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Abstract

Although it has been shown that traffic-related air pollution adversely affects children’s lung 

function, few studies have examined the influence of traffic noise on this association, despite both 

sharing a common source.

Exposure estimates of noise (Ldn, dB), and freeway and non-freeway emission concentrations of 

oxides of nitrogen (NOx, ppb) were spatially assigned to children in Southern California who were 

tested for forced vital capacity (FVC, n=1345), forced expiratory volume in 1 second, (FEV1, 

n=1332), and asthma. The associations between traffic-related NOx and these outcomes, with and 

without adjustment for noise, were examined using mixed effects models.

Adjustment for noise strengthened the association between NOx and reduced lung function. A 14.5 

mL (95 % Cl −40.0, 11.0 mL) decrease in FVC per interquartile range (13.6 ppb) in freeway NOx 

was strengthened to a 34.6 mL decrease after including a non-linear function of noise (95% CI 

−66.3, −2.78 mL).

Similarly, a 6.54 mL decrease in FEV1 (95% Cl −28.3, 15.3 mL) was strengthened to a 21.1 mL 

decrease (95% CI −47.6, 5.51) per interquartile range in freeway NOx.

Our results indicate that where possible, noise should be included in epidemiological studies of the 

association between traffic-related air pollution on lung function. Without taking noise into 

account, the detrimental effects of traffic-related pollution may be underestimated.
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1. Introduction

Numerous studies have examined the association between exposure to traffic-related air 

pollution and children’s respiratory health (e.g., Gauderman et al., 2007; McConnell et al., 
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2010; Rice et al., 2016; Urman et al., 2014). Long-term exposure to nitrogen oxides (NO, 

NO2, NOx), leads to a reduction in lung development in children (Gauderman et al., 2004; 

2007). Fortunately, decreases in air pollution in Southern California over the past 17 years 

have led to significant reductions in these detrimental effects (Gauderman et al., 2015). 

Traffic is also a source of noise, but the joint effects of noise and air pollution on children’s 

respiratory health have not been studied in the U.S. despite high noise exposures. Noise 

levels in U.S. urban areas generally exceed the World Health Organization (WHO) 

community noise guideline (WHO, 1999) of 55 decibels (dB) for a day-evening noise 

average that includes a 10 dB evening and night penalty (“Ldn”). In downtown Los Angeles 

during the daytime (9am–5pm with no 10 dB penalty), the measured mean noise level at 26 

locations was 66.4 dB, exceeding the WHO guideline by more than 10 dB (Lee et al., 2014). 

At the most extreme, an estimated 90% of New York City residents were exposed to noise 

levels greater than 70 dB (Neitzel et al., 2012).

In Europe, traffic noise ranks second, behind fine particles, as the environmental risk factor 

with the highest health impact (Hänninen et al., 2014). Studies of noise as an environmental 

stressor have shown associations with a variety of health outcomes including annoyance, 

sleep deprivation, cardiovascular disease prevalence, and premature mortality (Stansfeld, 

2015). In children, noise has deleterious effects on behavioral (Tiesler et al., 2013), mental 

(Dreger et al., 2015), cardiovascular (Belojevic et al., 2008; Bilenko et al., 2013; Liu et al., 

2014), and respiratory health (Ising et al., 2003, 2004; Niemann et al., 2006; Linares et al., 

2006). In Madrid, noise (>80% of which is attributed to traffic sources) was found to be the 

variable most strongly associated with child hospitalization for respiratory causes in general, 

ahead of cold weather, and for pneumonia, ahead of pollen. These models included NOx, 

ozone and PM10 (Linares et al., 2006). In the Harz Mountain region of Northern Germany, a 

study of 400 children found that those with self-reported exposures to heavy lorry and 

motorcar traffic due to bedrooms facing traffic had high risk ratios for chronic bronchitis 

10.8 (95% Cl 5.2, 22.4) (Ising et al., 2003). While air pollution and noise were not measured 

in that study, follow-up measurements of NO2 and noise outside of child bedroom windows 

(10pm – 6 am), along with salivary cortisol in a sub-study of 68 children (Ising et al., 2004) 

verified that noise levels above 54 dB and NO2 above ~21 ppb were associated with 

increased morning cortisol and increased doctor visits for bronchitis. Morning cortisol was a 

stronger predictor than NO2, indicating the stressful aspect of traffic noise may have been 

the driving mechanism of illness. In this study, we investigated the associations between 

traffic-related air pollution and noise on children’s respiratory health by taking advantage of 

a large, preexisting cohort of children in Southern California. While the association between 

air pollution and respiratory health has been studied extensively using this cohort, the role of 

noise has not. Our investigation of the dynamics between NOx, noise, and lung function 

begins with the a priori and scientifically substantiated hypothesis that there is an association 

between respiratory outcomes (Y) and air pollution (X) (Gauderman et al., 2004; 2007; 

2015), and then consider the role of a third variable, noise (Z) on this relationship. We also 

hypothesized that while X has a direct effect on Y, Z plays an indirect role in that its 

inclusion in the regression allows for a more concise estimate of the association between X 

and Y. We specifically tested the associations (marginal and joint) between traffic NOx 
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exposure, traffic noise, and children’s lung function measurements of forced expiratory 

volume in one second (FEV1, mL), forced vital capacity (FVC, mL), and asthma.

2. Material and Methods

2.1 Study Population

Since its inception in the early 1990s, the Southern California Children’s Health Study 

(CHS) has enrolled over 11,000 children in a series of five cohorts. In this study, we focused 

on the most recent cohort enrolled in 2002–3 at ages 5–7 years and examined in 2011–12 

when they were 14–17 years old. There was a total of 5,000 children, and those receiving 

lung function tests (approximately 1,400 children) resided and went to school in eight 

communities in the greater Los Angeles, California area: Anaheim, Glendora, Long Beach, 

Mira Loma, Riverside, Santa Barbara, San Dimas, and Upland (Figure 1). The CHS was 

designed to capture gradients of traffic emissions, with some communities (e.g. Anaheim) 

having many study subjects’ residential locations close to freeways to ensure that a portion 

of the cohort would have high freeway emission exposures as well as high noise exposures. 

Additional details of CHS community and subject selection have been previously reported 

(Peters et al., 1999; McConnell et al. 2006).

2.2 Health Outcomes

Pulmonary function tests were conducted on each child by trained respiratory staff. FEV1 

and FVC were measured using pressure transducer-based spirometers (Screenstar 

Spirometers, Morgan Scientific, Haverhill, Massachusetts, USA). Asthma status was based 

on physician diagnoses, confirmed by a written questionnaire that also obtained information 

including age, sex, self-identified race and ethnic background, parental education, 

occurrences of acute respiratory illness, exercise, tobacco-smoke exposure (personal 

smoking or environmental), and house characteristics (air conditioning, age of house, 

presence of mildew, pets in the home). Ethnic background in the CHS specifically relates to 

Hispanic ancestry, identifying Caucasian subjects with Hispanic and non-Hispanic ethnicity.

2.3 Environmental Exposures

2.3.1 Air Pollution—We applied the CALINE4 line source dispersion model (Benson, 

1992) to estimate annual average ambient concentration of NOx from local traffic at each 

subject’s residence for the calendar year preceding each child’s lung function test. The 

CALINE4 dispersion model uses residential locations, roadway geometry, vehicle traffic 

volume and emission rate by roadway link, and meteorological conditions as inputs. The 

estimated pollutant exposures included both freeway and non-freeway sources separately, 

and are regarded as indicators of incremental increases in air pollution over background 

ambient levels due to primary emissions from local vehicular traffic. CALINE4-estimated 

freeway NOx has been shown to explain much of the local-scale spatial variation in annual 

average ambient NO2 and NOx concentrations in Southern California (Franklin et al., 2012). 

A separate variable for distance from each study subject’s residential location to the nearest 

freeway was also examined.
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2.3.2. Noise—The U.S. Federal Highway Administration (FHWA) developed the Traffic 

Noise Model (TNM) (FHWA, 2004) to estimate noise caused by vehicle traffic in order to 

aid in policy compliance for federal highway projects. The most recent validated version, 

TNM 2.5, (Shu et al., 2007) uses roads, hourly traffic volume, speed, pavement type, and 

type of vehicle (cars, heavy trucks, light trucks, buses and motorcycles). Specific data we 

used as inputs include average daily traffic volume obtained from Kalibrate (http://

www.kalibrate.com/) and road segments information from HERE (https://

company.here.com/). Output from TNM includes highway traffic noise in terms of an 

average day-night sound level (Ldn), which is an average noise decibel level over a day 

including a 10 dB penalty applied from 10:00 pm to 7:00 am.

HowLoud, Inc., a Los Angeles based company (http://howloud.com/), built the 

computational infrastructure to enable efficient implementation of TNM 2.5 to the thousand 

largest urban regions in the United States. They acquired TNM inputs for the U.S. over the 

years 2013–15, enabling uniform noise estimation on a national scale. For our study, 

HowLoud provided temporally averaged noise estimates for the Southern California region 

on a 100 m spatial grid, which we spatially matched to each CHS study subject’s residential 

location (see Figure 1).

2.4 Statistical Methods

Since study subjects were distributed within eight distinct communities over the Southern 

California region, mixed effects models were fit incorporating a random effect for 

community to allow for variations in regional (background) pollution by community. This 

approach was taken in previous studies involving the CHS data (McConnell et al. 2010, 

Jerrett et al. 2014). The associations between measured FVC and FEV1 and the traffic-

related effects of interest, NOx and noise, were examined after adjustment for subject age, 

sex, height, weight, body mass index (BMI), race/ethnicity, housing characteristics (year 

built, presence of pets, water damage, mildew, pests), parental education level, exercise, and 

tobacco smoke. To examine noise as a potential effect modifier of the association between 

NOx and respiratory outcomes, we included interaction terms between NOx and noise.

Noise was included both as a continuous variable and as a categorical variable defined by 

groups with cutoff values for the 5th, 25th, 50th, 75th, and 95th percentiles of its distribution. 

To examine noise as a possible confounder, we included noise linearly on the continuous 

scale, and accounted for a potential non-linear effect with inclusion of polynomial terms or 

cubic regression splines in a generalized additive model framework (Wood, 2006). 

Sensitivity analyses of the non-linear function of noise were conducted by varying the 

number of degrees of freedom of the cubic regression spline to ensure we were not 

overfitting the data.

NOx was modeled as a linear effect to provide an interpretable parameter estimate. 

Nevertheless, sensitivity analyses were conducted by modeling NOx with polynomials and 

regression splines to assess whether non-linear functions were more suitable.

For asthma, logistic mixed effects models were fit with the same covariate adjustments. 

Residual spatial correlation within each community was examined with mixed effects 

Franklin and Fruin Page 4

Environ Res. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.kalibrate.com/
http://www.kalibrate.com/
https://company.here.com/
https://company.here.com/
http://howloud.com/


models with the addition of spatial covariance terms. In all models, higher order terms were 

included as orthogonal polynomials in order to avoid collinearity. Model sensitivity analyses 

were conducted through a leave-one-community-out cross-validation approach, leaving one 

entire community out of the dataset, refitting the models in each iteration, and examining 

changes in the effect estimates.

3. Results

The study population consisted of girls (52%) and boys (48%) of mean age 15.2 years with 

mean spirometric FEV1 (3673 mL) and FVC (4237 mL) measurements, and doctor 

diagnosed asthma (21%). Details of their physical characteristics, lung function, housing 

characteristics, and exposure levels of NOx and noise are shown in Table 1. Across 

communities the mean concentrations of non-freeway and freeway NOx were 4.8 (SD=2.7) 

ppb and 14.6 (SD=16.5) ppb, respectively. The community-specific distributions of freeway 

NOx and noise are shown in Figure 2. Of these communities, Anaheim had the highest 

average and most variable freeway NOx concentrations (47.7, SD =26.6 ppb). Glendora and 

Santa Barbara had the lowest average freeway NOx concentrations (7.8 and 8.4 ppb, 

respectively). The mean Ldn was 72 dB, far exceeding the WHO guideline, with the highest 

average noise levels observed in Anaheim (77.3 dB), and the lowest in Mira Loma (68.7 

dB).

The Pearson correlations between freeway NOx, non-freeway NOx and noise were r = 0.53 

and r = 0.33, respectively. There was also a moderate inverse correlation between distance to 

freeway and noise (r = −0.57), as well as between distance to freeway and freeway NOx (r = 

−0.52) (Table 2). The community-specific correlations between freeway NOx and noise 

indicated a consistent pattern in all communities (r = 0.53 to 0.65) except for in Long Beach, 

where the correlation was much lower (r = 0.13). The community specific correlations 

between freeway NOx and distance to freeway ranged from −0.51 in Upland to −0.84 in 

Long Beach. To avoid highly correlated variables, we did not include both freeway NOx and 

distance to freeway in our models.

The mixed effects model that included adjustment for age, height, height squared, BMI, 

BMI squared, sex, race, freeway NOx and a random intercept for community showed a non-

significant 14.5 mL decrease (95 % Cl −40.0, 11.0) in FVC associated with an IQR increase 

in freeway NOx (13.6 ppb) (Table 3). After adjusting for a linear, cubic polynomial, or 

categorical effect of noise, the FVC decrease associated with an IQR increase in freeway 

NOx was 27.7 mL (95 % CI −57.0, 1.5), 29.2 mL (95 % CI −59.9, 1.5), and 29.7 mL (95 % 

CI −60.8, 1.4), respectively. When noise was adjusted using a cubic regression spline, there 

was a statistically significant 34.6 mL decrease (95 % CI −66.3, −2.8) in FVC per IQR 

increase in freeway NOx. This last result represents a clinically important (−139%) change 

in the association between freeway NOx and FVC with the inclusion of noise in the baseline 

linear model that did not include any adjustment for noise (Figure 3). Varying the number of 

degrees of freedom of the regression spline between 5 and 10 yielded similar effect sizes that 

were all statistically significant (p ≤ 0.05). In Table 3 and Figure 3 we present the results of 

the model including a regression spline with 7 degrees of freedom. The shape of the fitted 
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spline function followed a cubic functional form, in line with the cubic polynomial results 

(Figure 4).

Similar results were found for FEV1 (Table 3). The effect estimate without adjustment for 

noise indicated a non-significant 6.54 mL decrease (95 % CI −28.3, 15.3) in FEV1 per IQR 

increase in freeway NOx. After adjusting for a linear, cubic polynomial, or categorical effect 

of noise, the FEV1 decrease associated with an IQR increase in freeway NOx was 17.1 mL 

(95 % CI −41.7, 7.51), 17.8 mL (95 % Cl −43.6, 7.98), and 20.3 mL (95 % Cl −46.3, 5.80), 

respectively. With the inclusion of noise with a cubic regression spline with 7 degrees of 

freedom, the decrease in FEV1 associated with an IQR increase in freeway NOx was 21.1 

mL (95 % CI −47.6, 5.51). While this effect estimate is not statistically significant at p<0.05, 

we note that the inclusion of a non-linear effect of noise changes the freeway NOx effect 

estimate by −222%.

Cross validation was conducted for the spline models to examine whether any individual 

community was more influential on the model results than others. For both FVC and FEV1, 

with the removal of one community at a time, the coefficients for freeway NOx behaved 

similarly to the full model. None of the NOx coefficients changed more than 15% except 

when Anaheim was removed. Anaheim includes observations representing highest and most 

variable NOx concentrations and the highest noise values, and with its removal, the NOx 

effect estimate changed by 29% and 62% for FVC and FEV1, respectively.

When noise was examined alone with the same covariate adjustments, there was no evidence 

of a statistically significant association with lung function. Testing an interaction between 

freeway NOx and noise resulted in no significant associations, indicating that noise was not 

acting as an effect modifier. Tests for spatial random effects were not statistically significant, 

indicating no significant residual spatial correlation in any of the fitted models. Finally, none 

of the models for asthma showed significant results, so these results are not shown.

4. Discussion

By linking both traffic-related air pollution and noise exposure to a cohort of children in 

Southern California with a large database of measured health data, we were able to study the 

marginal and joint effects of freeway NOx and noise on children’s lung function. We 

consistently found that the inclusion of noise into our models amplified the strength of the 

negative association between freeway NOx and both FVC and FEV1. This observation led us 

to the conclusion that noise acts as a negative confounder on the association between traffic 

related air pollution and lung function. A negative confounding variable is defined as one 

that increases the estimated magnitude of the effect of another variable by its inclusion in a 

regression model (MacKinnon et al., 2000; Lynn, 2003). Essentially, the inclusion of Z 

(noise) may act to remove extraneous variation in X (air pollution), subsequently clarifying 

the association between X and Y (respiratory outcomes). Without the negative noise 

confounder there was under estimation of the main effect.

One possibility for the observed negative confounding phenomenon is that noise may be 

acting to partly offset dispersion model error in nighttime freeway NOx emissions when 
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wind speeds are low (<1.0 m/s) and CALINE4 cannot accurately predict the direction and 

extent of freeway emissions. During these times, the relatively high speed and low numbers 

of vehicles, particularly heavy duty vehicles, produces relatively large noise impacts 

compared to their NOx emissions, and these relatively high noise impacts may better 

simulate the long distance emissions impacts of nighttime traffic such as found by Hu et al. 

(2009) in Los Angeles during the near-calm conditions of night. They found freeway 

impacts on air quality routinely extend more than 2500 metres due to reduced mixing and 

low mixing layer heights at night and early morning. In our data, we also noted the modest 

inverse correlation between distance to freeway and noise, which may be in part due to 

differences in the effect of wind direction. Wind direction is taken into account in the air 

pollution estimates but not the noise estimates. While wind direction does have an effect on 

noise propagation, its effect is much less pronounced than it is for air emissions.

Air pollution has several demonstrated biological mechanisms of damage, including 

oxidative stress and chronic inflammation. The possible mechanisms for noise to affect lung 

function are not as clear, but in conjunction with air pollution, we hypothesize that noise 

may result in an increased susceptibility to the effects of air pollution due to an enhanced 

stress response acting along the hypothalamic-pituitary-adrenal (HPA) axis, which can 

aggravate existing inflammatory conditions (Recio et al., 2016) (Figure 5). In a study of 

German children aged 5 to 12 years, it was found that those exposed to elevated nighttime 

noise (54 – 70 dB) had significantly higher morning saliva cortisol concentrations, indicating 

activation of the HPA axis (Ising et al., 2004). Their study concluded that exposure to traffic 

noise activates the HPA axis, which then leads to nighttime immune system disruption with 

long-term increased susceptibility to aggravation of bronchitis. The possibility that noise 

acts by disrupting neuroendocrine states also means that it may also aggravate 

inflammatory-mediated susceptibility to respiratory diseases such as bronchitis, pneumonia, 

and cardio-pulmonary disease (Recio et al., 2016).

It is important to emphasize that the negative confounding effect of noise did not appear to 

be linear, as we saw the stronger effects when noise was included as cubic, categorical, or 

non-linear regression spline in the mixed effects model. The most significant and consistent 

effect was uncovered with the regression spline models, which allowed for greater flexibility 

in the shape of the noise function. As shown in Figure 4, the shape of the non-linear noise 

association followed a cubic shape, with a few “bumps” in the mid-noise range regression 

splines. This form of the association indicates an interpretable phenomenon: that very low 

noise has less of an effect on lung function (evidenced by higher FVC), the effect is 

relatively flat in the mid-noise range, and high noise has a greater detrimental effect 

(evidenced by lower FVC). With a non-linear adjustment for noise, the resultant association 

between freeway NOx and lung function led us to suspect the times and locations of both 

low and high noise for a given NOx concentration might be compensating for relatively high 

uncertainty in the dispersion model estimates. A high noise (relative to NOx) situation might 

include the nighttime scenario described above. A low noise situation associated with under-

prediction of freeway NOx may be occurring when hourly traffic volumes cannot distinguish 

between steady slow speeds and when congestion increases to the point of stop and go 

and/or creep conditions. In situations of irregular but low speeds, emissions per mile go up 

strongly (Zhang et al., 2011) while noise is relatively low under both speed conditions. It 
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should also be noted that the associations with non-freeway NOx and lung function were 

never significant, either alone or including noise. The non-freeway NOx estimates (4.8 ppb) 

only averaged one-third of freeway NOx (14.6 ppb) so were not expected to produce a large 

incremental change compared to freeway NOx.

The observed correlation between freeway NOx and noise was modest (r = 0.53), and we 

note from Figure 2 that in most communities these two factors appear to co-vary. As a result 

we took measures to deal with the issue of collinearity by including orthogonal polynomials 

or splines in the regression models, resulting in minimal variance inflation factors. 

Nevertheless, collinearity can present issues in epidemiologic studies of multi-pollutants 

(Franklin and Schwartz, 2008) or multiple correlated environmental factors such as traffic-

related noise and pollution. Collinearity, in combination with differential amounts of 

measurement error is harder to quantify and can further complicate the interpretation of 

effect estimates. For example, it is known that when covariates X (air pollution) and Z 

(noise) are highly correlated, the standard errors of the estimated coefficients will be 

inflated. It is similarly known that if X and Z are not correlated but possess relatively high 

measurement error, the effect of the measurement error would be to decrease the estimated 

effect sizes. However, when correlation and measurement error both exist at these levels of 

concern, the interpretation of the estimated coefficients of X and Z becomes more difficult. 

In our case we feel that the modest correlation between noise and air pollution has enabled 

us to conduct an examination of the joint role of noise and NOx on lung function, which 

may not be possible in studies where their pairwise correlation is high. Furthermore, it 

makes measurement error our chief concern. We suspect that the correlation was lower than 

in many other cities because Southern California traffic conditions of high congestion during 

rush hours produce situations of high emissions during stop and go traffic with simultaneous 

reductions in speed and therefore noise. Conversely, during off peak hours, the higher speeds 

produce stronger correlations between noise and emissions. While we included information 

regarding properties of the study subjects’ homes such as year built, and air conditioning use 

as proxies for noise insulation, it did not significantly modify our results. Not having more 

precise metrics of housing characteristics such as windowpane number and bedroom 

location could be a possible source of measurement error.

Our analysis was based on a cross-sectional chronic study, with annual estimates of 

exposures being linked to health measurements collected at one point during the year. We 

must therefore assume that the exposures are representative of the time of diagnosis, and/or 

the diagnosis is representative of the year for which we have average exposures. Similarly, 

we assume the noise estimates, which were based on data from 2013–15, were 

representative of the time period during which health measurements and NOx were collected 

(2011–12). This is a reasonable assumption as average noise levels are not anticipated to 

have changed significantly in this short time span beyond incremental growth in traffic 

volumes proportional to population growth.

5. Conclusion

Overall, the findings in this study have important epidemiological and policy implications 

for studies of traffic related health effects. In terms of lung function outcomes, noise appears 

Franklin and Fruin Page 8

Environ Res. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to act as a negative confounder. This result has two likely explanations. First, in joint 

models, noise may be offsetting error in nighttime dispersion model estimates of freeway 

NOx. Second, loud noise exposure may be activating of the HPA axis, resulting in 

exacerbation of preexisting or underlying respiratory disease. This in turn enhances the 

detrimental effect of near-roadway air pollution on lung function by making the lung more 

susceptible to the deleterious effects of the air pollutants. Thus, in order to gain a clearer 

understanding of the broad mechanistic pathway that air pollution plays on health, including 

noise as a covariate is a critical consideration when studying the association between traffic-

related air pollution and respiratory outcomes.
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Highlights

• The joint effects of traffic noise and air pollution exposure on health are 

examined

• Noise enhances the detrimental impact of air pollution on children’s lung 

function

• Noise is an important exposure to include in studies of traffic-related health 

outcomes
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Figure 1. 
Map of study area with noise estimates (Ldn, dB) in the Southern California region and 

freeway NOx concentrations (ppb) at locations of subjects in the 8 CHS communities.
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Figure 2. 
Distributions of freeway NOx (left) and noise (right) at subject homes in each of the 8 CHS 

communities.
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Figure 3. 
Effect estimates of the association between lung function and freeway NOx without 

adjustment for noise (orange), with linear adjustment for noise (yellow), with cubic 

polynomial adjustment for noise (green), with categorical adjustment for noise (blue), and 

with non-linear function of noise (purple). Circles, squares, and triangles represent freeway 

NOx effect estimates that are not statistically significant, statistically significant at p<0.10 

and at p<0.05, respectively.
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Figure 4. 
Mixed effects model examining the noise-adjusted association between FVC and freeway 

NOx. Left: adjusted linear association between freeway NOx and FVC (left). Right: cubic 

regression spline function of noise.
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Figure 5. 
Hypothesized pathway of lung function health effects associated with traffic-related NOx 

and noise exposures.
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Table 1

Characteristics of the study population

Number of Subjects % or mean (SD)

Subjects

Boys 671 48%

Girls 726 52%

Age (years) 1397 15.2 (0.6)

Height (cm) 1397 166.1 (8.6)

Weight (lbs) 1397 141.8 (35.0)

Race

 Asian 70 5%

 African American 30 2%

 Caucasian 594 43%

 Mixed 182 13%

 Other 338 24%

 Unknown or missing 183 13%

Ethnicity

 Hispanic 745 53%

 Non-Hispanic 585 42%

 Unknown or missing 67 5%

Forced Vital Capacity (mL) 1345 4237 (851)

Forced Expiratory Volume (mL) 1332 3673 (698)

Asthma 1342 21%

Exposures

Distance to fwy (km) 1397 1.4 (1.1)

Freeway NOx (ppb) 1397 14.6 (16.5)

Non-freeway NOx (ppb) 1397 4.8 (2.7)

Noise (dB) 1397 72 (7.5)

Exposure to smoke 1393 6%

Pets in home 1317 58%

Housing Characteristics

Air conditioning use 1333 72%

Home Built (year)

 Before 1960 360 26%

 1960–1979 410 29%

 1980 or later 296 21%

 Unknown or missing 331 24%

Communities

 Anaheim 136 10%

 Glendora 253 18%

 Long Beach 93 7%

 Mira Loma 190 14%
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Number of Subjects % or mean (SD)

 Riverside 162 12%

 Santa Barbara 172 12%

 San Dimas 202 14%

 Upland 189 13%
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Table 2

Pearson correlation coefficients between key exposure variables

Noise (dB) Freeway NOx (ppb) Non-Freeway NOx (ppb) Distance to Freeway (km)

Noise (dB) 1.00 0.53 0.33 −0.57

Freeway NOx (ppb) 1.00 0.38 −0.52

Non-Freeway NOx (ppb) 1.00 −0.19

Distance to Freeway (km) 1.00
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Table 3

Freeway NOx exposure effect estimates by model and outcome (in mL per IQR increase in NOx concentration, 

13.6 ppb)*

Model Outcome Effect Estimate (95% CI)

NOx FVC −14.5 (−40.0, 11.0)

NOx + noise linear FVC −27.7 (−56.7, 1.50)a

NOx + noise cubic FVC −29.2 (−59.9, 1.53)a

NOx + noise categories FVC −29.7 (−60.8, 1.39)a

NOx + noise splines FVC −34.6 (−66.3, −2.78)b

NOx FEV1 −6.54 (−28.3, 15.3)

NOx + noise linear FEV1 −17.1 (−41.7, 7.51)

NOx + noise cubic FEV1 −17.8 (−43.6, 7.98)

NOx + noise categories FEV1 −20.3 (−46.3, 5.80)a

NOx + noise splines FEV1 −21.1 (−47.6, 5.51)a

a
p ≤ 0.1,

b
p ≤ 0.05

*
All models include covariate adjustment for age at time of lung function test, gender, race, ethnicity, height, BMI, and a random intercept for 

community.
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