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The entropic brain hypothesis holds that the key facts concerning psychedelics are partially explained in
terms of increased entropy of the brain’s functional connectivity. Ayahuasca is a psychedelic beverage
of Amazonian indigenous origin with legal status in Brazil in religious and scientific settings. In this
context, we use tools and concepts from the theory of complex networks to analyze resting state fMRI
data of the brains of human subjects under two distinct conditions: (i) under ordinary waking state and
(i) in an altered state of consciousness induced by ingestion of Ayahuasca. We report an increase in the
Shannon entropy of the degree distribution of the networks subsequent to Ayahuasca ingestion. We
also find increased local and decreased global network integration. Our results are broadly consistent
with the entropic brain hypothesis. Finally, we discuss our findings in the context of descriptions of
“mind-expansion” frequently seen in self-reports of users of psychedelic drugs.

Relatively little is known about how exactly psychedelics act on human functional brain networks. During the
last few years, new neuroimaging techniques, such as functional magnetic resonance imaging (fMRI)"2, have
allowed noninvasive investigation of global brain activity in a variety of conditions, e.g., under anaesthesia, sleep,
coma, and in altered states of consciousness induced by psychedelic drugs® . Recently, Carhart-Harris ef al.
proposed a hypothesis known as the entropic brain, which holds that the stylized facts concerning altered states
of consciousness induced by psychedelics can be partially explained in terms of higher entropy of the brain’s
functional connectivity'!. Although until recently the entropy of the brain had never been directly measured,
the entropic brain hypothesis is empirically supported by several recent studies. For example, Sarasso et al. have
reported complex spatiotemporal cortical activation pattern during anesthesia with ketamine, which can induce
vivid experiences (“ketamine dreams”)'2. Similarly, Petri et al. found that after administration of the psychedelic
psilocybin, the brain’s functional patterns undergo a dramatic change characterized by the appearance of many
transient low-stability structures'®. Perhaps the most convincing evidence supporting the hypothesis thus far
has come from the study undertaken by Tagliazucchi et al.'*, who reported a larger repertoire of brain dynam-
ical states during the psychedelic experience with psilocybin. They inferred an increase in the entropy of the
functional connectivity in some regions of the brain, by studying the temporal evolution (i.e., dynamics) of the
connectivity graphs. Similarly, Lebedev et al.’* and separately Schartner et al.'s have very recently reported evi-
dence of increases in specific measures of entropy, the former with LSD and the latter with LSD, psilocybin and
ketamine. Here we directly measure increases in entropy associated with the functional connectivity of the whole
brain under the influence of a psychedelic. Specifically, we analyze fMRI functional connectivity of human sub-

. jects before and after they ingest the psychoactive brew Ayahuasca and report an increase in the Shannon entropy.
This is the first time that the entropy of the functional networks of the human brain has been directly measured
in altered states of consciousness on a global scale, i.e. considering the entire brain.
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Ayahuasca is a beverage of Amazonian indigenous origin and has legal status in Brazil in religious and sci-
entific settings'”. It contains the powerful psychedelic N,N- dimethyltryptamine (DMT), together with harmala
alkaloids that are known to be monoamine oxidase inhibitors (MAOIs). The beverage is typically obtained by
decoction of two plants from the Amazonian flora: the bush Psychotria viridis, that contains DMT, and the liana
Banisteriopsis caapi, that contains MAOIs'®. DMT is usually rapidly metabolized by monoamine oxidase (MAO),
but the presence of MAOI allows DMT to cross the blood-brain barrier and to exert its effects!*~2*. Similar to
LSD, mescaline and psilocybin!®-?, Ayahuasca can cause profound changes of perception and cognition, with
users reporting increase of awareness, flexible thoughts, insights, disintegration of the self, and attentiveness'*?.
There is growing interest in Ayahuasca, partially due to recent findings showing that it may be effective in treating
mental disorders, such as depression®®?” and behavioral addiction®® %, Similar therapeutic potential has also been
pointed out for other psychedelics® 2303,

For analysis, we use tools and concepts from the field of complex networks, a brief history of which follows.
The application of graph theory to phase transitions and complex systems led to significant progress in under-
standing a variety of cooperative phenomena over a period of several decades. In the 1960s, the books by Harary,
especially Graph Theory and Theoretical Physics**, introduced readers to powerful mathematical techniques. The
chapter by Kastelyn, still considered to be a classic, showed that difficult combinatorial problems of exact enu-
meration could be attacked via graph theory, including the exact solution of the two-dimensional Ising model
(e.g., see Feynman®). In the 1980s, certain families of neural network models were shown to be equivalent to
Ising systems, e.g., the Hopfield network® is a content-addressable memory which is isomorphic to a generalized
Ising model*. Beginning in the 1990s, new approaches to networks, giving emphasis to concepts such as the
node degree distribution, clustering, assortativity, small-worldliness; and network efficiencies, led eventually to
what has become the new field of complex networks*®*. These new tools and concepts**-** have found successful
application in the study of diverse phenomena, such as air transportation networks®, terrorist networks*, gene
regulatory networks*, and functional brain networks*->°. We approach the human brain from this perspective
of complex networks®!>2,

Ten healthy volunteers were submitted to two distinct fMRI scanning sessions: (i) before and (ii) 40 minutes
after Ayahuasca intake, when the subjective effects become noticeable (the volunteers drank 2.2 mL/kg of body
weight and the Ayahuasca contained 0.8 mg/mL of DMT and 0.21 mg/mL of harmine, see Methods section). In
both cases, participants were instructed to close their eyes and remain awake and at rest, without performing any
task. See Methods for details concerning data acquisition and preprocessing.

Data analysis consists of two main steps. In the first step, we use fMRI data to generate complex networks to
represent the actual functional brain connectivity patterns. In the second step, we use the networks generated
in step 1 as inputs and calculate network characteristics as output, using techniques from the theory of complex
networks. The Methods section describes both steps in detail. More information about most of the methods used
here can be found in refs 4, 53, 54.

Figure 1 shows the networks generated from one subject before and after Ayahuasca intake, for one specific
choice of mean node degree. The spheres represent nodes, with sphere size proportional to the degree of the node.
The lower plots show histograms of node degrees.

The main result that we report here is an increase in the Shannon entropy of the degree distribution for the
functional brain networks subsequent to Ayahuasca ingestion. We also find that the geodesic distance increases
during the effects of Ayahuasca, i.e. qualitatively the network becomes “larger”. More generally, we also find that
these functional brain networks become less connected globally but more connected locally.

The key technical innovation is the measurement of the Shannon entropy of the degree distribution of the
complex networks that represent the functional connectivity of the human brain. Moreover, the Shannon entropy
is also very closely related to the Boltzmann-Gibbs entropy used in statistical mechanics. Hence, our approach
to studying the brain experimentally is grounded in two strong theoretical traditions: graph theory and complex
networks on the one hand, and information theory and statistical physics on the other. Our study also represents
a significant advance for the following additional reasons: (i) our results unveil how Ayahuasca (and likely most
other tryptamine psychedelics) alter brain function, both locally and globally; (ii) it is the first time this specific
approach has been applied to characterize functional brain networks in altered states of consciousness; (iii) our
study of Ayahuasca covers all brain regions; and (vi) the method we have developed can be immediately applied
to study a variety of other phenomena (e.g., the effects of medication for mental health disorders).

Results

Increase of the Shannon entropy of the degree distributions. We find evidence of significant
changes in the functional brain networks of subjects before and after ingestion of Ayahuasca. Figure 2 shows 2nd
as well as 4th central moments of the degree distributions for each subject. The individual values are calculated
separately for each network. We find an increase of variance for all subjects after Ayahuasca intake and a decrease
of kurtosis for almost all of them (6 subjects). These findings indicate that the degree distributions become less
peaked and wider. This behavior is suggestive of an increase of the Shannon entropy for the degree distributions
after Ayahuasca ingestion.

Figure 3 shows the average Shannon entropy of the degree distributions as a function of mean degree, consid-
ering networks from all subjects, before and after Ayahuasca intake. A fair comparison of the “before” and “after”
networks is possible by considering the entropy of networks of identical mean degree. We find an increase in the
entropy of the degree distributions after Ayahuasca ingestion. In order to better evaluate the consistency of this
result, we also calculate the average Shannon entropy subject-by-subject, before and after Ayahuasca (Fig. 4). We
find significant increased entropy for all individual subjects.

To ensure that the observed changes in entropy are not due to augmented motion of subjects’ heads during
the effects of Ayahuasca, we also study the correlation between changes in individual Frame Displacement (FD)*>*
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Figure 1. Illustrative example of functional brain networks. (a) 3 views of a complex network generated from
fMRI data from one subject, before (left) and after (right) Ayahuasca ingestion (mean node degree (k) = 30).
The spheres represent nodes and sphere size is proportional to the node degree. (b) histograms of node degrees,
corresponding to the networks shown in (a). After Ayahuasca intake, the distribution is wider, indicating a
higher entropy. In (a) we have used the BrainNet Viewer (http://www.nitrc.org/projects/bnv) for visualization.

against individual changes in entropy. We find a Pearson correlation coeflicient of 0.005 (hence, p-value ~ 1),
between entropy increases and motion (see Supplementary Figure S1). Hence, we discard the possibility that the
observed entropy changes are due to augmented motion.

Iso-entropic randomized networks. The degree distribution does not completely define a network, how-
ever it can have great influence over other network properties. One can quantify this influence by comparing any
given network G to other networks chosen randomly from the ensemble of networks that have exactly the same
degree distribution. We refer to such networks as “randomized networks”. By definition, all such randomized
networks have the same entropy as the original network G, i.e. they are iso-entropic to G.

An efficient way of generating such randomized networks is the Maslov algorithm® (see Methods). Whereas
entropy is conserved by the Maslov algorithm, the clustering coeflicient, geodesic distances and efficiencies are
not. By comparing these non-conserved quantities before and after randomization, we can distinguish effects that
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Figure 2. Variance and kurtosis of the degree distribution. Mean £ 1 standard deviation calculated over all
16 networks of the degree variance (a) and kurtosis (b), shown for each subject (blue V) and after (green

A) Ayahuasca ingestion. The individual values for the degree variance and kurtosis are calculated separately
for each network. We find higher variance and (mostly) lower kurtosis after Ayahuasca, hence the node
distributions change shape and become less “peaked”. Such behavior is again consistent with (if not suggestive
of) a higher Shannon entropy after Ayahuasca.

are due solely to changes in the degree distribution from those that are sensitive to how links are more specifically
arranged.

We generate a set of 30 iso-entropic randomized networks for each original network, for all subjects both
before and after Ayahuasca ingestion. Comparison of the original networks with the randomized networks yields
important information concerning to what degree the changes in quantities such as geodesic distance, clustering
coeflicients, and global and local efficiencies can be accounted for by the changes in the degree distributions (see
results described below).

Decrease of global integration. Figure 5 shows an increase of mean geodesic distance and a decrease of
global efficiency after Ayahuasca ingestion. To determine how much of the change in geodesic distance is due
to the change in the degree distribution, we also calculated the geodesic distance and global efficiency for the
iso-entropic randomized networks. Note how the values for those networks are quite different compared to the
non-randomized networks. We conclude that the change in degree distribution cannot explain the entire change
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Figure 3. Entropy grows after Ayahuasca ingestion. Mean =+ 1 standard deviation of the Shannon entropy of the
distribution of node degrees, calculated over all 7 subjects, as a function of mean degree k, before (blue V) and
after (green A) Ayahuasca intake. The bottom row lists p-values for Student’s paired ¢-test, with values p < 0.005
indicated by asterisks (*). (Confidence intervals are shown in Supplementary Figure S5). We thus see evidence
against the null hypothesis of no change in entropy. Indeed, we find a significant increase in the entropy of the
degree distributions after Ayahuasca ingestion. This entropy increase is the main result that we report.

in geodesic distance. The inset in the middle panels shows the change in the normalized mean geodesic distance
and global efficiency, which we define as the ratio D/D,, 4 and similarly for the global efficiency (see refs 4, 53).
We see, indeed, that these ratios are not close to zero. If the change in degree distribution could account for all
the change in geodesic distance and efficiency, then the change in these ratios would be close to zero. Significant
changes are also observed at the individual level and are again consistent for all subjects (Fig. 5(e) and (f)).

Increase of local integration.  Figure 6 shows an increase of clustering coefficients and local efficiency after
Ayahuasca ingestion. In contrast to the behavior of the metrics discussed above, almost identical changes are seen
for iso-entropic networks. This result indicates that the variation in degree distribution can account for most of
the change in clustering and local efficiency. The insets in the middle panel show the change in the normalized
clustering and local efficiency, which we define as the ratio C/C,,,4 and similarly for the local efficiency. We see,
indeed, that these ratios are close to zero.

Subjective evaluation. The subjective states of the subjects were evaluated using two psychometric scales:
the Clinician Administered Dissociative States Scale (CADSS)*” and the Brief Psychiatric Rating Scale (BPRS).
We report a significant correlation (r=0.91; p = 0.004) between individual CADSS scores variation and the
entropy before Ayahuasca intake (see Supplementary Fig. S2), however one must proceed with caution when
interpreting these findigns because of the small number of subjects. The correlations between CADSS score varia-
tion and the variation in geodesic distance and global efficiency reach r=0.71 and r=0.67, respectively. Although
these correlations fall short of our significance criterion (r > 0.76, p < 0.05), yet these r values are relatively large
when compared with those for the clustering coeficient (r=0.15) and local efficiency (r=0.09).

Discussion

Our results reveal that the entropy increases after Ayahuasca ingestion. The following also increase: geodesic
distance, clustering coefficient and local efficiency. However, the global efficiency decreases. Overall, we find an
increase of local integration and a decrease of global integration in the functional brain networks.

We interpret these findings in the context of some well understood prototypical classes of networks. Regular
lattices have fixed coordination number, hence all nodes have the same degree and the Shannon entropy of the
degree distribution is thus zero. In contrast, the entropy is high in networks with broad distributions of degree.
The observed increase in entropy after Ayahuasca ingestion indicates that the degree distribution becomes
broader. In the context of the Watts-Strogatz model®, clustering and geodesic distance both decrease when highly
regular networks are transformed into small-world networks by randomly re-assigning the links. Whereas clus-
tering and geodesic distances decrease with increasing randomness in such models, we find the opposite behavior
for Ayahuasca, i.e., randomness as measured by the Shannon entropy of the node degree distribution increases
in parallel with clustering and geodesic distances. Hence, our findings cannot be reduced to simple explanations
of greater or lesser randomness. Locally, there is an increase in integration (as measured by network efficiency),
but globally there is a decrease in integration. Indeed the increase of geodesic distance and decrease of global
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Figure 4. Entropy growth per subject. (a) Boxplot of the entropy distribution and before (B) and after (A)
Ayahuasca ingestion and (b) boxplot of entropy increase, for all 7 subjects. Note the significant increase in
entropy after Ayahuasca ingestion. There are 16 values of entropy per subject, as discussed in the text. The bars
show minimum and maximum values and the box shows the 2nd and 3th quartiles, with the median shown
dividing the box (in red). The asterisks (*) in the bottom rows in both plots indicate p-values p < 0.005 for
Student’s paired ¢-test in (a) and t-test for zero mean in (b). Subject-by-subject, we thus find strong evidence
against the null hypothesis of no entropy change.

efficiency after Ayahuasca intake signify that the functional brain networks are less globally integrated. One pos-
sible interpretation of these findings is that the increase of local robustness and the decrease of global integration
reflect a variation in modular structure of the network. Recent studies have reported the presence of modularity
in functional brain networks on several scales®” ¢!, Modular networks are characterized by the existence of
reasonably well-defined subnetworks in which internal connections are denser than connections between dis-
tinct subnetworks®’. However, traditional algorithms®-** were not able to detect variation on modular structure
features between our sets of networks.

Our results are broadly consistent with the entropic brain hypothesis, hence we discuss the latter in the con-
text of our findings. The hypothesis maintains that the mental state induced by psychedelics, which the original
authors term “primary-state,” presents relatively elevated entropy in some features of brain organization, com-
pared to the ordinary waking state (termed “secondary”)!!. Although it may be somewhat counter-intuitive that
the psychedelic state is considered primary while ordinary consciousness is secondary, their hypothesis is inher-
ently plausible considering that a wider spectrum of experiences is possible with psychedelics than in ordinary
consciousness. In this sense, ordinary consciousness can be thought of as a restriction or constrained special
case of a more primary consciousness. The hypothesized lower entropy of ordinary consciousness relative to
primary consciousness is attributed to this reduction of freedom. In fact, the idea that ordinary consciousness
is not primary was previously put forth by Alan Watts to describe what later became widely known as mindful-
ness®. (We emphasize that the terms “primary” and “secondary” are used not as value judgements, but rather to
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Figure 5. Global efficiency and integration decrease. Geodesic distance D (left column) and global efficiency
E, (right column). Plots (a) and (b) show means + 1 standard deviations, calculated from the complex networks
of all 7 subjects, as well as from their corresponding iso-entropic randomized networks, for 16 different mean
degrees. Plots (c) and (d) show the change in D and E , after Ayahuasca ingestion. The inset shows normalized
values (see text). Boxplots (e) and (f) show the same information, subject-by-subject. As in previous figures, the
rows below the plots show p-values for the t-test, with asterisks (*) indicating p < 0.005.

denote temporal order, i.e. the order of appearance, both evolutionarily as well as in the maturation of a healthy

individual).

More specifically, we believe that the observed increase in entropy may be related to the temporary removal of
the some of the restrictions that are necessary for sustaining ordinary (adult trained) consciousness. With these
restrictions temporarily gone, the entropy increases and the mind may become effectively more “free’, attaining
a more flexible state in which self-referential narratives and thoughts about the past or the future are no longer
mentally identified with the reality that they represent. We emphasize, however, that “correlation is not causation”
and that the entropy increases may occurr in parallel with the loss of constraints, rather than bear a direct causal
relation to them. These ideas are further explored in the Supplementary Discussion (see also refs. [80-83]).
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Figure 6. Local efficiency and integration increase. Clustering coeflicient C (right column) and local efficiency
E  (left column). Plots (a) and (b) show means + 1 standard deviations, calculated from the complex networks
of all 7 subjects, as well as from their corresponding iso-entropic randomized networks, for 16 different mean
degrees. Plots (c) and (d) show the change in C and E, after Ayahuasca ingestion. The inset shows normalized
values (see text). Boxplots (e) and (f) show the same information, subject-by-subject. As before, the rows below
the plots show p-values for the ¢-test, with asterisks (*) indicating p < 0.005.

Relatively few studies have investigated entropy in brain functional networks, hence additional comments are
in order. Tagliazucchi et al.'* showed that psilocybin (psychedelic present in some species of mushrooms) may
be responsible for increases of a different entropy measure in functional connectivity of the 4 regions of Default
Mode Network (DMN), a relevant functional network related to resting state. Recently, Yao et al.% correlated
entropy increases in the human brain with age. This study also supports the view that entropy is correlated to
brain function (and perhaps also its development). Moreover, in agreement with our results, a study by Schroter
et al.* similarly suggests that functional network topology may have a central role in consciousness quality. They
investigated the effects on the human brain of the anesthetic propofol, which can induce loss of consciousness®”.
They reported a decrease of the clustering coefficient, which is strongly influenced by degree distribution (how-
ever, geodesic distance remained unchanged). Very recently, Lebedev et al.’® and separately Schartner et al.!® have
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reported evidence of increases in measures of entropy, the former with LSD and the latter with LSD, psilocybin
and ketamine.

We briefly comment on the limitations of our method: (i) the reduced number of subjects and the fact that all
of them were experienced with Ayahuasca do not allow population inferences and do not elucidate whether the
effects observed here were only due the acute administration or if previous experience also played a significant
role; (ii) expectancy and suggestion were not controlled, as placebo was not used; (iii) networks were built upon a
number of critical choices, such as the atlas used to partition the brain, the method used to build the correlation
matrix, and the cutoff thresholds for generating the adjacency matrices from correlation matrices®® %, which may
affect the final results; (iv) the chosen range of correlation values automatically limits the networks’ behavior to
a small-world network. Despite this limitation, it is important to highlight that several studies have consistently
demonstrated that brain networks exhibit a small-world behavior”.

Finally, we speculate about whether or not our finding of larger mean geodesic distances may have any relation
to self-reports of “mind-expansion” by users of psychedelics (see also ref. 16). Could there be a direct relation
between entropy increases and the higher creativity reported by users of psychedelics? Such questions merit fur-
ther investigation. In conclusion, our results are broadly consistent with the hypothesis that psychedelics increase
the entropy in brain functions. By calculating the Shannon entropy of the degree distribution of complex net-
works generated from fMRI data, we have taken a new low-computational-cost approach to investigating brain
function under the influence of psychedelics.

Methods

Data acquisition and preprocessing. The fMRI images were obtained in a 1.5 T scanner (Siemens,
Magneton Vision), using an EPI-BOLD like sequence comprising 150 volumes, with the following parameters:
TR =1700ms; TE =66 ms; FOV = 220 mm; matrix 64 x 64; voxel dimensions of 1.72mm x 1.72mm x 1.72 mm.
It also was acquired whole brain high resolution T1-weighted images (156 contiguous sagittal slices) using a
multiplanar reconstructed gradient-echo sequence, with the following parameters: TR =9.7 ms; TE =44 ms; flip
angle 12° matrix 256 x 256; FOV =256 mm, voxel size =1 mm x 1 mm x 1 mm. The images were obtained from
10 healthy right-handed adult volunteers (mean age 31.3, from 24 to 47 years), all who were experienced users
of Ayahuasca with at least 5 years use (twice a month) and at least 8 years of formal education. The experimental
procedure was approved by the Ethics and Research Committee of the University of Sdo Paulo at Ribeirdo Preto
(process number 14672/2006). Written informed consent was obtained from all volunteers, who belonged to the
Santo Daime religious organization. All experimental procedures were performed in accordance with the relevant
guidelines and regulations.

Volunteers were not under medication for at least 3 months prior to the scanning session and were abstinent
from caffeine, nicotine and alcohol prior to the acquisition. They had no history of neurological or psychiatric dis-
orders, as assessed by DSM-IV structured interview’". Subjects ingested 120-200 mL (2.2 mL/kg of body weight)
of Ayahuasca known to contain 0.8 mg/mL of DMT and 0.21 mg/mL of harmine. Harmaline was not detected
via the chromatography analysis, at the threshold of 0.02 mg/mL’. Preprocessing steps were conducted in FSL
(http://www.ndcn.ox.ac.uk/divisions/fmrib) and include: slice-timing correction, head motion correction and
spatial smoothing (Gaussian kernel, FWHM = 5mm). One volunteer was excluded from analysis due to exces-
sive head movement (more than 3 mm in some direction), leaving 9 participants (5 women) to our analysis. All
images were spatially normalized to the Montreal Neurologic Institute (MNI152)7? standard space, using a linear
transformation. We also evaluated 9 regressors of non-interest using a General Linear Model (GLM): 6 regressors
to movement correction, 1 to white matter signal, 1 to cerebrospinal fluid and 1 to global signal. Each volunteer
was submitted to fMRI scanning under two distinct conditions: (i) before and (ii) 40 minutes subsequent to
Ayahuasca intake. In both cases, volunteers were in an awake resting state: they were requested to stay lying with
eyes closed, without performing any task.

Complex network metrics. For a detailed overview of complex network theory, we refer readers to refs
38, 41, 49. Each element of a network is known as a node (or vertex), and the relation between a pair of nodes is
represented by a connecting link (or edge). Links can have weights associated with them and can be directed or
undirected (or, equivalently bi-directional). Nodes connected by a single link are known as nearest neighbors®.
Non-weighted undirected networks, i.e. those with symmetric and unweighted links are isomorphic to a binary
symmetric matrix known as the adjacency matrix. When a pair of nodes i and j are neighbors, the adjacency
matrix element is a;;= 1 and a;;= 0 otherwise’*”*. Standard quantities of interest that help to characterize the
topology and complexity of networks*”>* include node degree, geodesic distance, clustering coefficient, and local
and global network efficiencies. We are interested here solely in non-weighted undirected networks.
Definitions:

(i) The degree k; of a node j is the number of links that it has with other nodes. The degree distribution of a
network is the normalized histogram of degrees over all nodes.

(ii) A geodesic path between two nodes is the shortest path from one to the other, assuming such a path exists.
The geodesic distance d;; between nodes i and j is the number of links in the geodesic path. If there is no
such path, the geodesic distance is defined as infinite. Given a network G with N nodes, the mean geodesic

distance is given by
1
DG) = ———> d. ..
@) = TN = 1),.2 b 0

(iii) The clustering coeflicient quantifies the density of triads of linked nodes, e.g., the fraction of the neighbors
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of a node that are themselves neighbors. The clustering coefficient is defined by

1 2
C(G) = — —a; 4, 50y, ;>
M%h(h —q) @)

where k; is the degree of node i and 4 is the adjacency matrix element.

(iv) The efficiency, typically defined as the reciprocal of the harmonic mean of geodesic distances, quantifies the
influence of the topology on flux of information through the network. Efficiency can be global as well as
local. We define global efficiency as

1 1
E(G) = —— Y 1,
¢ N(N - l)izjeGdi,j 3)
and local efficiency as
1 1 1
E(G) = 23| ———— T |,
Nicg| miln; — l)jzhegidh,j (4)

where g; are the subnetworks formed by neighbors of node i and #; is the number of nodes of this subnetwork”.

In addition to these standard network properties, we also use the Shannon entropy’® to quantify disorder or
uncertainty. Specifically, we calculate the Shannon entropy functional of the distribution of node degrees. Let P
be the normalized probability distribution for node degree k, i.e. >, P(k) = 1. We define the Shannon entropy S[P]
of the degree distribution P(k) for a network with N nodes by:

S[P] = —) P(k)logP(k).
2 Pblog (5)

Often the logarithm of base 2 is used”” (e.g., in computer science), but we use the natural logarithm instead, so the
entropy values shown are in natural information units rather than in bits.

Maslov algorithm for generating randomized networks.  Given G, one can select two non-overlapping
pairs (i, j) and (m, n) of linked nodes, then unlink them, and cross-link the pairs according to (i, m) and (j, n).
If this process is repeated many times, the links become randomized, but the degree of each node remains the
same®. Hence the entropy of the degree distribution is also a conserved quantity.

Calculation of correlation matrix for brain regions. We segmented the brain images into 110 brain
regions according to the Harvard-Oxford cortical and subcortical structural atlas (threshold of >25%, using
FMRIB Software Library, www.fmrib.ox.ac.uk/fsl). Six regions had to be excluded from further analysis, as they
were not sampled for all subjects, due to technical limitations during image acquisition. For each of the 104
regions, an averaged fMRI time series was computed from all voxels (a voxel is a 3D image block, analogous to the
2D pixel). within that region using Marsbar (SPM toolbox). To reduce confounders, we applied a band-pass filter
(=0.03-0.07 Hz) using the maximum overlap wavelet transform (MODWT) with a Daubechies wavelet to divide
the signal into 4 scales of different frequency bands. In keeping with the literature® >, that point that resting state
typically leads to low frequency (=0.01 to 0.1 Hz)”®, we choose scale 3. We then calculated the Pearson correlation
between these wavelet coefficients from all possible pairs, thus obtaining a 104 x 104 correlation matrix to repre-
sent each sample. We considered only correlation matrix elements that resulted in p < 0.05 in the hypothesis test.
That is, we zero correlation matrix elements with non-reliable values (p >0.05).

Construction of complex networks from fMRI images. A correlation matrix uniquely may define a
weighted network. Nonetheless, we are interested in generating non-weighted networks. Hence, we need a func-
tion that maps correlation matrices to adjacency matrices. We use a thresholding function for this purpose. Given
a correlation matrix, we obtain the adjacency matrix by applying a threshold to the absolute value of the elements
of the correlation matrix. Specifically, if the absolute value of the correlation matrix element |c; | is larger than a
defined threshold 7, then a link is assumed and the adjacency matrix element is taken to be 1 (i.e., a;;= 1), while
otherwise there is no link (a;;=0). In order to obtain better statistics, we choose not a single value of 7y but a range
of values instead. Then we analyze the behavior of the network properties over this range. Using this approach, we
create a number of networks for each fMRI sample, all with the same number of nodes (104 nodes). For each of
these networks, we choose 7 such that the density of links is the same before and after Ayahuasca intake.

We choose a range for the mean network degree to ensure the networks were fully connected but also rela-
tively sparse. For this purpose, we adopt the following criteria: (i) the lowest correlation threshold (corresponding
to maximum mean degree) must ensure that the networks have lower global efficiency and greater local effi-
ciency than its randomized version. These criteria also ensure small-world behavior of the networks” (according
to the definition of Watts and Strogatz®). (ii) the upper correlation threshold (minimum mean degree) must
ensure fully connected graphs and also guarantee that the networks obey the sparsity condition (k) > 2InN, where
N=104 is the number of nodes. Since the quantity 2InN never exceeds 10, our maximum threshold condition
(minimum mean degree) was determined by the requirement for obtaining fully connected graphs. (A properly
defined large N limit of this condition would be equivalent to the percolation threshold).

We choose common upper and lower thresholds for all correlation matrices (see Supplementary Fig. S3 for
more details). These criteria are identical to those adopted by refs 4, 54. In order to obtain the same threshold
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range for all subjects, it was necessary to exclude two of them from the analysis, since there is no threshold range
common between them and the other subjects. Data from a third subject was also excluded due to excessive head
movement. Following the criteria described above, the threshold range is set to 0.25 <1 <0.43. We generate
networks with mean degree in the range 24 < (k) < 39. We have shown in Figs 3, 5 and 6 network properties as
a function of mean degree in increments of A(k) =1, for 16 different values of mean degree. We choose mean
degree as the independent parameter instead of the correlation threshold because, unlike the latter, the mean
degree is a network property. Despite the mean degree being a monotonic function of correlation threshold for
all subjects, there is no a priori reason to expect universal behavior of network properties such as the entropy and
geodesic distance (before vs. after Ayahuasca) as a function of the correlation threshold since the latter is not a
network property (see Supplementary Fig. S3).

In summary, we have 7 human subjects suitable for both conditions (before and after ingestion). The result-
ing sets of networks allow 16 different comparisons (i.e. of differing mean degrees) for each subject before and
after Ayahuasca ingestion. We calculate the topological measurements (using the Brain Connectivity Toolbox for
Matlab®).

Statistical testing. Comparisons between the two conditions (i.e., before and after Ayahuasca) are obtained
from paired-sample Student’s t-tests. The p-values shown in Figs 3, 4, 5 and 6 are as follows: values p < 0.05 in bold
and p < 0.005 indicated by asterisks (*). The implicitly assumed null hypothesis is that the difference of the paired
values are normally distributed with zero mean.
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