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SUMMARY

Ribosome profiling is a widespread tool for studying translational dynamics in human cells. Its 

central assumption is that ribosome footprint density on a transcript quantitatively reflects protein 

synthesis. Here, we test this assumption using pulsed-SILAC (pSILAC) high-accuracy targeted 

proteomics. We focus on multiple myeloma cells exposed to bortezomib, a first-line chemotherapy 

and proteasome inhibitor. In the absence of bortezomib, we found that direct measurement of 

protein synthesis by pSILAC correlated well with indirect measurement of synthesis from 

ribosome footprint density. This correlation, however, broke down at high bortezomib doses. By 

developing a statistical model integrating longitudinal proteomic and mRNA-sequencing 

measurements, we found that proteomics could directly detect global alterations in translational 

rate caused by bortezomib; these changes are not detectable by ribosomal profiling alone. Further, 

by incorporating pSILAC data into a gene expression model, we predict cell-stress specific 

proteome remodeling events. These results demonstrate that pSILAC provides an important 

complement to ribosome profiling in measuring proteome dynamics.
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In Brief

Direct measurement of protein synthesis by pulsed-SILAC mass spectrometry after cancer therapy 

reveals proteomic effects of global translational repression and predicts proteome remodeling 

under cellular stress.

INTRODUCTION

Dynamic changes in the cancer proteome control tumor growth, proliferation, metastasis, 

and response to therapy. Targeting aberrant mRNA translation in cancer has recently 

garnered significant interest as a therapeutic strategy (Boussemart et al., 2014; Hsieh et al., 

2012; Wolfe et al., 2014). Furthermore, a myriad of cellular stresses, including exposure to 

various chemotherapeutics, leads to global inhibition of protein synthesis and remodeling of 

the cancer proteome (de Haro et al., 1996; Walter and Ron, 2011).

A powerful new tool to measure gene-specific regulation of translation is ribosome profiling, 

the deep sequencing of mRNA fragments protected by actively translating ribosomes 

(Ingolia et al., 2009, 2011; Michel and Baranov, 2013). A central assumption of ribosome 

profiling is that indirect measurement of ribosome footprint occupancy on transcripts is 

directly reflective of true protein synthesis. While this assumption has been shown to be 

largely true in bacteria (Li et al., 2014a), the relationship between footprint occupancy and 

protein synthesis remains less clear in the more complex translational system of eukaryotes 

(Liu et al., 2016). Furthermore, using standard ribosome profiling approaches it can be 

difficult to capture global cellular changes in translational capacity (Ingolia, 2016), such as 

those which occur in response to drug therapy in cancer.

A potential orthogonal method to measure gene-specific translational regulation is pulsed-

SILAC (pSILAC) proteomics. In this approach, stable isotope-labeled amino acids are added 

to the cellular media and subsequently incorporated into all newly synthesized proteins. 

pSILAC has been used to directly monitor the synthesis of new proteins in various systems 
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using shotgun proteomic approaches (Jovanovic et al., 2015; Schwanhausser et al., 2011). 

Therefore, combining pSILAC with high-accuracy quantitative proteomics may offer an 

alternate approach to assess gene-specific translational regulation through the direct 

measurement of newly synthesized proteins.

Here, as a test-bed for comparing ribosomal footprint profiling and pSILAC, we monitor the 

effects of low-dose bortezomib therapy on translation in multiple myeloma cells using both 

methods. Bortezomib is a first-line therapy for this hematologic cancer, and proteasomal 

blockade by this drug is known to lead to ER stress due to accumulation of unfolded and 

misfolded proteins (Obeng et al., 2006; Vincenz et al., 2013). This stress triggers 

downstream signaling pathways that inhibit the translation of the large majority of mRNAs 

(Walter and Ron, 2011). We demonstrate that before the onset of bortezomib-mediated 

translational repression, ribosomal footprint profiling and pSILAC measurements were well 

correlated, providing important support for the assumption that ribosome footprint density is 

quantitatively reflective of protein synthesis in eukaryotes. However, we observed that under 

conditions of proteasomal blockade this correlation breaks down in characteristic ways. 

Using a quantitative statistical model to describe protein synthetic rates, we found that 

pSILAC methods were able to directly detect global alterations of translation not identified 

by standard ribosome profiling approaches, including dynamic, protein-level responses to 

different levels of stress-induced translational inhibition. These findings underscore the 

utility of pSILAC proteomics as a complementary method in studies of translational 

regulation to ribosome profiling, particularly under conditions of cellular stress. Given that 

similar, global perturbations of translation occur during heat shock, DNA damage, and 

oxidative stress (Duncan and Hershey, 1984; Powley et al., 2009; Shenton et al., 2006), we 

suggest that this approach may be widely applicable.

RESULTS

In the first portion of this study, we directly compared ribosomal footprint profiling and 

pSILAC in MM1.S multiple myeloma cells treated with a low dose (0.5 nM) of bortezomib 

(Figure S1A). This dose is well below the half-maximal effective concentration (EC50 ~ 8 

nM) for inhibition of proteasomal catalytic activity (Chauhan et al., 2005). We previously 

studied MM1.S response to a high dose of bortezomib (20 nM), but found that due to wides-

pread mRNA degradation during rapid apoptosis we could not establish a quantitative 

relationship between ribosome footprint occupancy and protein synthesis (Wiita et al., 

2013). The low dose of bortezomib used here is able to suppress cell growth over 48 hr, 

indicating some degree of drug-induced stress, but does not lead to appreciable apoptosis 

(Figures S1B–S1E).

At each of six time points over 48 hr after 0.5 nM bortezomib treatment, we harvested cells 

for mRNA sequencing (mRNA-seq), ribosome profiling, and quantitative proteomics (Figure 

S1A). mRNA-seq and ribosome profiling were performed as described previously (Wiita et 

al., 2013). For high-accuracy quantification of newly synthesized proteins, we designed 

quantitative selected reaction monitoring (SRM) assays (Picotti and Aebersold, 2012) 

measuring synthesis (“heavy” channel) and degradation (“light” channel) of 272 proteins in 

this cellular system. This analysis included monitoring at least two unique sequence peptides 
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per protein, in technical duplicate, in both the light and heavy channels by SRM (Figure 1A). 

SRM data were normalized across time points using the total intensity (light + heavy 

channel intensity) of a panel of “housekeeping” proteins that remain unchanged at the 

transcript level (STAR Methods). While SRM has the advantage of consistent quantification 

of targeted peptides across all time points, a main drawback is the lower throughput 

compared with “shotgun” proteomic methods. Therefore, our analysis is necessarily limited 

to a subset of expressed proteins.

Overall Changes over the Time Course

We first compared the relative read density of transcripts identified by mRNA-seq and 

ribosome profiling across the time course to those found at baseline (untreated cells at 0 hr). 

We found a strong correlation between mRNA-seq and ribosome footprint density at the 

baseline and 6 hr time points (Figures S1F–S1H). As expected, we also found that relative 

ribosome footprint density generally moves in concert with relative transcript abundance 

(Figures S2A and S2B). The biological effects of low-dose proteasome inhibition were 

similar to those seen previously at high dose (Wiita et al., 2013), with prominent 

upregulation of proteasomal subunits and downregulation of ribosomal subunits (Data S2). 

However, this general correlation between mRNA abundance and ribosome footprint density 

does not capture dynamics in this system at the protein level. For example, when comparing 

the relative fold change to 0 hr of total abundance of the 272 proteins monitored by SRM 

across the time course with that of mRNA-seq and ribosome footprint read density on the 

corresponding transcript, we observed that while relative increases in mRNA indeed drove 

increases in protein abundance, most protein-level increases were less prominent than 

transcript-level increases (Figure 1B). Furthermore, downregulated transcripts did not lead to 

detectable decreases in protein abundance over 48 hr (Figure 1B). This finding is consistent 

with those of others (Jovanovic et al., 2015; Schwanhausser et al., 2011) suggesting that 

high-abundance proteins, as we primarily monitored here, typically have long half-lives. 

These half-lives may be further extended by partial blockade of proteasomal degradation by 

bortezomib treatment (Figure S4E).

To further investigate the quantitative relationship between these two orthogonal methods to 

measure protein synthesis, we compared the amount of protein synthesis inferred from 

ribosome profiling with that directly measured by SRM for individual proteins. For these 

comparative measurements we first required an estimate of the absolute copy number of 

newly synthesized proteins per cell. We therefore used the intensity Based Absolute 

Quantification (iBAQ) approach (Schwanhausser et al., 2011) to estimate baseline protein 

copy number per cell in untreated MM1.S cells. This estimate is based on measured peptide 

intensities in label-free shotgun proteomic analyses of biological duplicate samples (Figures 

S2F and S2G).

Compared with iBAQ-estimated absolute protein abundance across the MM1.S proteome, 

we found a stronger correlation with ribosome footprint read density (R = 0.76) than with 

mRNA-seq read density (R = 0.62) (Figures S1I and S1J), consistent with prior studies 

(Ingolia et al., 2009). To ensure that these baseline copy numbers were of the correct order 

of magnitude, we verified protein copy number per cell for three representative proteins, 
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spanning the range of estimated copy numbers per cell (~105 to ~107) for the majority of 

proteins included in the SRM assay, using quantitative western blotting (Figures S2D and 

S2E). Using the heavy-channel SRM intensity, which represents newly synthesized proteins, 

and extrapolating from baseline protein copies per cell, we estimated the number of protein 

copies per cell synthesized between the 0 hr and 12 hr time points, when cellular protein 

synthesis appears largely unaffected by drug treatment (Figures S2H, S2I, and 3A). We 

compared these data with the average ribosome footprint density (in reads per kilobase 

million [RPKM]) across the 0, 6, and 12 hr time points (Figure 2A). We found a good 

correlation between ribosome footprint density and protein synthesis (Pearson’s R = 0.80 on 

log-transformed data). A linear best fit to these data on a log scale resulted in a slope of 0.97 

(95% confidence interval 0.86–1.06). This strong correlation and linear fit with slope near 

unity in this eukaryotic system suggests that indirect measurement of synthesis via ribosome 

footprint occupancy for any gene indeed appears to quantitatively reflect absolute protein 

synthesis. However, the observed correlation is not perfect, requiring further exploration of 

potential causes of divergence between these two orthogonal measurements.

To generate hypotheses as to the causes of this divergence, we turned to mathematical 

modeling. We explored the dynamics of protein degradation and production by using a 

system of differential equations. For each protein, we fitted the estimated number of “heavy” 

and “light” protein copies per cell, as well as the total protein abundance based on the 

addition of these two SRM intensities (Figure 2B), using orthogonal natural cubic splines 

with linearity constraints to obtain functional forms, denoted by , and 

, respectively (STAR Methods). This enabled us to describe changes of protein 

abundance (  and ) in terms of protein synthesis and degradation (Figure 

2C). For each corresponding transcript we also monitored the mRNA-seq read density 

(Mortazavi et al., 2008) and ribosome footprint density in RPKM.

For estimating the degradation rate constant  for each gene g, we found that a single-

exponential fit well described protein degradation for the included proteins. Other proteomic 

and deep-sequencing data were fitted using the same approach described above (see STAR 

Methods). The primary gene-specific free parameter in this model is , the translation 

rate parameter at time t for gene g describing the number of protein molecules produced per 

transcript per unit time, which provides a proteomic-based measure of translational 

efficiency for each gene. Notably, our model allows us to determine changes in  as a 

function of time, as needed after cellular perturbation, unlike in prior approaches describing 

a static  term in steady-state cells (Schwanhausser et al., 2011).

With our model in hand, we directly compared  with a measure of translational 

efficiency (TE) used in the ribosome profiling literature, where TE is defined as the ratio of 

the relative ribosome footprint read density to the relative mRNA-seq read density (Ingolia 

et al., 2009, 2011). Using standard ribosome profiling analysis methods (see STAR 

Methods), we observed little change in TE (Figure 2E) over time. This finding is in 

surprising contrast to changes found in  as measured by proteomics, where comparisons 
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to 0 hr indicate a reduction in proteins synthesized per transcript across the time course 

(Figure 2F).

We reasoned that our proteomic methods may be directly detecting global decreases in 

protein synthesis induced by bortezomib treatment not captured by standard ribosome 

profiling approaches. In agreement with this notion, polysome analysis by sucrose gradient 

centrifugation (Figure S2H), incorporation of puromycin into nascent proteins (Figure 3A), 

and dephosphorylation of the translation initiation factor eIF4E-binding protein 1 (4EBP1) 

(Figure S2I) all supported a diminishment of global translational capacity at time points after 

12 hr, despite little decrease in global mRNA levels compared with baseline (Figure S1D). 

We also computed the ratio of bulk puromycin incorporation (Figure 3C) to the total mRNA 

nucleotide abundance, Gm(t), (Figure 3F) to represent bulk translational efficiency from 

biochemistry experiments (Figure 3G). This showed a response over time of decreasing 

translational capacity similar to that of the average normalized translational rate parameter, 

 (Figure 3H).

The inability of standard ribosome profiling approaches to detect global changes in 

translational capacity has been previously recognized (Ingolia, 2016). To address this issue, 

we used a recently described method of normalization incorporating ribosome footprints 

mapping to mitochondria-encoded genes (ChrM), which are proposed to remain constant 

despite inhibition of cytosolic translation (Iwasaki et al., 2016). The normalized translational 

efficiency from ribosome profiling is critical for assessing global changes in translational 

capacity under conditions of cellular stress. This normalized TE, denoted by  (see STAR 

Methods), demonstrates qualitative agreement between changes in global translational 

capacity as measured by both ribosome profiling and proteomics across the time course 

(Figures 2F and 2G). At 48 hr we measure a median ~40% decrease in translational 

efficiency of measured transcripts by both methods, albeit with greater variance in the 

proteomic measurement. However, we note that the normalization method above may be 

limited by the low number of ribosome footprint reads mapping to ChrM (Figure S2C), the 

long duration of low-dose bortezomib treatment, or other alterations in mitochondrial 

ribosome dynamics in this system. Therefore, while this comparison is supportive of our 

proteomic data, we cannot exclude the possibility that this concordance is coincidental. 

Importantly, however, the overall decrease in translational efficiency we measure by pSILAC 

also appears consistent with biochemical measurements indicating decreased global 

translational efficiency (Figures S2H, S2I, and 3). This finding highlights that monitoring 

protein synthesis by mass spectrometry can directly confirm global changes in translational 

capacity independent of ribosome profiling data.

Given the potential limitations of the mitochondrial footprint normalization approach, we 

also developed an algorithm to computationally estimate the changes in global protein 

synthetic capacity. A scaling function Gr(t) (common to all genes) was incorporated into the 

system of differential equations. This function Gr(t) was used to correct TE to reflect 

changes in the global synthetic capacity in the cell (blue curve in Figures 4A and 3E). We 

inferred a Gr(t) that optimizes a squared loss function based on proteomic data (STAR 

Methods). When our inferred Gr(t) was included in simulations of low-dose bortezomib 
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treatment (Figure 3B), the resulting simulated protein synthesis dynamics (Figure 3E) were 

similar to those noted by puromycin incorporation (Figure 3A). Gr(t) further demonstrates a 

very similar pattern to both the puromycin incorporation measurements (Figure 3C) and the 

ratio of total ribosome footprint reads to the total number of ChrM-mapping reads (Figure 

3D).

As a further comparison between ribosome profiling and pSILAC proteomics, we also 

investigated the correlation at baseline between translational efficiency and  across 

proteins (Figure 2D). We first estimated a multiplicative constant, β that, when applied to all 

genes, largely reconciles the TE measured from ribosome profiling with  estimated 

from proteomic experiments (STAR Methods). A major question is whether the discrepancy 

of the fit between TE and  for different genes represents real biology (i.e., gene-specific 

translational regulation at the post-translational level, only detectable by proteomics) or 

systematic biases in one or both methods. Notably, our quantitative model relies on absolute 

protein copy-number estimates from the iBAQ method (Schwanhausser et al., 2011). While 

the proteins included in our targeted SRM assay on MM1.S showed high reproducibility by 

iBAQ (Figure S2G), simulations suggest that even this limited iBAQ replicate error could 

account for over one-third of the residual variance of the correlation presented in Figure 2A 

(Figure S3B). To evaluate further potential sources of error, we examined whether 

accounting for annotated transcript isoforms could improve the correlation between footprint 

and proteomic data, but found only minor improvements (Figure S3D).

Extensions of the Model: Quantitative Predictions of Protein Synthesis

One direct application of our model is predicting absolute protein synthesis and abundance 

under different global levels of translational inhibition. Using our estimated values of 

in combination with baseline mRNA-seq and ribosome profiling data, we predicted 

proteome remodeling under three different scenarios of Gr(t) in MM1.S cells (Figure 4A): 

untreated cells, low-dose bortezomib, and high-dose bortezomib. Our model predicted 

significantly reduced absolute protein synthesis under conditions of strong translation 

inhibition by high-dose bortezomib (Figures 4B and 4C), consistent with that found in our 

prior study (Wiita et al., 2013).

The model can also be used to define protein synthesis rates in other systems. For example, 

we obtained a similar dataset of pSILAC proteomics paired with baseline mRNA-seq and 

ribosome profiling in untreated Epstein-Barr virus (EBV)-immortalized B cells (Figures 4D 

and S4). Importantly, the relationship between absolute protein synthesis and footprint 

RPKM (Figure 4D) is also strong in this setting (Pearson’s R = 0.84 on log-transformed 

data). A linear fit to these data on a log scale results in a slope of 0.93 (95% confidence 

interval 0.84–1.02). Again, this strong correlation and linear relationship indicates that 

ribosome footprint occupancy is quantitatively reflective of absolute protein synthesis in a 

different cell type and without any drug perturbation.

Using our mathematical model, we predicted the “heavy” (newly synthesized) protein copy 

number in these B cells at later times (measured using SRM), using inputs of iBAQ protein 

copy number, ribosome footprint density, and mRNA-seq measured in untreated B cells at 
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baseline, and β and  estimated from MM1.S data (Figure 4E, right). In our prediction 

model, we assumed that ribosome footprint read density, mRNA-seq read density, Gm(t), and 

Gr(t) remain constant over time in this untreated scenario. Indeed, the values predicted by 

our model were similar to the experimental pSILAC measurements of heavy protein copy 

number (Figure 4E, left). Our results from Figures 2A and 4D further support the notion that 

ribosome profiling data, in combination with biochemical knowledge of global translational 

inhibition, may be sufficient to predict changes in the proteome using our quantitative 

model.

DISCUSSION

Here, we directly measured protein synthesis and ribosome footprint density in the setting of 

cancer therapy. Ribosome profiling has become a widespread technique to assess 

translational regulation and protein synthesis. One important question about this technique, 

however, is whether the resulting data truly reflect protein synthesis and translational rate. A 

recent study in Escherichia coli demonstrated that when compared with previously published 

absolute copy numbers per cell, extrapolated synthesis rates based on ribosome footprint 

density correlated very well (R = 0.98) (Li et al., 2014a). In our work, we also find a strong 

positive correlation between ribosome footprint density and absolute protein synthesis as 

measured by targeted time-resolved pSILAC (Figures 2A [R = 0.80] and 4D [R = 0.84]), 

supporting the notion that ribosome footprint density, as measured by ribosome profiling, is 

directly reflective of absolute protein synthesis, even in the more complex translational 

system of eukaryotes (Jackson et al., 2010; Kozak, 1999).

Others have compared the capture and analysis of nascently translated proteins by mass 

spectrometry with ribosome profiling data and have found weaker correlations (R = 0.66) 

(Zur et al., 2016). However, this “Punch-P” approach has significant disadvantages as an 

orthogonal quantitative validation of ribosome profiling data as it relies on incorporation of a 

chain-terminating puromycin analog for enrichment. Such truncated polypeptides will likely 

be rapidly degraded, skewing abundances in the captured cohort. Furthermore, enrichment-

based methods suffer from biases in differential protein capture on streptavidin beads and 

artifacts from non-specific binding. These limitations make it difficult to quantitatively 

compare ribosome profiling with Punch-P. In contrast, the pSILAC approach we take here, 

combined with high-accuracy targeted quantification, allows us to directly measure protein 

synthesis in a complex system in an unbiased fashion.

With these data, we find that noise in baseline absolute protein abundance using the iBAQ 

method (Li et al., 2014b; Wilhelm et al., 2014) strongly affects the correlation between 

proteomic and ribosome profiling data. Other sources of error in our comparison that remain 

to be investigated may relate to ribosome footprint sample preparation methods (Weinberg et 

al., 2016) or splice isoform-specific translational control (Floor and Doudna, 2016). Due to 

these limitations, we cannot exclude the possibility that for some genes there is a divergence 

between ribosome footprint occupancy and true protein synthesis, despite their overall 

strong correlation across the monitored genes.
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The quantitative model we develop also allows us to determine a measure of translational 

efficiency ( ) using proteomic data and compare this with translational efficiency as 

measured by ribosome profiling. Our results, with a Pearson’s R = 0.58 on log-transformed 

data at baseline (Figure 2D), are in line with that of a recent extensive time-course study of 

protein synthesis in murine dendritic cells, in which Jovanovic et al. (2015) performed 

ribosome profiling at the baseline time point alone and also found a similar correlation (R = 

0.5) between TE from ribosome profiling and  measured from shotgun proteomic data. 

Given our findings (Figures 2E–2G), it appears that while proteomics may be able to broadly 

detect global changes in translational capacity, ribosome profiling may be more sensitive in 

determining translational efficiency changes for individual genes.

In the context of cancer therapy, our results here underscore that standard measurements of 

ribosome footprint density may not reflect absolute protein synthesis when global changes in 

translational capacity (i.e., the number of actively translating ribosomes) are present, 

whereas proteomics can more directly detect these changes (Figures 2E and 2F). pSILAC 

combined with targeted mass spectrometry may therefore be an important method to 

orthogonally validate quantitative changes in translational rate found by normalization of 

ribosome profiling data under conditions of cellular stress (Andreev et al., 2015; Ingolia, 

2016).

Furthermore, we develop a new quantitative model that can capture and predict dynamic 

changes in protein synthesis during cancer therapy. As we find a linear relationship between 

ribosome footprint density and absolute protein synthesis across genes, we suggest that with 

inputs of untreated mRNA-seq, ribosome profiling, and absolute protein abundance 

estimates, in conjunction with biochemical data to describe the degree of translational 

inhibition, our model will provide a new window to predict the remodeling of the cancer 

proteome in response to therapeutic perturbation, even in the absence of a full pSILAC 

dataset. We suggest that this quantitative framework can readily be applied to any human 

cellular system exposed to cellular stress impinging on the translational machinery.

STAR★METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit monoclonal anti-GAPDH Cell Signaling Technology Cat# 2118L; RRID: AB_561053

Rabbit monoclonal anti-vimentin Cell Signaling Technology Cat# 5741P; RRID: AB_10695459

Rabbit polyclonal anti-Bid Cell Signaling Technology Cat# 2002P; RRID: AB_10830065

Mouse monoclonal anit-puromycin KeraFast Cat# 3RH11

Rabbit monoclonal anti-4E-BP1 Cell Signaling Technology Cat# 53H11; RRID: AB_10691384

Rabbit monoclonal anti-phospho-4E-BP1 (T37/46) Cell Signaling Technology Cat# 236B4; RRID: AB_10695878

Chemicals, Peptides, and Recombinant Proteins

Bortezomib LC Laboratories B-1408
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REAGENT or RESOURCE SOURCE IDENTIFIER

Cycloheximide Sigma-Aldrich Cat# C4859; CAS: 66-81-9

L-Lysine 4,4,5,5-D4 (Lys4) Cambridge Isotope Laboratories Cat# DLM-2640

L-Arginine 13C6 (Arg6) Cambridge Isotope Laboratories Cat# CLM-2265-H

L-Lysine 13C6
15N2 (Lys8) Cambridge Isotope Laboratories Cat# CNLM-291-H

L-Lysine 13C6
15N4 (Arg10) Cambridge Isotope Laboratories Cat# CNLM-593-H

L-Lysine Sigma-Aldrich Cat# 8662; CAS: 657-27-2

L-Arginine Sigma-Aldrich Cat# A6969; CAS: 1119-34-2

TRIzol® reagent Life Technologies Cat# 15596026

HALT protease and phosphatase inhibitor single use cocktail Thermo Fisher Cat# 78443

Sequencing Grade Modified Trypsin Promega Cat# V5111

GAPDH recombinant protein Abcam Cat# ab82633

Vimentin recombinant protein PeptroTech Cat# 110-10

Bid recombinant protein Sino Biological Cat# 10468-HNCE-59

Critical Commercial Assays

Rneasy mini kit QIAgen Cat# 74104

Quantifluor RNA assay Promega Cat# E3310

Oligo(dT)25 Magnetic Beads kit New England BioLabs Cat# S1419S

Pierce™ BCA Protein Assay Kit Thermo Fisher Scientific Cat# 23225

SepPak C18 columns Waters Cat# WAT020515

CellTiter-Glo® Luminescent Cell Viability Assay Promega Cat# G7570

Caspase-Glo® 3/7 Assay Systems Promega Cat# G8090

Invitrogen MyOne streptavidin C1 dynabeads Thermo Fisher Cat# 65001

Deposited Data

Raw genetic sequencing data This paper http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=chohoqacvbyffwf&acc=GSE69047

Raw SRM data This paper https://panoramaweb.org/labkey/translation_model_2015.url

Human reference genome NCBI build 37, GRCh37 Genome Reference Consortium http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human/

HMCL66_Transcript_Expression_FPKM Keats Lab (Translational 
Genomics Research Institute, 
USA)

http://www.keatslab.org/data-repository

Experimental Models: Cell Lines

MM.1S ATCC Cat# CRL-2974

EBV-transformed B-cell Markus Muschen (University of 
California San Francisco, USA)

N/A

Sequence-Based Reagents

miRNA Cloning Linker 1 DNA oligo: 5′ AppCTGTAGGCACCATCAAT/3ddC 
3′

IDT N/A

rRNA subtraction DNA oligo oNTI309: (biotin)-
TCCTCCCGGGGCTACGCCTGTCTGAGCGTCGCT

IDT N/A

rRNA subtraction DNA oligo oNTI301r: (biotin)-
GGGCCTCGATCAGAAGGACTTGGGCCCCCCACGA

IDT N/A

rRNA subtraction DNA oligo oNTI305r: (biotin)-
GGCGAGACGGGCCGGTGGTGCGCCCTCGGCGGA

IDT N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

rRNA subtraction DNA oligo oNTI307hr: (biotin)-
GCGGGGGACCGGCTATCCGAGGCCAACCGAGGCTC

IDT N/A

rRNA subtraction DNA oligo oNTI298r: (biotin)-
TGATCTGATAAATGCACGCATCCCCCC

IDT N/A

rRNA subtraction DNA oligo oNTI303hr: (biotin)-
CGCGCCGTGGGAGGGGTGGCCCGGCCCC

IDT N/A

Rev Transcription DNA oligo oNTI225-Link1 (DNA): 5′/5Phos/
GATCGTCGGACTGTAGAACTCTGAACCTGTCGGTGGTCGCCGTATCATT/
iSp18/CACTCA/iSp18/
CAAGCAGAAGACGGCATACGAATTGATGGTGCCTACAG 3′

IDT N/A

Amplification DNA primer oNTI230 (DNA): 5′-
AATGATACGGCGACCACCGA

IDT N/A

Amplification DNA primer oNTI231 (DNA): 5′-
CAAGCAGAAGACGGCATACGA

IDT N/A

Software and Algorithms

MaxQuant v1.5.1.2 Cox and Mann, 2008 http://www.biochem.mpg.de/5111795/maxquant

Skyline v2.5 MacLean et al., 2010 https://skyline.ms/project/home/software/Skyline/begin.view

Ribomap Wang et al., 2016 https://github.com/Kingsford-Group/ribomap

Star v.2.4.0j Dobin et al., 2012 https://github.com/alexdobin/STAR/releases/tag/STAR_2.4.0j

Cluster 3.0 de Hoon et al., 2004 http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm

Java TreeView Saldanha, 2004 https://sourcefourge.net/projects/jtreeview/

DAVID Bioinformatics Resource Huang et al., 2009 http://david.ncifcrf.gov

MATLAB R2013a Mathworks http://www.mathworks.com/products/matlab/

MATLAB spline fit script This paper https://sourceforge.net/projects/ncspline/

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and request for reagents may be directed to and will be fulfilled by Lead 

Contact Arun Wiita (arun.wiita@ucsf.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

MM1.S cells were acquired from ATCC with cell line identity and female gender confirmed 

by karyotyping and DNA microarray. EBV-immortalized human B-cells derived from 

normal donor cord blood were a kind gift of Dr. Markus Müschen (UCSF Dept. of 

Laboratory Medicine) with normal female diploid genome confirmed by karyotyping.

METHOD DETAILS

Cell Culture and Drug Treatment—MM1.S cells were grown in suspension to 1×106 

cells/ml in RPMI-1640 media with 10% FBS. EBV-immortalized B-cells were grown in 

suspension to 1 × 106 cells/mL in RPMI-1640 media with 20% FBS. For initial MM1.S 

experiments (Figure S1), bortezomib (LC Laboratories, Woburn, MA, USA) 20 μM stock 

solution in sterile-filtered phosphate buffered saline (PBS) was simultaneously added to a 

final concentration of 0.5 nM to flasks each containing 90 × 106 cells (PBS only added to 

control sample). At the indicated time point cells were separated into aliquots for each 

experimental approach (15×106 cells induplicate for each of mRNAseq, proteomics, and 
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ribosome profiling). Cells for ribosome profiling alone were incubated at 37°C for 1 min 

with 100 μg/mL cycloheximide (Sigma-Aldrich, St. Louis, MO, USA). All cells were 

pelleted by centrifugation, washed in PBS (PBS + 100 μg/ml cycloheximide for ribosome 

footprint samples), pelleted by centrifugation again, and flash frozen in liquid N2, then 

stored at −80°C. Cell viability and caspase activity were assessed by Cell-Titer Glo and 

Caspase-Glo (Promega, Madison, WI, USA) assays per manufacturer protocol, respectively. 

For pulsed-SILAC experiments, MM1.S cells were grown for 6 cell doublings in SILAC 

RPMI media depleted of arginine and lysine (Thermo Fisher Scientific, Waltham, MA, 

USA), dialyzed FBS (Life Technologies, Carlsbad, CA, USA) supplemented with unlabeled 

L-lysine (70 mg/L) and L-arginine (40mg/L) (Sigma-Aldrich). EBV-immortalized B-cells 

were similarly grown for 6 cell doublings in SILAC RPMI media supplemented with 

“medium” (4,4,5,5-D4) lysine and 13C6 arginine. For both cell lines, at time 0h, 100 × 106 

cells at a density of 1 × 106 cells/ml were pelleted by centrifugation and resuspended in 

SILAC RPMI media supplemented with “heavy” 13C6-15N2 lysine (70 mg/L) and 13C6-15N4 

arginine (40 mg/L) (Cambridge Isotope Laboratories, Andover, MA, USA). Cells were 

harvested at the indicated time points, washed once in PBS, and stored at −80°C until 

sample analysis. For MM1.S cells, ribosome profiling, mRNA-seq, and proteomics were 

performed at each time point. For B-cell analysis, proteomics were performed at each time 

point, while ribosome profiling and mRNA-seq analysis were performed in biological 

duplicate on the baseline sample alone as the cells are not perturbed during the time course.

Measurement of Total RNA, mRNA, and Protein—Total RNA was extracted either by 

Trizol (Life Technologies) per manufacturer protocol or using QIAgen RNeasy kit (QIAgen, 

Germantown, MD, USA). mRNA was further purified from isolated total RNA by poly(A) 

separation using Oligo (dT)25 Magnetic Beads kit (New England BioLabs, Ipswich, MA, 

USA) per manufacturer protocol. Total RNA and mRNA concentration was measured either 

by NanoDrop ND-1000 UV-Vis spectrophotometer (Thermo Fisher) or QuantiFluor RNA 

assay (Promega, Santa Clara, CA, USA). Total protein was isolated by lysis in either 8M 

Urea buffer for proteomics (see below) or RIPA buffer (EMD Millipore, Billerica, MA, 

USA) for immunoblotting and concentration measured using BCA assay (Thermo Fisher 

Scientific).

Ribosome Profiling and mRNA-Seq—Ribosome profiling and mRNA-seq samples 

were prepared and analyzed as in our prior study (Wiita et al., 2013). Briefly, harvested cell 

pellets for ribosome profiling were suspended and lysed in 500 μl ice-cold polysome lysis 

buffer (20 mM Tris, pH 7.4, 250 mM NaCl, 15 mM MgCl2, 1 mM dithiothreitol, 0.5% 

Triton X-100, 24 U/ml Turbo DNase (Ambion, Austin, TX, USA), and 100 μg/ml 

cycloheximide). Lysate was clarified by centrifugation and RNaseI 100 U/μl (Ambion) was 

added to digest polysomes to monosomes. Digested samples were then loaded onto a 1 M 

sucrose cushion and pelleted by centrifugation for 4 hr at 70,000 rpm. The pellet was 

resuspended in Trizol and RNA isolated per manufacturer protocol. RNA was separated by 

gel electrophoresis on a 15% TBE-Urea gel (Life Technologies) and gel fragments extracted 

corresponding to ~25–35 nt in size. RNA was extracted from gel as in (Ingolia et al., 2011), 

by disrupting gel slices with centrifugation through a needle hole between 0.5 mL microfuge 

tube nested in a 1.5 mL microfuge tube. The gel was extracted in RNase-free water for 10 
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min at 70°C. The eluate was recovered by loading slurry onto a Spin-X column (Corning 

8160) and centrifuging to recover eluate in collection tube. RNA was then precipitated from 

the filtered eluate by adding sodium acetate to a final concentration of 300 mM as a 

coprecipitant, followed by at least one volume of isopropanol. Precipitation occurred at 

−20°C overnight, RNA was pelleted and centrifuged for 45 min at 20,000 × g, 4°C. The 

supernatant was discarded and the RNA pellet was air dried, then resuspended in 10 μl 10 

mM Tris (pH 7.0).

Harvested cell pellets for mRNA-seq were isolated by Trizol and total RNA isolated per 

manufacturer protocol. Poly(A) mRNA was purified from the total RNA sample using poly-

dT magnetic beads (as above) per manufacturer protocol. mRNA was fragmented in high pH 

buffer (50 mM NaCO3, pH 9.2) for 20 min at 95°C, then precipitated and separated by gel 

electrophoresis as above. mRNA fragments of 50–90 nt were extracted.

Both poly(A)-selected and ribosome footprint size-selected RNA samples were 

dephosphorylated, ligated to linker, and separated by gel electrophoresis as described 

previously (Ingolia et al., 2011). RNA was dephosphorylated with T4 DNA polynucleotide 

kinase (NEB M0201S), by resuspending RNA in 25ul 10mM Tris (pH 8.0), denaturing the 

fragments for 2 min at 75°C then equilibrating at 37°C and brought to a volume of 50 μl in 

1X T4 polynucleotide kinase reaction buffer with 25 U T4 polynucleotide kinase (NEB 

M0201S) and 12.5 U Superasein (Thermo Fisher AM2694). This dephosyporylation 

reaction was incubated for 1 hr at 37°C and enzyme heat inactivated at 70°C for 10 min, 

then purified by precipitation as described above. Linker was ligated in a 20 μl reaction with 

dephosphorylated RNA, 12.5% w/v PEG 8000, 10% DMSO, 1X T4 RNA Ligase 2, 

truncated (NEB M0242L) reaction buffer, 20 U Superasein, 500 ng preadenylated miRNA 

cloning linker 1 (IDT), 200 U T4 RNA Ligase 2 (tr). This ligation was incubated at 37°C for 

2.5 hr and the products were separated by gel electrophoresis and extraction as described 

above. Reverse transcription and cDNA library preparation were completed as in (Ingolia et 

al., 2011). Reverse transcription was carried out by preparing a reaction with RNA in 18 μl 

SuperScriptIII (Thermo Fisher 18080044) and 50 pmol oNTI-225 link1 primer (see Key 

Resources Table). Reactions were denatured for 5 min at 65°C, equilibrated at 48°C with 

2.0μl 1N NaOH and incubating 20 min at 98°C. Products were purified by gel 

electrophoresis and extracted as described above. Reverse transcription products were 

circularized with 20 μl CircLigase (Epicentre CL4111K) reaction. After circularization, 

subtraction of rRNA sequences was performed by subtractive hybridization using 

biotinylated oligos that reverse complement overabundant rRNA contaminants (see Key 

Resources Table: oNTI309, 301r, 305r, 397hr, 298r, 303hr), by being suspended in 30 μl 2X 

SSC with 250 pmol total biotinylated subtraction oligos. The sample was denatured for 2 

min at 70°C and transferred to 37°C. Hybridization was incubated for 30 min at 37°C. 

Biotinylated oligos were removed by MyOne streptavidin C1 dynabeads (see Key Resources 

Table), using 1mg magnetic beads. The rRNA-subtracted, circularized cDNA was used as a 

template for PCR amplication (see Key Resources Table for amplification primers) using 

Phusion polymerase (NEB M0530S). Reaction products were then separated by gel 

electrophoresis as described above and DNA extracted using same procedure as above, with 

NaCl substituted as a co-precipitant. Extracted DNA was resuspended in 10 μl 10 mM Tris 

(pH 8.0) and expected library size verified using an Agilent Bioanalyzer 2100.
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Sequencing was performed on an Illumina HiSeq 2500 using single end, 50-bp reads at the 

UCSF Center for Advanced Technology. Before alignment, linker sequences were 

computationally removed from the 3′ ends of raw sequencing reads. STAR_2.4.0j was used 

to perform the alignments with up to one mismatch allowed. For footprint data only reads of 

length 25–36 nt (footprint length with cycloheximide (Ingolia et al., 2011)) were used for 

alignment. Reads were first aligned vs mitochondrially-translated genes; aligned reads were 

filtered. Next, all remaining reads were aligned vs human non-coding RNA and tRNA 

sequences; aligned reads were discarded. Finally remaining reads were aligned to human 

transcriptome reference (downloaded from http://www.gencodegenes.org/18.html Sep 2016) 

on reference genome GRCh37.

Software Ribomap (Wang et al., 2016) was used with default settings to assign multi-

mapped reads to isoforms according to the mRNA abundance of each isoform. mRNA and 

footprint read density were calculated in units of reads per kilobase million (RPKM) to 

normalize for gene length and total reads per sequencing run.

Unsupervised hierarchical clustering was performed using complete linkage across mRNA, 

footprint, and translational efficiency data with uncentered correlation in Cluster 3.0 and 

visualized in TreeView. Where indicated, gene lists were analyzed by NIH DAVID resource 

(Huang et al., 2009) using default settings for included genes and interaction networks and 

“human” selected as species.

The RPKM of genes monitored by ribosome profiling and mRNA seq and the DAVID 

analysis results are available in Data S2.

Selected Reaction Monitoring Proteomics—Frozen cell pellets were lysed by probe-

tip sonication in buffer containing 8M Urea, 50 mM NaCl, and 100 mM Tris pH 8.0 

supplemented with 1x HALT protease and phosphatase inhibitor cocktail (Thermo Fisher). 

Lysates were cleared by centrifugation at 16,500 × g for 10 min and protein concentration 

measured using the BCA assay. Lysate containing ~500 ug protein was diluted to 200 uL 

with lysis buffer. Disulfide bonds were reduced with 5 mM dithiothreitol and cysteines 

alkylated with 10 mM iodoacetimide. Lysate was diluted 1:6 with trypsin dilution buffer 

(100 mM Tris pH 8.0, 1 mM CaCl2, 75 mM NaCl). Sequencing grade modified trypsin (see 

Key Resources Table) was added at an enzyme:substrate ratio of 1:25. Proteins were trypsin 

digested overnight with agitation at room temperature. Samples were adjusted to pH<3 with 

trifluoracetic acid and precipitate removed by centrifugation at 16,500 × g for 10 min. 

Tryptic peptides were desalted on SepPak C18 columns (Waters, Milford, MA, USA), 

evaporated to dryness on a vacuum concentrator, and stored at −80°C. For mass 

spectrometry analysis, peptides were resuspended in 0.1%formic acid to a final 

concentration of ~0.2 μg/μL.

We previously developed targeted, label-free Selected Reaction Monitoring (SRM) assays 

for 152 proteins in our prior work in MM1.s myeloma cells treated with 20 nM bortezomib 

(Wiita et al., 2013). We applied this same assay to our samples as shown in Figure S1 (SRM 

transitions and intensities available in Data S1). Here we further developed new SRM assays 

to measure relative protein quantification in both the light and heavy SILAC channels (as in 
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Figure 1). For method development, data-dependent (or “shotgun”) proteomic data acquired 

on an LTQ Orbitrap Velos (Thermo Fisher) in HCD mode in our prior study was imported 

into the open-source software Skyline (v. 2.5) (MacLean et al., 2010) to build targeted assays 

consisting of parent ion and fragment ion “transitions” based on MS2 sequencing data. For 

heavy channel analysis, we used calculated increases in m/z of primarily y-ion fragments to 

develop targeted methods. Two to four peptides per protein were targeted in initial method 

development. Proteins for analysis were primarily chosen based on high MS2 fragment 

intensity in “shotgun” data. Peptides were chosen having unique sequence identity for the 

targeted protein based on canonical sequence in Uniprot database.

All SRM analysis was carried out on a QTRAP 5500 (SCIEX, Framingham, MA) triple 

quadrupole mass spectrometer interfaced inline with a nanoAcquity UPLC system (Waters) 

identical to that on the LTQ Orbitrap Velos (Thermo Fisher) on which the spectral library 

was acquired (Analytical column: BEH130 (0.075×200 mm column, 1.7 μm; Waters)). LC 

buffer A = 0.1% formic acid in water; buffer B = 0.1% formic acid in acetonitrile. We 

injected ~1 μg of tryptic peptides from MM1.S cells onto the mass spectrometer with the 

following conditions: Direct sample loading at 3% B for 10 min after injection, a linear 

gradient from 3%–35% B over 80 min, an increase to 90% B over 5 min, then held for 5 

min, then a decrease to 3% B for 10 min (total run time 110 min). Unit resolution was used 

at Q1 and Q3. A three second duty cycle time was used for all runs. For unscheduled runs a 

10 ms acquisition time was used per transition. Multiple injections were used to test for all 

targeted peptides. Using data analysis in Skyline software, peptides were selected for further 

method development based on 1) the signal detection (above baseline) of at least 5 of 7 co-

eluting transitions in both the light (0h sample used for method development) and heavy 

(48h sample used for method development) channels; 2) a retention time within 7 min of 

that acquired in the initial spectral library (acquired under the same chromatographic 

conditions); 3) fragment ion intensity of similar rank to that found in the initial spectral 

library.

Peptides chosen for further development were then limited to the four most intense 

transitions in both the light and heavy channels as found in unscheduled runs. A scheduled 

SRM method was developed with a retention time window of ±5 min. We then applied this 

scheduled method across multiple injections, with a minimum scan time per transition of 10 

ms, at each time point, in technical duplicate. We ultimately chose to include in our pulsed 

SILAC analysis only those peptides which demonstrated detectable SRM intensity above 

background and at a consistent LC retention time at all time points in both the light and 

heavy channels (with the exception of heavy channel at 0h, where we expect to detect only 

background signal). Therefore, we ultimately included 733 peptides from 272 proteins in the 

analysis here for analysis of MM1.S cells. We applied this same method to EBV-

immortalized B-cells and found that 165 of these proteins demonstrated sufficient signal-to-

noise for analysis, likely based on differential protein expression between the two cell lines; 

these 165 proteins were used for all B-cell analysis.

Peptide intensity in each sample was measured as the sum of all transition peak areas for 

that peptide in each of the light and heavy channels (as measured by analysis in Skyline). 

Total peptide intensity was measured as the sum of the light and heavy channel intensities, 
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and total protein intensity was measured as the sum of total intensities for all peptides from 

that protein. To normalize peptide concentration across samples, we used peptides derived 

from a set of high abundance proteins not expected to significantly change during the time 

course based on transcript-level data. We derived an index based on the geometric mean total 

intensity of peptides from these ‘housekeeping’ proteins (ENO1, KPYM, PPIA, FLNA, 

ACTB, TUBA1B) and scaled SRM intensity of all peptides in each channel based on the 

median value of this index. Corrected peptide intensity was averaged across injections for 

each sample.

Western Blots—For quantitative Western blots, 10 × 106 untreated MM1.S cells were 

counted by taking the average of measurements from both manual hemocytmeter and 

automated cell counting using a Sceptre instrument (EMD Millipore). Cells were pelleted, 

washed 1x in cold PBS, and lysed in RIPA buffer (EMD Millipore) supplemented with 1x 

HALT protease and phosphatase inhibitors (Thermo Fisher) by probe-tip sonification. 

Protein concentration in lysate was measured by BCA assay. Recombinant proteins 

(GAPDH, Abcam; Vimentin, PeproTech; Bid, Sino Biological, see Key Resources Table) at 

the manufacturer’s indicated concentration were used to generate a standard curve. Lysate 

and recombinant protein were separated on Mini-PROTEAN any Kd TGXgels (Bio-Rad, 

Hercules, CA, USA) and transferred to 0.45 μm PVDF membrane (EMD Millipore). 

Membranes were blocked using Odyssey blocking buffer (LI-COR, Lincoln, NE, USA) and 

probed with anti-GAPDH rabbit monoclonal antibody, anti-vimentin rabbit monoclonal, and 

anti-Bid rabbit polyclonal (Cell Signaling Technology, see Key Resources Table) diluted at 

1:1000 in Odyssey blocking buffer. Membranes were washed and blotted with infrared 

reporter-conjugated secondary antibodies and imaged on a LI-COR Odyssey system. LI-

COR Image Studio software was used to quantify standard curve and lysate band intensity. 

Western blots for phospho- and total 4EBP-1were performed as previously described with 

identical reagents (Wiita et al., 2013, see Key Resources Table). All blots were completed in 

biological duplicate.

Puromycin Incorporation—The bortezomib treatment time course was performed in 

biological duplicate. One hour prior to each time point, 1 μM puromycin (Sigma-Aldrich) 

was added to 4.5 × 106 cells at 1.0 × 106 cells/mL. Cells from were allowed to incorporate 

puromycin for one hour, pelleted, washed in PBS, and lysed in RIPA buffer as above. 25 μg 

of lysate was separated by gel electrophoresis and transferred to PVDF membrane as above. 

Membranes were probed with a mouse anti-puromycin monoclonal antibody (KeraFast, see 

Key Resources Table) and imaged on LI-COR Odyssey system.

Sucrose Density Gradient—10 × 106 MM1.S cells at each time point were lysed in 500 

μL buffer containing 20 mM Tris pH 7.5, 50 mM NaCl, 5 mM MgCl2, 30% glycerol, 1% 

Triton X-100, 20 U/mL SuperASEin (Ambion), 1 mM DTT, and 0.1 mg/mL cycloheximide. 

Lysate was loaded over a 10%–50% sucrose gradient, centrifuged at 35,000 × g for 3 hrs, 

and polysomes analyzed using a Density Gradient Fractionation System, model 160 

(Teledyne Isco, Lincoln, NE) with absorbance measured at 254 nm and recorded with 

Logger Pro 3.6.1 software (Vernier, Beaverton, OR).
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Estimation of Absolute Protein Copy Number at Baseline—We previously used 

the iBAQ method (first described in (Schwanhausser et al., 2011)) implemented in 

MaxQuant (Cox and Mann, 2008) to estimate protein copy number per cell at baseline in 

MM1.S cells. Here we identically analyzed unlabeled trypic peptides from a biological 

replicate of untreated MM1.S cells on an LTQ Orbitrap Velos mass spectrometer (Wiita et 

al., 2013). iBAQ values are available in Data S3. We estimated protein copy number per cell 

ρg based on the ion current assigned to each protein group iBAQg and scaled by a constant 

σ, such that ρg = σ[iBAQg]. By incorporating the molecular mass μg of each protein, the 

total mass of protein per cell μtotal, and , we derived the scaling constant σ, 

and thereby estimated the protein copy number per cell ρg. For incorporation into the 

quantitative model, we used the mean of the absolute protein copy number per cell from two 

iBAQ replicate analysis, denoted as ρ̄g, as the “0h” value for copies per cell.

This baseline quantity is related to the background corrected SRM intensity by 

, in which  is the background corrected intensity of the light SRM 

channel,  is the background corrected intensity of the heavy channel, and ag is a gene 

specific constant. The background correction was conducted by subtracting the signal 

intensity in the heavy channel at 0h  from all measurements, since no labeling had 

occurred, represented as  and . We extracted ag using 

the background corrected SRM intensity and baseline absolute protein copy number per cell, 

and estimated protein copy number per cell at later time points in the heavy channel and 

light channel by  and .

Estimation of Absolute mRNA Copy Number—We estimated mRNA copy number 

per cell Mg,i(t) from mRNA-seq data using a method proposed previously (Schwanhausser et 

al., 2011; Wiita et al., 2013). Let γg,i(t) represent the number of sequencing reads mapped to 

the transcript of gene g, isoform i, where i ∈ {1, …, Ig} indexes the Ig isoforms of gene g, 

lg,i represent the transcript length, and T (6.40 × 10−16 mol/cell) represent the total number 

of mRNA nucleotides per cell at baseline. Also let Gm(t) represent the relative total mRNA 

nucleotide abundance at time t, normalized so that Gm(0) = 1. Gm(t) is obtained by fitting 

the experimental data, shown in Figure S1D (see the section Measurement of total RNA, 

mRNA, and protein) using degree-3 orthogonal natural cubic splines with 4 knots and 

linearity constraints (see the section Exponential and orthogonal natural cubic spline fitting). 

The resulting function is shown in Figure 3F.

These quantities can be related to the absolute mRNA copy number,

Note that, up to a scale factor, the right hand side is the definition of relative mRNA 

abundance of gene g, isoform i (in RPKM), denoted by mg,i(t). Therefore, Mg,i(t) = c 
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mg,i(t)Gm(t), where c is a constant. In what follows, we define , and 

.

Statistical Analysis of Experimental Data—In this study there was no blinding of any 

experimental data. SRM analyses were performed using random-block injections to prevent 

artifacts from carryover. There was no sample-size estimation used. All error bars for 

experimental data represent +/− S.D. for the number of replicates indicated in the Figure 

Legend. All correlations are performed using Pearson R on log-transformed data.

QUANTIFICATION AND STATISTICAL MODEL

Here we describe our quantitative model of protein synthesis dynamics and our inference 

procedure for parameter estimation. The corresponding data can be found in Data S4.

System of Differential Equations—We propose a system of differential equations to 

model the integrated longitudinal data of ribosome profiling, mRNA-seq, and pSILAC mass 

spectrometry. In what follows, we use the index g ∈ {1, 2, …, N} to denote the gene or 

transcript ID, and use  and  to denote, respectively, the newly synthesized protein 

abundance of gene g in the heavy channel and the degrading protein abundance of gene g in 

the light channel. The gene-specific degradation rate constant is denoted by , while the 

translational rate parameter for gene g is denoted by , which is allowed to vary over 

time. Let rg(t)Gr(t) denote the number of active ribosomes bound to each transcript of type g 

at time t, where  denotes the relative ribosome footprint abundance for 

transcript g (in RPKM), rg,i(t) denotes the relative ribosome footprint abundance for 

transcript g isoform i (in RPKM), i ∈ {1, …, Ig} indexes the Ig isoforms of gene g, and Gr(t) 
denotes the total number of active ribosomes. Gr(t) is normalized so that Gr(0) = 1. Ingolia et 

al. (Ingolia et al., 2009) defined “translational efficiency” as , and we employ 

this definition.

In addition, we propose a new definition of translational efficiency that incorporates the 

ribosome footprints mapping to mitochondrially-translated genes. Let 

 denote the normalized ribosome footprint 

abundance of gene g and isoform i, where i ∈ {1, …, Ig} indexes the Ig isoforms of gene g. It 

is normalized by the total number of reads that mapped to mitochondrially-translated genes, 

representing reads per kilo base per mitochondria read. And let  denote 

the summation across the isoforms of gene g. The new definition of translational efficiency 

becomes . This definition incorporates the total cellular protein synthesis capacity 

Gr(t) and total mRNA nucleotide abundance Gm(t) into the calculation, which both can be 

time varying functions.
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The proposed dynamical model of protein synthesis is a modification of the mass-action 

models for translation introduced earlier (Hargrove and Schmidt, 1989; Jovanovic et al., 

2015; Schwanhausser et al., 2011; Wiita et al., 2013):

(Equation 1)

(Equation 2)

(Equation 3–1)

(Equation 3–2)

This model is a significant extension of our prior work (Wiita et al., 2013) in the following 

aspects: i) The pSILAC mass spectrometry technique enables us to extract the degradation 

rate constant  and thereby disentangle the degradation process from the synthesis process. 

ii) The relative ribosome profiling footprints measured in RPKM units are not sufficient to 

quantify how the absolute amount of footprints for each transcript varies over time. To 

address this problem, we incorporate a global function Gr(t) (which we infer) that reflects 

the total cellular protein synthetic capacity (Equation 3–2). An alternative solution is to use 

the mitochondrial footprints normalized translational efficiency  (Equation 3–1). iii) Our 

modified model treats the translational rate parameter  as a time varying function that 

depends on the density of ribosomes on the transcript. The major difference between the 

above model and that of Jovanovic et al. (Jovanovic et al., 2015) is that whereas their model 

utilizes only pulsed SILAC mass spectrometry data, we also incorporate the ribosome 

profiling footprint information into our model via Equations 3–1 or 3–2.

Dilution Effect Resulted from Cell Growth—The number of cells in the low-dose 

bortezomib-treated MM1.S data remains constant over time. Hence,  and 

represent respectively the heavy channel and light channel protein copies per cell. However, 

the untreated EBV-immortalized B-cells are growing, and the amount of light channel 

proteins per cell will be diluted due to cell division. We therefore scale the SRM intensities 

 and  by the growth function g(t), and obtain the heavy channel and light channel 

protein abundance as  and , respectively. This allows 
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us to model the light channel protein abundance as an exponential function, discussed in the 

next section.

Exponential and Orthogonal Natural Cubic Spline Fitting—The solution to 

Equation 1 is given by , so fitting the observed degrading protein 

abundance with an exponential function yields an estimate of the degradation rate constant 

. We employ the framework of functional data analysis in our study. In particular, 

measurements of , Mg(t), Rg(t) sampled at discrete time points are fitted with 

orthogonal natural cubic splines. Further details are provided below.

Spline is one of the widely used bases when approximating non-periodic functions (Ramsay 

and Silverman, 2005). We apply matrix factorization to the B-spline basis  with 

degree 3 and three knots to construct an orthonormal basis , where t ∈ [T1, T2]. 

Let Σ be the Gram matrix of  with the (i, j)-entry . By 

matrix factorization, one can find an invertible transformation Λ such that ΛTΛ = Σ−1 and 

B(t) = ΛB̃(t) forms an orthonormal basis (Redd, 2012). Let  be a set of 

longitudinal data, where xi is the measurement, ti is the time when the measurement is 

observed, and n is the number of measurements. The data are approximated by a linear 

combination of the orthonormal basis functions , where α = (α1, …, 

αJ). We adopt the penalized least-squares estimator to fit the function f(t;α) and utilize 

generalized cross-validation to decide the penalty parameter (Ruppert, 2002). Since the 

behavior of polynomials fit beyond the boundaries can vary erratically, we impose additional 

constraints such that f(t;α) is linear at T1 and T2, as in natural cubic spline (Hastie et al., 

2009). The problem can be formulated as

(Equation 4)

subject to f″(t; α) = 0 and f‴(t; α) =0 at t = T1 or T2, where λ is the penalty parameter, and 

f″ and f‴ denote the second and the third derivatives of f, respectively. This constrained 

optimization problem can be solved by the method of Lagrange multipliers. The Lagrangian 

of Equation 4 can be written as

where λ1, λ2, λ3, λ4 are the Lagrange multipliers. The solution should satisfy 

∇α,λ1,λ2,λ3,λ4L(α, λ1, λ2, λ3, λ4) = 0. For convenience, define X ≜ [x1 x2 … xn]T,

Liu et al. Page 20

Cell Syst. Author manuscript; available in PMC 2018 June 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and

This then leads to a system of linear equations

which can be solved by blockwise matrix inversion. Examples of the fitted functional form 

of  and  can be found in Figure 2B. Since the replicates of SRM measurements 

had high reproducibility, we use the average of them in the following analysis.

Solving for Parameters in the System of Differential Equations—We estimated 

the derivative of  using its functional representation obtained from the mass 

spectrometry data, and fit  using degree-3 orthogonal natural cubic splines 

with 4 knots. Let  denote the resulting fit. Then, using Equations 2 and 

3-1, we solved for β̃ that minimizes the objective function

Fit Rg(t) using degree-3 orthogonal natural cubic splines with 4 knots. Let 

denote the fit. Then the objective function becomes
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Since the basis is orthonormal, the objective function is simplified as a least-squares 

regression problem: .

Similarly, using Equations 2 and 3-2, we solved for β and the total cellular protein synthetic 

capacity Gr(t) that minimizes the objective function

We achieved this by the following two steps:

1. Initialize β=1. Optimize with respect to 

Prediction of Translational Rate Parameters and Protein Synthesis Rates 
Using Ribosome Profiling and RNA-seq Measurements—To test whether β is a 

universal factor that applies both in the absence of and during exposure to bortezomib, we 

carried out leave-one-out prediction tests as follows. In testing gene g, we estimated Gr(t) 
using the remaining N−1 genes and estimated β using the protein measurement for g at time 

0 (i.e., prior to the application of bortezomib). These parameters were then used together 

with ribosome profiling and RNA-seq measurements to predict the translational rate 

parameter . Then, the protein synthesis rate  was 

predicted as . We assessed the performance of our predictions using the data for 

6–48 hours, i.e., during exposure to bortezomib. The average performance in terms of the 

Pearson correlation coefficient and the relative mean absolute error are reported in Data S4, 

which illustrates that the error of our estimation and prediction procedures is comparable to 

the variation observed in experimental replicates.

Of note, Jovanovic et al. (Jovanovic et al., 2015) introduced the concept of the “recycling 

rate” in SILAC mass spectrometry experiments. This rate describes the incorporation of 

unlabeled amino acids into newly synthesized proteins after SILAC pulse. However, in our 

targeted SRM measurements, we can only measure fully “light” and fully “heavy” peptides. 

We cannot readily measure the infrequent mixed peptides, with both light and heavy 

residues in the same peptide, necessary for measuring the recycling constant γ. Therefore, 

we made a “shotgun” measurement at the 12h time point sample with an LTQ Orbitrap mass 

spectrometer using previous instrument and LC parameters (Wiita et al., 2013). We analyzed 

the results with Protein Prospector (prospector.ucsf.edu) using 13C6-15N4 arginine 

and 13C6-15N2 lysine as variable modifications. Of 372 peptides with at least one missed 

tryptic site (i.e. multiple lysines and/or arginines), and at least one labeled residue, only 8 

showed evidence of mixed labeling. This result leads to a γ(12h) of 0.012, which has a 

negligible impact on measurement of protein synthesis using the model of Jovanovic et al. 
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(Jovanovic et al., 2015). This result is also in line with their results, finding the recycling 

constant to have minimal effects after 12h of SILAC pulse (Jovanovic et al., 2015). 

Therefore, our measurements of protein synthesis, going up to 48h, are likely unaffected by 

not explicitly including the recycling constant in our model.

Simulation of the Biochemical Experiment with Puromycin Incorporation—The 

biochemical experiment (Figure 3A) was conducted with 1 hour pulse of puromycin added 

at each time point prior to cell harvest. To test the accuracy of our proposed dynamical 

model, we performed a protein synthesis simulation using the parameters , mg(t), Gm(t), 

 estimated from RNA-seq and mass spectrometry experiments. The initial condition was 

set such that , and the simulation was conducted to acquire the abundance after 1 

hour, , where τ ∈ {0, 6, 12, 24, 36, 48}. The simulation results qualitatively showed 

a similar pattern as the biochemical experiment (Figure 3B).

Simulations of Under- or Over-Estimation in iBAQ—We examined how much 

variation in  (Figures 2A and 4D) can be explained by noise in iBAQ by performing 

simulations to model under- or over-estimation in iBAQ values. Assume that the newly 

synthesized protein copies correlated perfectly with ribosome density, i.e. the red lines in 

Figures 2A and 4D. We randomly generated scaling factors sg according to the fitted normal 

distribution of the differences between the log-transformed iBAQ replicates (Figure S3A). 

Multiplying the ideal newly synthesized protein copies by these independent scaling factors, 

and repeating the process for 500 trials, we built a confidence interval for the abundance of 

newly synthesized protein copies (Figures S3B and S3C). Then, we compared the average 

vertical offsets from the red line (Figures S3B and S3C) in terms of MSE to the measured 

vertical offsets (Figures 2A and 4D). Results showed that the iBAQ noise explained 36% and 

23% of the deviation from the linear regression fits for MM1.S and B-cells respectively.

We further examined how the presence of transcript isoforms affected our estimation of 

these iBAQ noise statistics. We partitioned all 272 protein-transcript pairs monitored in 

MM1.S cells into two groups (Figure S3D), using the criterion: one dominant transcript 

isoform (>80% of RNA-seq read density on a single isoform, per paired-end RNA-seq 

analysis at www.keatslab.org/data-repository:HMCL66_Transcript_Expression_FPKM). 

The group that has one dominant transcript isoform has almost half (47%) of the deviation 

from the linear regression fits explained by iBAQ noise, whereas the other group has 35% of 

the deviation explained by iBAQ noise. This suggests that some other sources of error may 

exist, e.g., the difficulty of footprint alignment in the presence of transcript isoforms, which 

remains an open question.

DATA AND SOFTWARE AVAILABILITY

Raw sequencing data is available in the GEO repository with accession number GEO: 

GSE69047 (reviewer access link: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

token=chohoqacvbyffwf&acc=GSE69047).
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Raw SRM data is available via Skyline Panorama (https://panoramaweb.org/labkey/

translation_model_2015.url).

MATLAB Software to enable use of the statistical model is available at https://

sourceforge.net/projects/ncspline/

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Confirm ribosome footprints reflect protein synthesis using targeted 

proteomics

• Pulsed-SILAC captures alterations in global protein synthesis after 

chemotherapy

• Alterations in global synthesis not seen by standard ribosome profiling 

analysis

• Quantitative model predicts proteome remodeling under translational 

repression
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Figure 1. Direct Monitoring of Protein Synthesis by Targeted pSILAC Mass Spectrometry with 
Simultaneous Measurement of Transcript
(A) Example time-course SRM data for peptides from PROF1 and DDX5. Red traces, 

“light” channel intensity (degraded from baseline); blue traces, “heavy” channel intensity 

(newly synthesized post-stable isotope pulse). Each trace represents added intensity of all 

monitored SRM transitions (four per peptide per channel). Inset: intensity values for each 

channel plotted over time; error bars reflect ±SD from replicate assays.

(B) Relative mRNA abundance and ribosome footprint read density (ratio versus 0 hr [0h], 

in RPKM) move together over the time course. Changes in protein abundance are not as 

prominent as transcript-level changes. SRM measurements of total protein here refers to the 

sum of all peptide intensities in light and heavy channels.
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Figure 2. Measuring and Modeling Translational Rate by pSILAC Proteomics and Ribosome 
Profiling
(A) Early in the time course, before any biochemical evidence of translational inhibition 

(Figure S2), comparison of average ribosome footprint density on transcript coding sequence 

and newly synthesized proteins per cell, measured by SRM intensity and extrapolated based 

on iBAQ estimate of total protein copies per cell, show a strong correlation (Pearson’s R = 

0.80 on log-transformed data). Red line is line of best fit, with slope = 0.97 (95% confidence 

interval 0.86–1.06). Molecules synthesized per cell by SRM represent “heavy” protein 

copies at 12 hr (12h) minus “heavy” copies at 0 hr (see STAR Methods); footprint data are 

average RPKM from the 6, 12, and 24 hr time points.

(B) Example plots from proteins EIF6 and YWHAE show proteomic data. Lines represent 

fits from model fitting based on orthogonal splines with linearity constraints (see STAR 

Methods). Solid lines, total protein; short dashed lines, degradation; long dashed lines, 

synthesis.

(C) Differential rate equation model describes protein abundance as a function of protein 

synthesis and degradation as measured from proteomic experiments and mRNA-seq. The 

primary free fitting parameter  describes the number of proteins synthesized per 

transcript per unit time,  is abundance of “light” proteins,  is protein degradation rate 
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constant derived from single-exponential fit to light channel data, Mg is absolute transcript 

abundance as derived from mRNA-seq data, and  is abundance of newly synthesized 

“heavy” protein. The definition of translational efficiency from ribosome profiling literature 

is denoted by TE per gene: ribosome footprint read density rg(t) divided by mRNA-seq read 

density mg(t) (both in RPKM). The normalized translational efficiency is denoted by : 

ribosome footprint read density normalized to mitochondrial footprints Rg(t) divided by 

absolute transcript abundance Mg(t).

(D) Baseline comparison of TE and  show that they are correlated, but imperfectly 

(Pearson’s R = 0.58 on log-transformed data).

(E–G) TE (E),  (F), and  plotted across all 272 proteins across the time course, 

as a ratio to the value at 0 hr (0h), shows no change in TE by standard analysis but similar 

changes in translational rate as measured by proteomics (F) and mitochondrial-corrected 

ribosome footprints (G).
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Figure 3. Biochemical Measurements of Protein Synthesis and Translational Efficiency Are 
Consistent with Targeted pSILAC and Allow for Simulations of Protein Synthesis Based on 
Experimental Data
(A) Puromycin incorporation into nascent protein chains (1 hr pulse of puromycin added at 

each time point prior to cell harvest; western blot with anti-puromycin antibody) 

demonstrates decreased global protein synthesis at later time points.

(B) Simulation of protein abundance using the differential equation we proposed with the 

derived mRNA abundance Mg(t), degradation rate constant  and translational rate 

parameter . At each sampling time τ we simulated the protein abundance after 1 hr with 

the initial conditions that the protein abundance at τ = 0 was 0. The heatmaps were 

normalized to the first column to show the relative abundance.

(C) Relative intensity in puromycin incorporation shows a slight increase at 6 hr and 12 hr 

and then a decrease in synthesis at 36 hr and 48 hr. The line represents fits using degree-3 

orthogonal natural cubic splines with four knots and linearity constraints (see STAR 

Methods).

(D) The ratio of total ribosome footprint reads in each sample to the total number of ChrM-

mapping reads, an independent measurement of global protein synthesis, also shows a very 

similar decrease across the time course. Here, the total number of ChrM-mapping reads is 

the sum of the individual genes in Figure S2C. The line represents the orthogonal natural 

cubic spline fits.

(E) The computationally estimated changes in global protein synthetic capacity Gr(t) (STAR 

Methods) demonstrates a very similar pattern to both the puromycin incorporation 
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measurements (C) and the ratio of total ribosome footprint reads to the total number of 

ChrM-mapping reads (D).

(F) The total mRNA nucleotide abundance Gm(t) per cell is obtained from the biochemical 

data shown in Figure S1D. The line represents the orthogonal natural cubic spline fits.

(G) The ratio of the relative intensity in puromycin incorporation (C) to the total mRNA 

nucleotide abundance (F) is used to represent bulk translational efficiency from biochemistry 

experiments. This ratio shows a global translational repression over the time course. The line 

represents the orthogonal natural cubic spline fits.

(H) The average normalized translational rate parameter  derived from 

pSILAC proteomics also shows a global translational repression, similar to the pattern 

observed for the independent biochemical measurements in (G). The line represents the 

orthogonal natural cubic spline fits.
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Figure 4. A Dynamic Model Predicts Absolute Protein Synthesis under Conditions of Cellular 
Stress
(A) Simulation of absolute protein copies synthesized as a function of different levels of 

translational capacity (denoted by Gr(t)) in MM1.S, with inputs of iBAQ protein copy 

number, ribosome footprint density, mRNA-seq, β, and  from MM1.S data. Three 

conditions are considered: Gr(t) being constant, as in untreated cells (black); Gr(t) varying as 

found in low-dose bortezomib (btz)-treated MM1.S (blue); and Gr(t) decreasing toward zero, 

as in high-dose bortezomib-treated MM1.S (green).

(B) The simulated heavy channel protein abundance  normalized by the heavy channel 

protein abundance at 48 hr under constant Gr(t), denoted by  in MM1.S. Under high-

dose btz, protein synthesis is strongly curtailed, consistent with Wiita et al. (2013).

(C) The simulated total protein abundance  normalized by the total protein 

abundance at 48 hr under constant Gr(t), denoted by . High-dose btz again 

shows a significant decrease in total protein abundance.

(D) Untreated Epstein-Barr virus-immortalized B cells also show a strong correlation 

(Pearson’s R = 0.84 on log-transformed data) between absolute protein synthesis and 

footprint RPKM as in Figure 2A. Red line is line of best fit, with slope = 0.93 (95% 

confidence interval 0.84–1.02).

(E) SRM pSILAC-measured absolute protein copy number synthesis per B cell (left) 

compared with simulated estimates of total absolute proteins synthesized in untreated B-

cells over 48 hr using quantitative model (right), with inputs of iBAQ protein copy number, 

ribosome footprint density, and mRNA-seq measured in B cells and β and  from MM1.S 

data, show good agreement.

Liu et al. Page 33

Cell Syst. Author manuscript; available in PMC 2018 June 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	SUMMARY
	In Brief
	INTRODUCTION
	RESULTS
	Overall Changes over the Time Course
	Extensions of the Model: Quantitative Predictions of Protein Synthesis

	DISCUSSION
	STAR★METHODS
	KEY RESOURCES TABLE

	Table T1
	CONTACT FOR REAGENT AND RESOURCE SHARING
	EXPERIMENTAL MODEL AND SUBJECT DETAILS
	METHOD DETAILS
	Cell Culture and Drug Treatment
	Measurement of Total RNA, mRNA, and Protein
	Ribosome Profiling and mRNA-Seq
	Selected Reaction Monitoring Proteomics
	Western Blots
	Puromycin Incorporation
	Sucrose Density Gradient
	Estimation of Absolute Protein Copy Number at Baseline
	Estimation of Absolute mRNA Copy Number
	Statistical Analysis of Experimental Data

	QUANTIFICATION AND STATISTICAL MODEL
	System of Differential Equations
	Dilution Effect Resulted from Cell Growth
	Exponential and Orthogonal Natural Cubic Spline Fitting
	Solving for Parameters in the System of Differential Equations
	Prediction of Translational Rate Parameters and Protein Synthesis Rates Using Ribosome Profiling and RNA-seq Measurements
	Simulation of the Biochemical Experiment with Puromycin Incorporation
	Simulations of Under- or Over-Estimation in iBAQ

	DATA AND SOFTWARE AVAILABILITY

	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4

