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Combinations of isoform-targeted 
histone deacetylase inhibitors 
and bryostatin analogues display 
remarkable potency to activate 
latent HIV without global T-cell 
activation
Brice J. Albert1, Austin Niu2, Rashmi Ramani2, Garland R. Marshall3, Paul A. Wender4, Robert 
M. Williams5,6, Lee Ratner2, Alexander B. Barnes   1 & George B. Kyei2

Current antiretroviral therapy (ART) for HIV/AIDS slows disease progression by reducing viral loads and 
increasing CD4 counts. Yet ART is not curative due to the persistence of CD4+ T-cell proviral reservoirs 
that chronically resupply active virus. Elimination of these reservoirs through the administration of 
synergistic combinations of latency reversing agents (LRAs), such as histone deacetylase (HDAC) 
inhibitors and protein kinase C (PKC) modulators, provides a promising strategy to reduce if not 
eradicate the viral reservoir. Here, we demonstrate that largazole and its analogues are isoform-
targeted histone deacetylase inhibitors and potent LRAs. Significantly, these isoform-targeted HDAC 
inhibitors synergize with PKC modulators, namely bryostatin-1 analogues (bryologs). Implementation 
of this unprecedented LRA combination induces HIV-1 reactivation to unparalleled levels and avoids 
global T-cell activation within resting CD4+ T-cells.

Viral latency in resting CD4+ T-cells remains the most important obstacle to reduction of the latent HIV res-
ervoir in infected patients on anti-retroviral therapy (ART)1–3. This therapy reduces the active viral load in 
plasma to undetectable levels (<20 copies per mL). While effective for many, ART is costly and chronic, requires 
strict compliance, and is associated with early onset health problems arising from prolonged chemoexposure. 
Withdrawal of ART results in robust viral rebound from the T-cell reservoir of latent HIV-1 provirus, even in 
patients whose virus has remained undetectable for many years4. Elimination of the proviral reservoir if done in 
combination with ART would allow for eradication of HIV in ART-compliant individuals as well as a therapeutic 
strategy to address most HIV positive individuals who are non-compliant or do not have sustained access to ART.

One strategy for eradicating latent HIV is to activate proviral reservoir transcription with small molecule 
latency reversing agents (LRAs), while avoiding global T-cell activation which leads to cytokine release and tox-
icity5, 6. Upon activation of HIV transcription, the infected cells comprising the reservoir could be destroyed 
through viral cytopathic effects, host cytolytic mechanisms, immunotoxin or other therapeutic approaches7. 
Several compounds induce viral transcription and replication; however, some compounds, such as anti-T-cell 
receptor antibodies8, lead to global T-cell activation and are too toxic for use as latency reversing agents9, 10. 
Current efforts focus on LRAs that stimulate viral replication and avoid global T-cell activation7, 11.
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Histone deacetylase (HDAC) inhibitors and protein kinase C (PKC) modulators represent two of the leading 
classes of small molecule LRAs. Several different HDAC inhibitors can reactivate HIV transcription and expres-
sion without global T-cell activation such as valproic acid (VPA), romidepsin and suberoylanilide hydroxamic 
acid (SAHA, vorinostat)12–17. Many PKC modulators have also been characterized as LRAs including ingenols18, 
prostratin19–21, 1,2 diacylglycerol analogs22, and bryostatin-123–25. Bryostatin-1 has been used in phase I and phase 
II clinical trials as a therapeutic for many indications, including lymphoma, leukemia, Alzheimer’s disease, and 
most recently HIV26–29. For the cancer indications, bryostatin-1 is typically administered at 40–50 μg/m2 with 
myalgia being the dose-limiting side effect26. In the context of HIV latency reversal, bryostatin and other PKC 
modulators would be used at a lower minimum effective dose (MED) thereby allowing for a reduction in side 
effects. With regards to LRA potency, of the compounds studied, bryostatin-1 was the most effective in increasing 
HIV-1 mRNA levels close to those induced by strong T-cell activators in ex-vivo studies25.

LRA combination therapy involving both PKC modulators and HDAC inhibitors is more effective than sepa-
rately using individual LRAs, both in vitro and in ex vivo blood draws21, 23, 30. Moreover, more effective combina-
tions will lower the necessary dose of each component and would aid in the reduction of undesired side effects. 
Here, we demonstrate that largazoles are isoform-targeted class I HDAC inhibitors which efficiently reactivate 
HIV-1 from latently infected T-cells. Furthermore, given that newly designed and more synthetically accessible 
analogues of bryostatin-1 (bryologs) show better efficacy and tolerability as LRAs than the natural product itself 
in vitro and in animal models, we also show that largazoles display remarkable synergy when used in combination 
with bryologs (Fig. 1)31–33. This unprecedented LRA combination of bryologs together with largazole induces 
unparalleled levels of HIV expression and avoids global T-cell activation and cytokine release, making this com-
bination a potentially strong therapeutic candidate for preclinical advancement.

Results
A screen of novel HDAC inhibitors identifies largazoles as low-toxicity HIV-1 latency reversing 
agents.  A critical shortcoming of many leading HDAC inhibitors is an apparent lack of class specificity34. 
These pan-HDAC inhibitors, such as vorinostat, inhibit all classes of HDACs to similar degrees thus inviting 
the occurrence of untoward side effects. HDACs are divided into four classes (I-IV). The class I HDACs include 
HDAC1, -2, -3 and -8 while the class II HDACs incorporate HDAC4, -5, -6, -7, -9 and -10. Class III HDACs, 
known as sirtuins function through a different mechanism and have not been associated with HIV latency. The 
only member of class IV is HDAC1135. Accumulating evidence indicates HIV latency requires class I HDAC 
isoforms, especially HDAC1, -2 and -3, with HDAC3 being the most important36, 37. Therefore, isoform-targeted 
compounds for manipulation of a specific class I HDAC isoform could significantly figure in reducing untoward 
side effects38–41. However, it is unclear whether isoform-targeted compounds would prove as effective in reactivat-
ing HIV from latency as their pan-HDAC counterparts. To answer this question, we assayed several compounds, 
developed through virtual screening to be isoform-targeted HDAC inhibitors, for their ability to reactivate HIV 
from latency42. These HDAC inhibitors are comprised of a zinc binding group linked to a headgroup which inter-
acts with amino acid residues at the edge of the inhibitor binding cavity of the HDAC42. Out of the 15 compounds 

Figure 1.  Structures of compounds implemented in LRA screens and HIV reactivation studies herein. (a) 
HDAC inhibitors including SDL148 (largazole), two of its derivatives JMF1080 and SDL256, as well as, 
vorinostat (SAHA). (b) PKC modulators including bryostatin-1 and two of its analogs SUW133 and SUW124.
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screened (see Supplementary Table S1), largazole and two of its synthetic analogues emerged as potent LRAs. 
Initially isolated from marine cyanobacteria43, these cyclic depsipeptide compounds, known as largazoles, dif-
ferentially affect cancer cell growth and demonstrate excellent bioavailability in mice44–47. Figure 1a shows the 
chemical structures of the three most potent largazoles used in this study.

To screen the newly synthesized HDAC inhibitors, we employed JLAT10.6 cells, a T-cell line widely used for 
HIV-1 reactivation studies48–50. In this cell line, HIV-1Δenv, which arises from the NL4–3 backbone and contains 
a GFP reporter gene in place of the Nef gene, is stably integrated into the genome of Jurkat cells and expressed at 
undetectable levels at baseline. Upon reactivation of HIV transcription by stimulation with LRAs, GFP expression 
in proportion to viral production is determined by fluorescence activated cell sorting (FACS) analysis. Stronger 
HIV reactivation generates a more intense fluorescent signature per cell. In brief, the FACS analysis compares 
the number of cells with increased fluorescence to total number of cells scanned and reports this value as a per-
centage. We incubated JLAT 10.6 cells with HDAC inhibitor compounds for 24 hours at concentrations of 10, 1, 
and 0.1 μM. We used TNF-α and SAHA (vorinostat) as positive controls. At the given concentrations, SDL148 
(largazole), and its derivatives JMF1080 and SDL256 induced the three highest activities for HIV-1 reactivation 
(Fig. 2). Although less potent than TNF-α, largazoles induce levels of HIV-1 activation comparable to, or better 
than that of SAHA, a currently accepted HIV-1 LRA. At 100 nM, SDL148 continued to significantly induce HIV-1 
reactivation demonstrating superior potency compared to all other screened HDAC inhibitors.

We determined the EC50 for each of the three largazole compounds (Fig. 3a–c). With an EC50 of 0.15 μM, 
SDL148 exhibited the lowest EC50 among the three HDAC inhibitors followed by JMF1080 (1.6 μM) and SDL256 
(1.5 μM). Consistent with its superior potency, SDL148 alone reactivates HIV expression significantly in the 
JLAT10.6 cells when used at 100 nM (Fig. 2c). Thus, we utilized SDL148 as an HDAC inhibitor LRA at 100 nM in 

Figure 2.  Screening of isoform-targeted compounds to identify HIV-1 latency reversing agents (LRAs). 
Identification of largazoles as potent LRAs. JLAT10.6 cells were incubated with 10 ng/mL of TNFα, 1 μM of 
SAHA (vorinostat) and 10 μM (a), 1 μM (b), or 0.1 μM (c) of screening compounds for 24 h. The percent of 
GFP positive cells were analyzed by FACS and the degree of HIV-1 reactivation was normalized to TNF-α. 
SDL148, JMF1080 and SDL256 are largazole and two analogs respectively. The mean values (mean ± s.e.m.) of a 
representative experiment in triplicate for each concentration is shown. ***p < 0.001 (ANOVA).
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the subsequent reactivation experiments involving LRA combinations in cell line models. We confirmed that the 
GFP expression seen with FACS analysis corresponds to enhanced expression of HIV Gag through Western blot 
assessment after incubation of JLAT10.6 cells with SDL148 for 24 h (Fig. 3d).

To determine the toxicity of these compounds on the JLAT10.6 cells, we used the MTT (3-(4,5-dimet
hylthiazol-2-yl)-2,5-diphenyltetrazolium) cell-proliferation assay51. In-vivo, only one in a million resting T cells 
have HIV proviruses, therefore resting T cells in-vitro without HIV infection is a good model for cellular prolif-
eration analysis to assay toxicity. We found the toxicity of the three compounds to be similar to or less toxic than 
SAHA (Fig. 3e). These results show that the largazoles potently induce HIV-1 from latency with a toxicity profile 
comparable to that of the pan-HDAC inhibitor, SAHA.

Largazoles reactivate HIV-1 in a primary cell model of latency.  We then proceeded to test the abil-
ity of these compounds to reactivate HIV-1 in a primary cell model of latency. We used the primary cell model 
described by Greene and colleagues52 with a substitution of darunavir as a protease inhibitor, as described in the 
Methods section. Briefly, resting CD4 T-cells were isolated by negative selection, infected with an HIV-1 Luc 
reporter virus for 2 hours, washed and incubated for 72 h with the HIV-1 protease inhibitor darunavir. These cells 
produce no luciferase activity unless stimulated with appropriate agents. Cells were then stimulated for 48 h with 
the largazoles at indicated concentrations in the presence of the integrase inhibitor raltegravir, to prevent new 
integration. The level of reactivation was measured by luciferase luminescence read-out in cell lysates. Data for 
this model (Fig. 4a), show SDL148 and JMF1080 reactivate HIV-1 in a dose-dependent manner indicating that 
largazoles are potent LRAs. Again, the most potent compound was SDL148 which performed similar to SAHA 
at a 10-fold lower concentration. After 48 h of incubation, the toxicity levels of the largazoles were assessed in 
resting CD4 T-cells. Compared to an inactive compound, MC 2780, the toxicity levels induced by largazoles were 
minimal as determined by MTT cell-proliferation assay (Fig. 4b).

Largazoles are class-targeted HDAC inhibitors that remodel chromatin at the HIV-1 promoter.  
We determined the class specificity of the three potent largazole analogues (Fig. 1) through Western blots on 
Jurkat cell lines and primary resting CD4+ T-cells following 8 hours of incubation with increasing concentra-
tions of the HDAC inhibitors. We probed the Western blots for acetylated histone H3, a measure of class I HDAC 

Figure 3.  Low-toxicity isoform-targeted compounds induce HIV-1 gag. (a–c) EC50 measurements for 
largazoles. JLAT10.6 cells were incubated with indicated compounds for 24 h at increasing concentrations 
and FACS performed to quantify the percent of GFP positive cells. (d) Largazole induces HIV Gag proteins. 
JLAT10.6 cells were incubated with SDL148 for 24 h and Western blot performed for HIV Gag proteins. (e) 
Toxicity profile of largazoles. JLAT10.6 cells were incubated with compounds at indicated concentrations and 
MTT toxicity assay performed as described in Methods. Data indicates mean values, and error bars indicate 
mean ± s.e.m. (n ≥ 3).
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inhibition, and acetylated tubulin, a measure of HDAC6 (class II HDAC) inhibition47, 53. The largazole com-
pounds specifically enhanced histone H3 acetylation while SAHA, a pan-HDAC inhibitor enhanced the acetyl-
ation of both histone H3 and tubulin (Fig. 5a,b). At 50 nM, SDL148 yields levels of acetylated histone H3 which 
are similar to those induced by SAHA at 1 μM. This observation further demonstrates the superior potency of 
SDL148, now in a histone acetylation assay, and is consistent with previous data (Fig. 2). The class I HDAC 
inhibitory activity demonstrated by the largazoles is not restricted to T-cells, as similar inhibitory activity is seen 
in HeLa cells (Supplementary Fig. S1). In primary T-cells, the largazoles did not induce detectable acetylated 
tubulin levels when employing concentrations up to 10 µM; however, much lower concentrations of SAHA lead 
to acetylation of tubulin (Fig. 5b). This data confirms the largazoles as class 1 targeted HDAC inhibitors in T-cells.

Since histone H3 is deacetylated by class I HDACs and known to bind to the HIV LTR promoter, we deter-
mined H3 acetylation status of the HIV-1 LTR in JLAT10.6 cells. We incubated a DMSO control and a SDL148 
test with JLAT10.6 cells for 6 hours and performed chromatin immunoprecipitation (ChIP) assays. Using ChIP, 
we recovered 15% of the DNA from SDL148-treated cells using anti-acetylated histone H3 antibody compared to 
less than 5% recovery with DMSO-treated cells, and less than 1% from the IgG-negative controls (Fig. 5c). This 
shows that largazole actively remodels the chromatin at the HIV-1 LTR which could explain the reactivation of 
the virus. An alternative mechanism is modulation of lysine residues in Tat which impact its ability to interact 
with TAR of the HIV-1 LTR54–56. Taken together, these findings confirm largazoles as HDAC inhibitors that 
preferentially target class I histone deacetylases with the ability to activate the HIV-1 LTR to overcome latency.

Largazole combinations with bryologs show synergy and unprecedented potency as HIV 
latency reversing agents.  Bryostatin-1 has been shown to display synergistic effects with vorinostat and 
other HDAC inhibitors30. However, bryologs have proven to be more potent activators of latent HIV reservoirs32, 
and we have now characterized SDL148 as a more potent LRA than vorinostat. Therefore, to produce a treatment 
which most effectively reverses HIV latency, we evaluated a combination of the leading LRAs (Fig. 1b) of both 
PKC modulators (SUW133, SUW124) and HDAC inhibitor (SDL148).

In these combination LRA studies, shown in Fig. 6, we utilized the aforementioned Jurkat T-cell lines, JLAT 
10.6 and JLAT 9.2, to probe the ability of the novel LRA combination to reverse HIV-1 latency. In Fig. 6, we see 
the observed fractional response of the LRA combinations, as indicated by the black bars, compared to the pre-
dicted fractional response as predicted by the Bliss independence model and indicated by the red-coloured dashes 
for each LRA combination (see Methods for details and Supplementary Fig. S2)57. We first incubated JLAT 10.6 
cells for 18–24 hours with various concentrations of LRAs and used TNF-α as the positive control. In line with 
their greater efficacy, bryologs display stronger activation compared to bryostatin-1 when incubated with JLAT 
10.6 cells at 10 nM (Fig. 6a). Combination with 100 nM HDAC inhibitor, SDL148, induced significantly higher 
levels of activation than bryologs or largazole alone. At these concentrations, the LRA combinations induce acti-
vation levels equal to or better than that induced by TNF-α.

Next, we reduced the PKC modulator concentration to 1 nM, and maintained the HDAC inhibitor concen-
tration at 100 nM. With reduced PKC modulator concentration, we observed large amounts of reactivation due 
to synergistic effects from the combination of bryologs with largazole (Fig. 6b). The synergy of this novel combi-
nation at these concentrations leads to significant activation levels comparable to TNF-α. Combinations of the 
bryologs and the pan-HDAC inhibitor, SAHA, also displays synergy, but to a much lesser degree. Reduction of 

Figure 4.  Largazoles induce HIV reactivation in primary cells. (a) A primary T-cell model of latency (See text 
for details). Latently infected T-cells were incubated with the indicated compounds for 48 h. HIV-1 reactivation 
is presented as fold induction relative to SAHA. Data indicate mean values of experiments in triplicate and 
error bars indicate mean ± s.e.m. (n ≥ 3). **p < 0.01, ***p < 0.001 (ANOVA). (b) Toxicity profile of largazoles 
in primary CD4+ T-cells. Primary resting CD4+ T-cells were incubated with compounds at indicated 
concentrations for 48 h and MTT toxicity assay performed as described in Methods. Percent cell survival was 
normalized to DMSO.
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the HDAC inhibitor concentration to 50 nM greatly reduces the overall number of cells expressing appreciable 
levels of GFP; however, the combination of bryologs and largazole still leads to synergistic effects (Fig. 6c), and 
the SUW133/SDL148 combination still exhibits a significant level of reactivation compared to SDL148 alone.

The environment at the integration site affects the HIV-1 transcriptional rate58, 59. Reactivation assays 
employing a separate Jurkat T-cell line (JLAT 9.2 clone), with a proposed different integration site based on viral 
transcriptional rates, allowed us to explore the effect of heterogeneous HIV integration and gain a better under-
standing of the potency of our novel LRA combination50. We incubated JLAT 9.2 cells with 10 nM PKC modulator 
and 100 nM HDAC inhibitor for 24 hours (Fig. 6d). We utilized TNF-α as a positive control and assayed viral acti-
vation by FACS. These combinations of bryologs with largazole induce HIV reactivation four times more strongly 
than TNF-α. The remarkable amount of synergy, and overall activation of the latent virus, demonstrates the supe-
riority of this combination. To the best of our knowledge, the combination of bryologs (SUW133 and SUW124) 
with largazole is currently the most potent LRA combination for HIV-1 latency reversal in the JLAT cell lines.

Synergistic combinations avoid global T-cell activation and induction of cytokine release.  To 
investigate global T-cell activation and potential cytokine release, we used primary CD4 + CD25(−) T-cells iso-
lated from HIV negative donor blood (see Methods). We probed the CD4 + CD25(−) T-cells for cell surface 
expression of CD25, a late T-cell activation marker, and CD69, a very early stage activation marker after stimula-
tion with the most potent LRA combination, SUW133 with SDL148. Individual compounds and the novel LRA 
combinations induce little to no expression of CD25 (Fig. 7a) and expression of CD25 following stimulation by 
the positive control, CD3/CD28, is significantly increased compared to the LRA combinations. Expression of 
increased levels of CD69 following stimulation with PKC modulators or LRA combinations demonstrate some 
amount of very early T-cell activation (Fig. 7b), but surprisingly stimulation with SDL148 alone does not lead to 
any significant CD69 expression.

In Fig. 7c, we used ELISA to probe the supernatant from resting T-cells for cytokine release (see Methods). In 
brief, CD4 + CD25(−) resting T-cells were stimulated with the most potent LRA combination as determined by 
FACS analysis (Fig. 6). The supernatant from these cells following 24 h stimulation by SUW133 with SDL148 was 
collected and probed for a range of different cytokines as indicated in Fig. 7c. Although, high concentrations of 
cytokines were observed when resting T-cells were stimulated with CD3/CD28, the SUW133 with SDL148 com-
bination induced no detectable levels of cytokines. The limited expression of CD25, the absence of any cytokine 
release, and no perceived cell death seen in the MTT cell proliferation assays (Fig. 7d) suggest that stimulation 

Figure 5.  Largazoles are isoform-targeted class I HDAC inhibitors that enhance histone H3 acetylation at 
the HIV promoter. Largazoles inhibit class I, but not class II histone deacetylases. Compounds at indicated 
concentrations were incubated with (a) Jurkat or (b) primary T-cells for 8 h and Western blot performed for 
acetylated histone H3 (a marker of class I HDAC inhibition) or acetylated tubulin (a marker for HDAC6, a 
class II HDAC) inhibition. (c) Chromatin immunoprecipitation (ChIP) of acetylated histone H3 and HIV 
LTR promoter. JLAT10.6 cells were incubated with DMSO or 1 μM of SDL148 for 6 h and ChIP performed 
as described in Methods. Data indicate mean values and error bars indicate mean ± s.e.m. (n ≥ 3). *p < 0.05, 
(Student’s t-test). See also Supplementary Fig. S1.
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by these LRA combinations at indicated concentrations avoids sustained T-cell activation associated with global 
activation, cytokine recruitment, and overall toxicity.

Discussion
The development of isoform-targeted LRAs will aid in the understanding of molecular mechanisms which reverse 
HIV latency and lead to fewer untoward side effects. Most of the current leading HDAC inhibitors affect many, if 
not all, of the eight zinc-based HDAC isoforms making it difficult to ascertain which HDACs are responsible for 
promoting HIV-1 latency. While protein-knockdown assays have been essential in narrowing down the HDACs 
that are important for HIV latency, these assays can only be done in cell lines amenable to effective transfections 
or transductions. Identification of isoform-specific HDAC inhibitors will help to decipher the contributions of a 
particular HDAC in an individual patient. Although the assays performed herein do not isolate one of the specific 
class I HDACs as responsible for promoting HIV-1 latency, previous work has indicated preference of largazole 
to inhibit HDAC1, followed by HDAC3 and HDAC245. It is quite feasible that inhibition of more than one HDAC 
is required for optimal activation; therefore, further development and investigation of HDAC inhibitors would 
be advantageous.

We conclude that largazoles are isoform-targeted due to their ability to inhibit class I HDACs (stimulate his-
tone H3 acetylation) at concentrations of 50 nM, while doses up to 10 µM had no detectable effect on class II 
(HDAC6) activity in primary T-cells. The fact that largazole performed similarly or better than vorinostat in 
reactivation assays confirms that isoform-targeted compounds could be more effective than their pan-HDAC 
inhibitor counterparts. Largazoles have been tested in mice and found to have a very low toxicity profile47. While 

Figure 6.  Largazole combinations with bryologs show synergy and unprecedented potency as HIV latency 
reversing agents. JLAT cell lines were incubated with different concentration combinations of LRAs. The percent 
of GFP positive cells was analyzed by FACS and the degree of HIV-1 reactivation was normalized to TNF-α. 
10 ng/mL TNF-α was used as the positive control. JLAT 10.6 cells (a–c) and JLAT 9.2 cells (d) were incubated 
for 18–24 h with (a) 10 nM PKC modulator (PKCm) and 100 nM HDAC inhibitor (HDACI) concentrations, (b) 
1 nM PKCm and 100 nM HDACI, (c) 1 nM PKCm and 50 nM HDACI, (d) 10 nM PKCm and 100 nM HDACI. 
Panel (d) presented as a fold change relative to TNF-a. Data indicate mean values of experiments in duplicate 
(Fig. 4a) or triplicate (Fig. 4b–d) and error bars represent mean ± s.e.m. (n ≥ 3). *p < 0.05, ***p < 0.001 
(ANOVA). Red-coloured dashes indicate the predicted fractional response based on the Bliss independence 
model.
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they are yet to be tested in humans, it is conceivable that they will have very few side effects based on inhibition 
of fewer histone deacetylases.

Although it is not definitive whether largazole actively remodels the chromatin at the HIV-1 LTR or modulates 
the Tat lysines to limit Tat/TAR interactions, it does synergize extremely well with bryologs, resulting in four 
times higher reactivation of HIV in the JLAT 9.2 cell line compared to the positive control, TNF-α. Given these 
achievements of the novel LRA combination in HIV-1 T-cell line models, we sought to explore their effects within 
primary CD4+ T-cells extracted from HIV negative donors. CD69 is upregulated when the NF-kB pathway is 
activated in a PKC-dependent manner60. Knowing that the PKC modulators herein bind PKC, it is reasonable to 
see that after the course of 24 hours of activation, CD69 cell surface markers are increased. However, the late stage 
T-cell activation marker, CD25, is largely absent at 24 hours. Furthermore, we observe no detectable cytokine 
release or notable toxicity.

In summary, we have shown that an unprecedented, potent LRA combination greatly enhances the activation 
of latent HIV-1 proviral reservoirs as is required for their elimination. The largazoles used in this study are class I 
targeted HDAC inhibitors that initiate increased HIV-1 expression in comparison to their pan-HDAC inhibitor 
counterparts. The bryologs used in this study are more effective activators than the natural product bryostatin-1. 
The first tested combination of these two LRA classes (largazoles and bryologs) show great promise for latency 
reversal as they operate with impressive synergy and exhibit pronounced efficacy for reactivation of latent HIV. 
These novel combinations avoid global T-cell activation, induce no detectable levels of cytokine release, and show 
no notable toxicity in CD4+ T-cells. These findings bode well for their use in vivo, and provides a foundation for 
the projected advancement of this combination toward clinical trials.

Methods
Primary cell studies.  The Washington University Institutional Review Board approved this study, and all 
patient participants who donated blood samples for primary cell isolation gave written informed consent for this 
study. All methods and experiments were performed in accordance to the guidelines and regulations outlined by 
the Washington University Institutional Review Board.

Figure 7.  Synergistic combinations avoid global T-cell activation and induction of cytokine release. Resting 
CD4+ CD25− T-cells were isolated from a HIV-1 negative donor blood. Cells were incubated 24 h with 1 nM 
bryologs and 100 nM HDAC inhibitor. Cells were stained with fluorescent-conjugated antibodies (a) CD25-
APC and (b) CD69-FITC and analyzed by FACS (see Methods). Data indicate mean values and error bars 
indicate mean ± s.e.m. (n ≥ 3). ***p < 0.001, (ANOVA). (c) ELISA results for cytokine release from CD4+ 
CD25- T-cells following 24 h incubation with LRA combinations (see Methods). (d) Toxicity profile of LRA 
combinations. Resting CD4+ T-cells were incubated with compounds at indicated concentrations and MTT 
toxicity assay was performed as described in Methods.
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Cell lines.  JLAT 10.6 and JLAT 9.2 cells were obtained from the NIH AIDS Reagent Program, Division of 
AIDS, NIAID. The JLAT clones originally developed by Jordan and colleagues50. Briefly, lymphocytic cell line 
Jurkat was infected with HIV-R7/E−/GFP and were then sorted with differential FACS based on GFP expression. 
These cells demonstrate viral transcriptional silence at baseline. JLAT and Jurkat cells were maintained in RPMI-
1640 supplemented with heat inactivated fetal bovine serum; L-glutamine, 200 nM; penicillin/streptomycin, 100x 
solution; and sodium pyruvate (10%, 2%, 1%, and 0.5% by volume).

Cell line screen of isoform-targeted histone deacetylase inhibitor compounds.  JLAT10.6 cells 
were treated with HDAC inhibitor compounds for 24 h. The concentrations of the compounds are shown in the 
respective figure legends. After a dose response determination, we found 1 μM of vorinostat (SAHA) to be the 
most effective concentration to use in JLAT10.6 and primary cell models. JLAT10.6 cells were treated for 24 h 
and GFP positive cells were observed by FACS analysis using the Becton Dickinson (BD) FACS machine. Data 
was analysed with BD’s CellQuest Pro software. The cells typically diverged into two groups on the scatterplot 
based on forward scatter and side scatter light intensity. Healthier cells to the right of the plot were selected across 
treatments for analysis. Drug candidates were identified as positive if the amount of GFP expression induced was 
equal to or greater than 10% of the reactivation induced by TNF-α.

Cellular Toxicity Assays.  To test the toxicity produced by the positive drug candidates for the HDAC inhib-
itor screen, a 3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide (MTT) assay was used. An MTT 
assay is a colorimetric assay that can be used to assess cell viability. The assay relies on the measurement of the 
presence of NAD(P)H-dependent cellular oxidoreductase enzymes, which are present in cellular mitochondria. 
The presence of these enzymes and thus the presence of active mitochondria is a reliable indicator of cellular 
viability. These enzymes reduce the MTT dye to formazan, which has a purple colour, allowing the amount of 
these enzymes, and by extension the number of viable cells, to be quantified. The JLAT 10.6 Cells were exposed to 
the same experimental conditions described above, but were re-suspended in MTT dye (Sigma Aldrich) instead 
of paraformaldehyde. The MTT dye stains mitochondria. After 3–4 hours of incubation with the MTT dye, the 
cells were lysed using the solubilisation buffer. The absorbance of each sample was reported by a microplate 
reader (TECAN), using the Magellan software program at a wavelength of 570 nm with a reference wavelength 
of 750 nm.

The MTT assay was performed in the same manner to assess the toxicity of the synergistic LRA combinations 
of the bryologs with largazole at the concentrations indicated in the figure legends.

Western Blots.  Jurkat, HeLa or primary CD4+ T-cells were incubated with compounds for 8 hours washed 
in PBS and lysed with buffer containing 0.2% NP40 and protease inhibitor cocktail (Roche). Twenty micrograms 
of protein were loaded and separated on a 12.5% SDS-polyacrylamide gel and transferred to nitrocellulose. The 
membrane was probed overnight at 4 °C in 5% milk in PBS/Tween 20 (0.05%). After washing with PBS/Tween, 
the blot was probed with appropriate horseradish peroxidase-conjugated secondary antibody for 1 hour at room 
temperature and stained with Femto Supersignal. Tubulin or actin was used as loading control as indicated.

Primary cell latency model.  We used the Greene primary cell latency model, but substituted darunavir as 
the protease inhibitor52. Briefly, isolated CD4+ T cells (see primary cell isolation and culture) were infected with 
replication competent HIV-1 NL4–3 Luciferase virus (kind gift from Warner Greene) under spinoculation. Cells 
were then washed, incubated with 10 μM of the protease inhibitor darunavir (Selleckchem) for 48 h. Darunavir 
is a more potent protease inhibitor and does not affect the cell latency model. Cell was washed again and a mil-
lion cells incubated with various concentrations of compounds for 48 h in the presence of the integrase inhibitor 
raltegravir to prevent new integration events. Cells were then lysed and luciferase luminescence determined as a 
measure of viral reactivation from latency.

Chromatin Immunoprecipitation (ChIP) Assay.  JLAT10.6 cells were treated with DMSO or 1 µM of 
SDL148 for 6 h. ChIP was performed with a ChIP kit from Abcam (ab500) and the anti-acetylated histone H3 
antibody (Thermo Scientific). An anti–rabbit IgG (Cell Signaling Technology) was used as an isotype control. 
Total chromatin (input) and the immunoprecipitated chromatin were used as template, and the HIV-1 LTR was 
amplified by quantitative PCR using the primers indicated. Actin was used as internal control. We used the HIV-1 
LTR primers (f: 5-AGCCCTCAGATG CTACATATAAGCA-3, r: 5-TAG CCAGAGAGCTCCCAGGCTCAG A - 
3) and actin primers.

Cell line screen of protein kinase C modulator compounds and flow cytometry of synergistic 
combinations.  JLAT10.6 or JLAT 9.2 cells were treated for 18–24 hours and GFP positive cells were observed 
by FACS analysis (see cell line screen of isoform-targeted histone deacetylase inhibitor compounds Methods sec-
tion). The concentrations of the PKC modulator compounds are shown in the respective figure legends.

Primary cell isolation and culture.  Peripheral blood mononuclear cells were isolated from blood of HIV 
negative donors using density gradient centrifugation through a Ficoll-Hypaque gradient (GE Healthcare). The 
EasySep CD4+ T-cell Enrichment Kit (STEMCELL Technologies) was used to isolate CD4+ T-cells. Resting 
CD4+ T lymphocytes were further enriched by depletion of cells expressing CD25 by negative selection 
(STEMCELL Technologies). We verified the purity of resting CD4 + lymphocytes by flow cytometry and typi-
cally found it to be greater than 98%. Isolated cells were maintained in RPMI-1640 supplemented with 10% FBS.

Expression of activation markers in primary resting CD4+ T-cells.  CD4+ T-cells were acquired 
(see Primary cell isolation and culture Methods section) from HIV negative donor blood. Surface expression of 



www.nature.com/scientificreports/

1 0SCientifiC REPOrTS | 7: 7456  | DOI:10.1038/s41598-017-07814-4

CD25 and CD69 activation makers was analysed by FACS. These cells were cultured for 24 hours with the follow-
ing drug conditions in triplicate −12.5 µL anit-CD3/CD28 beads, 50 ng/5 µg per mL of PMA/Ionomycin, 1 nM 
bryologs and 100 nM of largazole. Each replicate contained one million CD4+ T-cells. Post 24-hour activation, 
fluorescently-conjugated antibodies targeting CD25, and CD69 were used to stain replicates. Antibodies were 
incubated with cells at 4 °C for 20 minutes then washed with PBS before running FACS analysis. The same BD 
FACS machine was used as mentioned above. Similar analysis was done based on fluorescence of the respective 
tethered fluorophore.

ELISA.  CD4 + CD25− T-cells (see primary cell isolation and culture Methods section) were incubated with 
various concentrations of compounds for 24 h. Cells were then spun down and supernatants were collected and 
stored at −20 °C. We performed ELISA per the enclosed protocol inside the Multi-Analyte ELISArray Kit (MEH-
004A, QIAGEN) to detect cytokine release from activated T-cells. The 96-well plate used in the ELISA was read at 
450 nm for absorbance and 570 nm for reference.

Chemicals.  Tumour necrosis factor alpha (TNF-α), bryostatin-1, vorinostat, phorbol 12-myristate 13-acetate 
(PMA), Ionomycin were obtained from Sigma. Dynabeads Human T-Activator CD3/CD28 (CD3/CD28) were 
purchased from ThermoFisher Scientific.

Fluorescently-conjugated antibodies for the flow cytometry, FITC-conjugated anti-human CD69 (clone FN50, 
Catalogue No. 11-0699-41) and APC-conjugated anit-human CD25 (clone BC96, Catalogue No. 17-0259-41), 
were obtained from eBiosciences. The isolation and synthesis of largazole has previously been described43, 61, 62.  
The HDAC inhibitors were designed with a computational ligand screening analysis based on comparative bind-
ing energy39. The organic synthesis for the largazole analogues42 and bryologs32, 33 is described previously.

Bliss Independence.  We use the Bliss independence model, one method to predict combined effects from 
multiple drug applications with the assumption that the drugs behave through independent mechanisms, to 
analyse the latency reversing agent combinations. Bliss independence is defined by fab,P = fa + fb − (fa fb)30, 57. The 
predicted fractional response (fab,P) is found per the Bliss independence model by taking the observed fractional 
response of drug A (fa), adding it to the observed fractional response of drug B (fb) and subtracting the fractional 
response that might arise from a simultaneous response of drug A and drug B (fab). (fab). The fractional difference 
(Δf) is then calculated by taking the difference between the observed fractional response (fab,O) and the predicted 
fractional response (fab,P). Positive results indicate synergistic effects, negative results indicate antagonistic effects, 
and equality indicates true independence.

Statistics.  The mean values of data were compared using either Student’s t-test for pairwise comparisons or a 
one-way analysis of variance (ANOVA) with a follow-up Turkey multiple comparisons test for multiple compar-
isons. The p-values < 0.05 were considered significant. Calculations were performed with GraphPad PRISM 7.00 
(GraphPad Software, Inc, La Jolla, CA).
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