pattern generator is not driven by neurons that are endogenous oscillators,

as they would be expected to participate equally in every response. Rather, this variation supports

the hypothesis that the periodic activity is an emergent property of the network.

The adaptive function of having variably participating neurons is unknown. One possibility is that,

by not relying on any core set of neurons to generate rhythmic activity, the pedal ganglion’s ability

to generate locomotion is robust to the loss of neurons. A related possibility is that there is ‘sloppi-

ness’ (Panas et al., 2015) in the pedal ganglion network, such that there are many possible configu-

rations of neurons and their connections able to realise the spiral attractor that drives locomotion

(Marder et al., 2015). Such sloppiness allows for a far more compact specification of the develop-

mental program than needing to genetically specify the type and wiring configuration of each spe-

cific neuron.

The wide variation of single neuron participation between evoked bouts of fictive locomotion also

raises new challenges for theories of neural network attractors (Marder and Taylor, 2011). While a

variety of models present solutions for self-sustaining periodic activity in a network of neurons

(Kleinfeld and Sompolinsky, 1988; Eliasmith, 2005; Rokni and Sompolinsky, 2012), it is unclear if

they can account for the variable participation of single neurons. A further challenge is that while the

variable participation of individual neurons does not affect the underlying program, clearly it takes a

collective change in single neuron activity to transition between behaviours - as, for example, in the

transition from galloping to crawling in Aplysia. What controls these transitions, and how they are

realised by the population dynamics, is yet to be explored either experimentally or theoretically.

Possible implementations of rhythmic locomotion by the pedal ganglion
network
Our results nonetheless argue against a number of hypotheses for the implementation of rhythmic

locomotion by the pedal ganglion. As noted above, such single neuron variability between sequen-

tial locomotion bouts argues against the generation of rhythmic activity by one or more independent

neurons that are endogenous oscillators. Our results also argue against the existence of many stable

periodic states in this network (Pasemann, 1995). Such meta-stability would manifest as changes in

periodicity following perturbation. Our results show that spontaneous divergences from the attractor

overwhelmingly returned to the same attractor.

How then might the pedal ganglion network implement a spiral attractor? Our data were col-

lected from an isolated central nervous system preparation, in which the modulatory influence of

neurons outside the pedal ganglion cannot be discounted (Jing et al., 2008). Nonetheless, as the

pedal ganglion contains the central pattern generator for locomotion (Jahan-Parwar and Fredman,

1980), we can suggest how that generator is realised. Our results here support the hypothesis that

the periodic activity is an emergent property of the ganglion’s network. We know the pedal ganglion

contains a mix of interneurons and motorneurons (Fredman and Jahan-Parwar, 1980), and that the

motorneurons are not synaptically coupled (Hening et al., 1979), suggesting they read-out (and

potentially feedback to) the dynamics of an interneuron network. An hypothesis consistent with our

results here is that the ganglion contains a recurrent network of excitatory interneurons, centred on

the caudo-lateral quadrant, which feed-forward to groups of motorneurons (Bruno et al., 2015).

This recurrent network embodies the attractor, in that stimulation of the network causes a self-sus-

tained packet of activity to sweep around it (Bruno et al., 2015). We see this as the periodic trajec-

tory of joint population activity (cf Figure 2A, Figure 3B).
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Multiple periodic attractors and multi-functional circuits
Our data further suggest that the pedal ganglion network supports at least two stable states, the

spontaneous activity and the stable-spiral attractor. Reaching the stable-spiral attractor from the

spontaneous activity required long-duration, high-voltage pedal nerve stimulation (Figure 1;

Bruno et al., 2015). In dynamical systems terms, this suggests that the spontaneous state’s basin of

attraction is large: most perturbations return to that state, and it takes a large perturbation to move

into a different basin of attraction.

Multiple co-existing periodic attractors in a single network is also a challenge for current theories.

While point attractor networks, such as Hopfield networks, can have vast number of stable states

defined by different arrangements of the equilibrium activity of their neurons (Miller, 2016), a stable

periodic attractor network typically has only two stable states: silence and periodic activity. The co-

existence of stable spontaneous and periodic states in the same network suggests that something

must reconfigure the network to sustain periodic activity (Calin-Jageman et al., 2007); otherwise,

irrespective of the stimulation, the network would always return to the spontaneous state. One pos-

sibility in the pedal ganglion is that serotonin alters the effective connections between neurons:

escape galloping is both dramatically extended by systemic injection of serotonin alongside tail stim-

ulation (Marinesco et al., 2004), and evoked by stimulating serotonergic command neurons CC9/

CC10 in the cerebral ganglion (Jing et al., 2008). Future experimental work should thus test the sta-

bility of the spontaneous state, and test how manipulating serotonin affects reaching and sustaining

the stable-spiral attractor.

There are potentially more stable states within the pedal ganglion’s network. The long-lasting

crawl that follows the escape gallop is slower and omits the periodic arching of the body

(Flinn et al., 2001). We saw three perturbations of the attractor activity that were suggestive of a

transition to a different, slower periodic orbit (e.g. panel C in Figure 3—figure supplement 2), con-

sistent with a transition from galloping to crawling. Such crawling is also the animal’s normal mode

of exploration (Leonard and Lukowiak, 1986), and so the ‘crawling’ attractor must be reachable

from the spontaneous state too. Aplysia’s exploratory head-wave, moving its head side-to-side pre-

sumably to allow its tentacles and other head sensory organs to sample the environment

(Leonard and Lukowiak, 1986), is also controlled by motorneurons in the pedal ganglion

(Kuenzi and Carew, 1994). Previous studies of the Aplysia’s abdominal ganglion (Wu et al., 1994),

the leech segmental ganglion (Briggman and Kristan, 2006), and the crustacean stomatogastric

ganglion (reviewed in Marder and Bucher, 2007) have described multi-functional networks in which

the same neurons are active in different motor behaviours. Our work here is consistent with the

hypothesis that such multi-function is due to the neurons participating in different attractors realised

by same network (Briggman and Kristan, 2008). Further work is needed to map the pedal ganglion

network’s dynamics to the full range of Aplysia motor behaviour.

Outlook
Finding and quantifying the attractor required new analytical approaches. We introduce here the

idea of using recurrence analysis to solve two problems: how to identify periodic activity in a high-

dimensional space; and how to identify when the recorded system is and is not on the manifold of

the attractor. By extracting the times when the population activity is on the manifold, we could then

quantify and characterise the attractor, including identifying transient perturbations, and estimating

changes in orbital period. Crucially, these manifold-times let us further introduce the idea of using

linear models as a statistical estimator, to identify the type of attractor, and compare the detected

attractor’s parameters within and between preparations. Our analysis approach thus offers a road-

map for further understanding the dynamics of neural populations.

There is rich potential for understanding spontaneous, evoked or learning-induced changes in the

dynamics of populations for movement control. The dynamics of movement control populations

transition between states either spontaneously or driven by external input (Briggman et al., 2005;

Levi et al., 2005). Our recurrence approach allows both the detection of transitions away from the

current state (Figure 3) and the characterisation of the attractor in the new state. For learning, tak-

ing an attractor-view allows us to distinguish three distinct ways that short (Stopfer and Carew,

1988; Katz et al., 1994; Hill et al., 2015) or long-term (Hawkins et al., 2006) plasticity could

change the underlying attractor: by changing the shape of the manifold; by changing the rate of
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movement of the low-dimensional signal on the manifold; or by changing the read-out of the mani-

fold by downstream targets. Such insights may contribute to the grand challenge of systems neuro-

science, that of finding simplifying principles for neural systems in the face of overwhelming

complexity (Koch, 2012; Yuste, 2015).

Materials and methods

Data and code availability
Bandpassed optical data, spike-sorted data, and available P10 nerve recordings are hosted on

CRCNS.org at: 10.6080/K0SN074B

All research code is available under a MIT License from (Humphries, 2017): https://github.com/

mdhumphries/AplysiaAttractorAnalysis. A copy is archived at https://github.com/elifesciences-publi-

cations/AplysiaAttractorAnalysis.

Imaging
Full details of the Aplysia californica preparation are given in Bruno et al. (2015). Briefly, the cere-

bral, pleural and pedal ganglia were dissected out, pinned to the bottom of a chamber, and main-

tained at 15� 17
�C. Imaging of neural activity used the fast voltage sensitive absorbance dye RH-

155 (Anaspec), and a 464-element photodiode array (NeuroPDA-III, RedShirtImaging) sampled at

1600 Hz. Optical data from the 464 elements were bandpass filtered in Neuroplex (5 Hz high pass

and 100 Hz low pass Butterworth filters), and then spike-sorted with independent component analy-

sis in MATLAB to yield single neuron action potential traces (the independent components), as

detailed in (Hill et al., 2010). Rhythmic locomotion motor programs were elicited using 8V 5 ms

monophasic pulses delivered at 20 Hz for 2.5 s via suction electrode to pedal nerve 9. A separate

suction electrode was attached to pedal nerve 10 to continuously monitor the locomotion rhythm

(Xin et al., 1996). Evoked activity could last for many minutes; our system allowed us to capture a

maximum of » 125 s, divided between 30 s of spontaneous activity and 95 s of evoked activity. The

stimulation protocol (Figure 1B) used short (15 min) and long (60 min) intervals between stimula-

tions, as the original design also sought effects of sensitisation.

Spike-train analysis
Power spectra were computed using multi-taper spectra routines from the Chronux toolbox

(Bokil et al., 2010). We computed the power spectrum of each neuron’s spike-train post-stimulation,

and plot means over all spectra within a recorded population, and the mean over all mean spectra.

We computed the spike-density function f ðtÞ for each neuron by convolving each spike at time ts

with a Gaussian G : f ðtÞ ¼ P

t0<ts<t1
GðtsÞ

� R t1
t0
Gðt�Þdt�, evaluated over some finite window between t0

and t1(see Szucs, 1998). We set the window to be �5s, and evaluated the convolution using a time-

step of 10 ms. We defined the standard deviation s of the Gaussian by the median inter-spike inter-

val of the population: s ¼ fmedian ISI in populationg=
ffiffiffiffiffi

12
p

(see Humphries, 2011).

To visualise the entire population’s spiking activity (Figure 1C), we cluster neurons by the similar-

ity of their firing patterns using our modular deconstruction toolbox (Bruno et al., 2015). Different

dynamical types of ensembles were identified by the properties of their autocorrelograms: tonic,

oscillator, burster, or pauser - see (Bruno et al., 2015) for details. We also assigned each neuron in

the ensemble the same dynamical label, which we use in the analysis of Figure 7—figure supple-

ment 2. To demonstrate the firing rate change of each ensemble (Figure 4), we first counted the

number of spikes emitted by that ensemble in 20 s windows, advanced in 5 s steps from the onset

of stimulation. We then correlated (Pearson’s R) the time of each window against its spike count:

ensembles were classified as decreasing rate if R < � 0:2, and increasing if R > 0:2.

Model network
We used a three-neuron network to demonstrate the dynamical properties of a periodic attractor as

realised by neurons (Figure 1—figure supplement 1). Each neuron’s membrane dynamics were

given by ta _ai ¼ �aiðtÞ þ ciðtÞ þ
P

3

j¼1
wjirjðtÞ � gyiðtÞ, with adaptation dynamics ty _yi ¼ �yiðtÞ þ riðtÞ,

and output firing rate riðtÞ ¼ max 0; aiðtÞf g. Weights wji � 0 give the strength of inhibitory connections
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between the neurons, each of which receives a driving input ci. This model, due to Matsuoka (Mat-

suoka, 1985, 1987), generates self-sustained oscillation of network firing rates given constant scalar

inputs ciðtÞ ¼ c, despite each neuron not being an endogenous oscillator: consequently the oscilla-

tions are an emergent property of the network. The time constants of membrane ta and adaptation

ty dynamics, together with the strength of adaptation g, determine the periodicity of the oscillations

(Matsuoka, 1985, 1987). Here we use ta ¼ 0:025 s, ty ¼ 0:2 s, and g ¼ 2; input was ci ¼ 3 throughout

except where noted.

Recurrence analysis
Low dimensional projections of the joint population activity were obtained for each program using

standard principal components analysis, applied to the covariance matrix of the spike-density func-

tions. The d leading eigenvectors Wi of the covariance matrix define the d principal dimensions, and

the d corresponding eigenvalues are proportional to the variance accounted for by each dimension.

The projection (the ‘principal component’) onto each of the chosen dimensions is given by

piðtÞ ¼
Pn

k¼1
Wk

i f
kðtÞ, where the sum is taken over all n neurons in the analyzed population.

We used recurrence analysis (Lathrop and Kostelich, 1989; Marwan et al., 2007) to determine if

the low-dimensional projection contained a stable periodic orbit. To do so, we checked if the low-

dimensional projection PðtÞ ¼ ðp1ðtÞ; p2ðtÞ; . . . ; pdðtÞÞ at time t recurred at some time t þ d in the

future. Recurrence was defined as the first point Pðt þ dÞ ¼ ðp1ðt þ dÞ; p2ðt þ dÞ; . . . ; pdðt þ dÞÞ that was
less than some Euclidean distance � from PðtÞ. The recurrence time of point PðtÞ is thus ds. Contigu-

ous regions of the projection’s trajectory from PðtÞ that remained within distance � were excluded.

Threshold � was chosen based on the distribution of all distances between time-points, so that it

was scaled to the activity levels in that particular program. Throughout we use the 10% value of that

distribution as � for robustness to noise; similar periodicity of recurrence was maintained at all tested

thresholds from 2% upwards (Figure 2—figure supplement 2).

We checked every time-point t between 5 s after stimulation until 10 s before the end of the

recording (around 7770 points per program), determining whether it was or was not recurrent. We

then constructed a histogram of the recurrence times using 1 s bins to detect periodic orbits

(Figure 2E): a large peak in the histogram indicates a high frequency of the same delay between

recurrent points, and thus a periodic orbit in the system. All delays less than 5 s were excluded to

eliminate quasi-periodic activity due to noise in otherwise contiguous trajectories. Peaks were then

defined as contiguous parts of the histogram between empty bins, and which contained more than

100 recurrent points. Programs had between one and four such periodic orbits. The peak containing

the greatest number of recurrent points was considered the dominant periodic orbit of the program;

the majority of programs had more than 50% of their recurrent points in this peak (blue-scale vectors

in Figure 2E). The mean orbit period of the program was then estimated from the mean value of all

recurrence times in that peak.

We measured the attractor’s stability as the percentage of all points that were in periodic orbits.

Evolving dynamics of each program were analysed using 5 s sliding windows, advanced in steps of 1

s. We defined the ‘coalescence’ time of the attractor as the mid-point of the first window in which at

least 90% of the points on the trajectory were recurrent.

Testing convergence to the same manifold
To determine if sequentially-evoked programs had the same manifold, we determined how closely

the trajectories of each pair of programs overlapped in the low-dimensional space. We first pro-

jected all three programs from one preparation onto the principal axes of the first program, to

define a common low-dimensional space. For each pair of programs ðA;BÞ in this projection, we then

computed the Haussdorf distance between their two sets of recurrent points, as this metric is suited

to handling tests of closeness between irregularly shaped sets of points. Given the Euclidean distan-

ces fdðA;BÞg from all recurrent points in A to those in B, and vice-versa fdðBjAÞg, this is the maximum

minimum distance needed to travel from a point in one program to a point in the other (namely

maxfminfdðA;BÞg;minfdðB;AÞg). To understand if the resulting distances were close, we shuffled the

assignment of time-series to neurons, then projected onto the same axes giving shuffled programs

A�, B�. These give the trajectories in the low-dimensional space determined by just the firing pat-

terns of neurons. We then computed the shuffled Haussdorf distance
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maxfminfdðA;B�Þg;minfdðB;A�Þg). The shuffling was repeated 100 times. Mean � 2SEM of the shuf-

fled distances are plotted in (Figure 3C); the error bars are too small to see.

To check the robustness of the convergence to the same manifold, we repeated this analysis

starting from a common set of principal axes for the three programs, obtained using principal com-

ponent analysis of their concatenated spike-density functions. We plot the results of this analysis in

panel A of Figure 3—figure supplement 1.

As a further robustness control, we sought evidence of the manifold convergence independent of

any low-dimensional projection. We made use of the idea that if neurons are part of sequential pro-

grams on a single manifold, then the firing of pairs of neurons should have a similar time-depen-

dence between programs (Yoon et al., 2013; Peyrache et al., 2015). For each pair of programs

ðA;BÞ from the same preparation, we computed the similarity matrix SðAÞ between the spike-density

functions of all neuron pairs in A, and similarly for B, giving SðBÞ. We then computed the correlation

coefficient between SðAÞ and SðBÞ: if A and B are on the same manifold, so their pairwise correlations

should themselves be strongly correlated. As a control we computed a null model where each neu-

ron has same total amount of similarity as in the data, but its pairwise similarity with each neuron is

randomly distributed (Humphries, 2011). The expected value of pairwise correlation between neu-

rons i and j under this model is then Eij ¼ sisj=T , where ðsi; sj) are the total similarities for neurons i

and j, and T is the total similarity in the data matrix. For comparison, we correlated SðAÞ with E, and

plot these as the control correlations in Figure 3E.

Testing return to the same manifold after perturbation
We detected divergences of the trajectory away from the putative manifold, indicating spontaneous

perturbations of population dynamics. We first defined potential perturbations after coalescence as

a contiguous set of 5 s windows when the density of recurrent points was below 90% and fell below

50% at least once. The window with the lowest recurrence density in this divergent period was

labelled the divergent point. We removed all such divergent periods whose divergent point fell

within two oscillation cycles of the end of the recording, to rule out a fall in recurrence due solely to

the finite time horizon of the recording. For the remaining 19 divergent periods, we then determined

if the population activity returned to a recurrent state after the divergent point; that is, whether the

density of recurrence returned above 90% or not. The majority (17/19) did, indicating the perturba-

tion returned to a manifold.

For those 17 that did, we then determined if the recurrent state post-divergence was the same

manifold, or a different manifold. For it to be the same manifold after the spontaneous perturbation,

then the trajectory before the perturbation should recur after the maximum divergence. To check

this, we took the final window before the divergent period, and counted the proportion of its recur-

rent delays that were beyond the end of the divergent period, so indicating that the dynamics were

in the same trajectory before and after the divergence. We plot this in Figure 3H.

Statistical estimation of the attractor’s parameters
We introduce here a statistical approach to analysing the dynamics of low-dimensional projections of

neural activity time-series obtained from experiments. We first fitted a linear model around each

point on the low-dimensional trajectory to capture the local dynamics. For each point PðtÞ, we took

the time-series of points before and after PðtÞ that were contiguous in time and within 2:5� � as its

local neighbourhood; if less than 100 points met these criteria PðtÞ was discarded. We then fitted

the dynamical model _P� ¼ AP� that described the local evolution of the low-dimensional projection

P� by using linear regression to find the Jacobian matrix A; to do so, we used the selected local

neighbourhood time-series as P�, and their first-order difference as _P�. The maximum eigenvalue

l ¼ aþ ib of A indicates the dominant local dynamics (Strogatz, 1994), whether contracting or

expanding (sign of the real part a of the eigenvalue), and whether oscillating or not (existence of the

complex part of the eigenvalue that is, b 6¼ 0). The other eigenvalues, corresponding to the d � 1

remaining dimensions, indicate other less-dominant dynamics; usually these were consistent across

all dimensions (Figure 4—figure supplement 1). We fitted A to every point PðtÞ after the stimulation

off-set, typically giving » 5000 local estimates of dynamics from retained PðtÞ. The dominant dynam-

ics for the whole program were estimated by averaging over the real a and the complex b parts of

the maximum eigenvalues of the models fitted to all recurrent points in the dominant periodic orbit.
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The linear model’s estimate of the orbit rotation period was estimated from the complex part as

! ¼ 2pbDt, with the sampling time-step Dt ¼ 0:01 s here. The linear model’s estimate of the contrac-

tion rate is expða=DtÞ, which we express as a percentage.

Tracking changes in periodicity over a program
We tracked changes in the oscillation period by first averaging the recurrence time of all recurrent

points in a 5 s sliding window. We then correlated the mean time with the time-point of the window

to look for sustained changes in the mean period over time, considering only windows between coa-

lescence and the final window with 90% recurrent points. We used a weighted version of Spearman’s

rank to weight the correlation in favour of time windows in which the trajectory was most clearly on

the periodic orbit, namely those with a high proportion of recurrent points and low variation in recur-

rence time. The weighted rank correlation is: given vectors x and y of data rankings, and a vector of

weights w, compute the weighted mean m ¼ P

i wixi=
P

i wi and standard deviation

sxy ¼
P

i wiðxi � mxÞðyi � myÞ=
P

i wi, and then the correlation � ¼ sxy=
ffiffiffiffiffiffiffiffiffiffiffiffiffi

sxxsyy
p

. We used the weight

vector: wi ¼ s�1

i Qi, where si is the standard deviation of recurrence times in window i, and Qi is the

proportion of recurrent points in window i. P-values were obtained using a permutation test with

10000 permutations.

Decoding motor output
We decoded P10 activity from the low-dimensional trajectory of population activity using a general-

ised linear model. We first ruled out that any simultaneously recorded neuron was a motorneuron

with an axon in nerve P10, by checking if any neurons had a high ratio of locking between their emit-

ted spikes and spikes occurring at short latency in the P10 recording. Figure 6—figure supplement

1 shows that no neuron had a consistent, high ratio locking of its spikes with the P10 activity.

We convolved the spikes of the P10 recording with a Gaussian of the same width as the spike-

density functions of the simultaneously recorded program, to estimate its continuous firing rate f10.

We fitted the model f10ðtÞ ¼ exp b0 þ
Pd

i¼1

Pm
h¼1

bi;hPiðt � hÞ
� �

to determine the P10 firing rate as a

function of the past history of the population activity trajectory. Using a generalised linear model

here allows us to transform the arbitrary co-ordinates of the d-dimensional projection PðtÞ into a

strictly positive firing rate. Fitting used glmfit in MATLAB R2014. To cross-validate the model, we

found the coefficients b using a 40 s window of data, then forecast the P10 firing rate f �
10

using the

next 10 s of population recording data as input to the model. Forecast error was measured as both

the median absolute error and the correlation coefficient R between the actual and forecast P10

activity in the 10 s window. The fitting and forecasting were repeated using a 1 s step of the win-

dows, until the final 40 s + 10 s pair of windows available in the recording.

We tested activity histories between 50 and 200 ms duration, with time-steps of 10 ms, so that

the largest model for a given program had d � 20 coefficients. These short windows were chosen to

rule out the contributions of other potential motorneurons in the population recording that would

be phase offset from neck contraction (as 200 ms is 2% of the typical period). All results were robust

to the choice of history duration, so we plot results using history durations that had the smallest

median absolute error in forecasting for that program.

Single neuron participation
We quantified each neuron’s participation in the low-dimensional projection as the L1-norm: the

absolute sum of its weights on the principal axes (eigenvectors) for program m : �mi ¼
Pd

j¼1
lmj W

m
j ðiÞ

�

�

�

�

�

�,

where the sum is over the d principal axes, Wm
j ðiÞ is the neuron’s weight on the jth axis, and lmj is the

axis’ corresponding eigenvalue. Within a program, participation for each neuron was normalised to

the maximum participation in that program. To fit a noise model for the variability in participation

between programs, we first computed the change in participation for each neuron between all pairs

of programs in the same preparation. We then fit a Gaussian model for the noise, using an iterative

maximum likelihood approach to identify the likely outliers; here the outliers are the participation

changes that are inconsistent with stochastic noise. In this approach, we compute the mean and vari-

ance of the Gaussian from the data, eliminate the data-point furthest from the estimate of the mean,

re-estimate the mean and variance, and compute the new log likelihood of the Gaussian model
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without that data-point. We iterate elimination, re-estimation, and likelihood computation until the

likelihood decreases. The final model (mean and variance) found before the decrease is then the

best-fit Gaussian model to the bulk of the data. Neurons whose maximum change in participation

exceeded a threshold of the mean �3SD of that best-fit model were then considered ‘strongly vari-

able’ neurons.

We asked whether the variation in low-dimensional dynamics of sequentially-evoked programs

was a consequence of the degree of variation in single neuron participation. Between a pair of con-

secutively evoked programs, we quantified the variation in their low dimensional dynamics as the

Hausdorff distance between them, normalised by the mean distance between their random projec-

tions. This normalisation allowed us to put all programs on a single scale measuring the closeness

relative to random projections, such that one indicates equivalence to a random projection, <1 indi-

cates closer than random projections, and >1 indicates further apart then random projections. For a

given pair of programs, we quantified the variability of individual neurons’ participation in two ways:

by summing the change in participation of each neuron between the programs; and by computing

the Hellinger distance between the two distributions of participation (one distribution per program).

Participation maps
Each neuron’s (x,y) location on the plane of the photodiode array could be estimated from the

weight matrix from the independent component analysis of the original 464 photodiode time-series;

see (Bruno et al., 2015) for full details. We were able to reconstruct locations for all neurons in 8 of

the 10 recorded preparations; for the other two preparations, partial corruption of the original

spike-sorting analysis data prevented reconstructions of some neuron locations in one; for the other,

we could not determine on what side it was recorded. We merged all left or right ganglion record-

ings on to a common template of the photodiode array. The marker sizes and colour codes for each

neuron were proportional to the normalised maximum participation of that neuron (Figure 8A,C)

and to the range of normalised maximum participation across the three programs (Figure 8B,D).
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