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Abstract: Cross-population covariance of brain morphometric quantities provides a measure of interareal
connectivity, as it is believed to be determined by the coordinated neurodevelopment of connected brain
regions. Although useful, structural covariance analysis predominantly employed bulky morphological
measures with mixed compartments, whereas studies of the structural covariance of any specific subdivi-
sions such as myelin are rare. Characterizing myelination covariance is of interest, as it will reveal connec-
tivity patterns determined by coordinated development of myeloarchitecture between brain regions.
Using myelin content MRI maps from the Human Connectome Project, here we showed that the cortical
myelination covariance was highly reproducible, and exhibited a brain organization similar to that previ-
ously revealed by other connectivity measures. Additionally, the myelination covariance network shared
common topological features of human brain networks such as small-worldness. Furthermore, we found
that the correlation between myelination covariance and resting-state functional connectivity (RSFC) was
uniform within each resting-state network (RSN), but could considerably vary across RSNs. Interestingly,
this myelination covariance–RSFC correlation was appreciably stronger in sensory and motor networks
than cognitive and polymodal association networks, possibly due to their different circuitry structures.
This study has established a new brain connectivity measure specifically related to axons, and this mea-
sure can be valuable to investigating coordinated myeloarchitecture development. Hum Brain Mapp
38:4730–4743, 2017. VC 2017 Wiley Periodicals, Inc.
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INTRODUCTION

Cross-population covariance of brain morphometric mea-
sures, such as gray matter density or cortical thickness, has
been frequently utilized to study brain connectivity [Alexan-
der-Bloch et al., 2013a; Lerch et al., 2006; Mechelli et al.,
2005], based on the rationale that synchronized morphologi-
cal changes measured by structural covariance is deter-
mined by coordinated neurodevelopment of connected
brain regions [Alexander-Bloch et al., 2013b]. Indeed, the
structural covariance analysis has revealed multiple net-
work architectures in both adult [Evans, 2013; Guo et al.,
2015; He et al., 2007] and developing brains [Alexander-
Bloch et al., 2013b; Zielinski et al., 2010].

Previous structural covariance analysis predominantly
used bulky morphological measures without differentiat-
ing separate compartments, whereas our knowledge of the
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structural covariance of a specific cortical component such
as myelin content remains rather limited [Accolla et al.,
2014; Carmeli et al., 2014; Hunt et al., 2016]. Bridging this
knowledge gap is of great interest, as characterizing myeli-
nation covariance will reveal connectivity patterns deter-
mined by coordinated development of myeloarchitecture
between brain regions.

In mammals, myelin around axons plays a critical role in
the central and peripheral nervous systems, as it is essential
for efficient propagation of action potentials [Vanderah
et al., 2016]. Myelin density is highly variable across the cor-
tex as revealed by meta-analysis of postmortem histology
data [Nieuwenhuys and Broere, 2016]. In addition to spatial
variability of myelin density within a given subject, variabil-
ity of myelination across subjects has been reported [Van
Essen and Glasser, 2014]. Therefore, analysis of cross-subject
myelination covariance can provide a new method to mea-
sure interareal connectivity specifically pertinent to axonal
properties. In addition, this connectivity measure allows
brain networks to be constructed, and the organizational
architecture of such networks can be studied accordingly.
Moreover, it is of interest to investigate how cross-subject
myelination covariance between brain regions relates to
their functional connectivity measured by techniques such
as resting-state functional magnetic resonance imaging (rs-
fMRI), as such effort will shed light onto the structur-
e–function relationship in the human brain connectivity.

Recent progress of in vivo MRI has made it possible to
noninvasively map the myeloarchitecture of the human
brain at high spatial resolutions. Specifically, quantitative T1
images were found to reflect myelin content as measured by
histology [Bock et al., 2009]. Quantitative T2* maps were
also correlated with the distribution of cortical myelin in the
human brain [Cohen-Adad, 2012, 2014]. Enhanced myelin
contrast was further achieved using the map of T1w/T2w
ratio, in which uncorrelated noise in T1w and T2w images
can be cancelled [Glasser and Van Essen, 2011]. This (T1w/
T2w ratio) myelin mapping method has been widely used
in neuroimaging studies, which has revealed a critical role
of myeloarchitectonics in brain function [Abdollahi et al.,
2014; Grydeland et al., 2013].

In this study, we systematically characterized cross-
individual myelination covariance of the human cerebral cortex
using myelin maps of 881 subjects from the Human Connec-
tome Project (HCP), WU-Minn Consortium. We identified
large-scale myelination covariance patterns using independent
component analysis (ICA). The whole-brain myelination covari-
ance network was further constructed, and its topological orga-
nization was investigated using graph theory. Finally, the
relationship between myelination covariance and resting-state
functional connectivity (RSFC) was quantitatively evaluated.

MATERIALS AND METHODS

Dataset

MRI data used in this study were obtained from the
“900 Subjects Data Release” of the Human Connectome

Project (HCP, https://www.humanconnectome.org/) [Van
Essen et al., 2013]. T1w/T2w ratio myelin maps were gen-
erated using HCP preprocessed structural MRI data of 881
healthy subjects (387 males and 494 females; age 22–37)
[Glasser et al., 2016; Glasser and Van Essen, 2011]. rsfMRI
data used were group-averaged grayordinate-wise RSFC
matrix, obtained from the HCP “Extensively Processed
fMRI Data” of 820 healthy subjects, which is a subgroup
of aforementioned 881 subjects (367 males and 453
females; age 22–37 [Smith et al., 2013a; Smith, et al., 2014].

All data were acquired on a 3 T Siemens Skyra MRI
scanner. T1w structural images were acquired using the
3D magnetization-prepared rapid acquisition gradient
echo (3D-MPRAGE) sequence with the following parame-
ters: repetition time (TR) 5 2400 ms, echo time (TE) 5 2.14
ms, flip angle 5 88, field of view (FOV) 5 224 3 224 mm2,
voxel size 5 0.7 3 0.7 3 0.7 mm3 [Glasser et al., 2013].
T2w structural images were acquired using the 3D sam-
pling perfection with application-optimized contrast using
different flip-angle evolutions (3D-SPACE) sequence with
the following parameters: TR 5 3200 ms, TE 5 565 ms,
FOV 5 224 3 224 mm2, voxel size 5 0.7 3 0.7 3 0.7 mm3

[Glasser et al., 2013]. rsfMRI images were acquired using a
multi-band echo-planar imaging (EPI) sequence with the
following parameters: TR 5 720 ms, TE 5 33.1 ms, flip
angle 5 528, FOV 5 208 3 180 mm2, matrix size 5 104 3 90,
voxel size 5 2 3 2 3 2 mm3, slice number 5 72, slice
thickness 5 2 mm, multiband factor 5 8 [Feinberg et al.,
2010; Glasser et al., 2013; Moeller et al., 2010; Setsompop
et al., 2012]. More details of the HCP data acquisition pro-
tocols can be found elsewhere [Glasser et al., 2013]. The
HCP project was approved by the Institutional Review
Board (IRB) of Washington University, and informed con-
sent was obtained from each subject. All reported analyses
in this study were also approved by the IRB of the Penn-
sylvania State University.

Image Preprocessing

HCP structural MRI data preprocessing was carried out
using HCP minimal preprocessing pipelines including the
PreFreeSurfer, FreeSurfer, and PostFreeSurfer pipelines.
Details of these pipelines can be found in Glasser et al.
[2013] and Fischl [2012]. Registration of individual brains
to the 2-mm-resolution standard space of CIFTI grayordi-
nates was performed by the Multimodal Surface Matching
algorithm based on areal features (MSM-All) of cortical
folding, myelin, and RSFC maps [Glasser et al., 2016; Rob-
inson et al., 2014; Smith et al., 2013b]. This method was
found to substantially improve the cross-subject registra-
tion quality, which consequently rendered remarkably
sharper group-average results [Glasser, et al., 2016; Robin-
son et al., 2014; Smith et al., 2013b]. Measurement of mye-
lin content was achieved by taking the ratio of T1w over
T2w images on a voxel-by-voxel basis [Glasser et al., 2013,
2014; Glasser and Van Essen, 2011].
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HCP rsMRI data preprocessing was conducted using fMRI-
Volume and fMRISurface pipelines [Glasser et al., 2013],
ICA 1 FIX denoising [Griffanti et al., 2014; Salimi-Khorshidi
et al., 2014], MELODIC’s Incremental Group Principal Com-
ponent Analysis (MIGP PCA) [Smith et al., 2014], and Wish-
art roll-off correction [Glasser et al., 2016]. The fMRIVolume
pipeline performed gradient-nonlinearity-induced geometric
distortion correction, head motion correction, cross-modal
registration to T1w images, normalization to the MNI space,
and grand mean intensity normalization [Glasser et al., 2013].
The fMRISurface pipeline entered fMRIVolume processed
data into the standard CIFTI grayordinate space and surface
smoothed the data with an FWHM of 2 mm [Glasser et al.,
2013]. The MSM-All algorithm was used to register individ-
ual brains into the standard space. Artifacts caused by subject
motion, cardiac pulsation, and the scanner were further
cleaned by the ICA 1 FIX pipeline [Griffanti et al., 2014;
Salimi-Khorshidi et al., 2014]. Demeaned and variance nor-
malized preprocessed time series were concatenated tempo-
rally for group analyses, and the MELODIC’s Incremental
Group Principal Component Analysis (MIGP PCA) algorithm
was applied to the concatenated data for dimensionality
reduction [Smith et al., 2014]. Wishart roll-off correction was
performed on MIGP PCA series for removing ripple artifact
previously found in the group-average results [Glasser et al.,
2016]. Group-averaged grayordinate-wise RSFC was com-
puted on these PCA series using Pearson cross correlation.
More details about computing this group-averaged dense
RSFC can be found in Glasser et al. [2016]. All image-
preprocessing procedures mentioned above were carried out
by the HCP and these preprocessed data are publicly avail-
able in ConnectomeDB (https://db.humanconnectome.org/).

Extraction of Myelination Covariance Patterns

Using ICA

Large-scale myelination covariance patterns in the cortex
were extracted using ICA. Each subject’s myelin map was
first normalized (i.e., zero mean and unit variance) [Shafee
et al., 2015]. Normalized myelin maps of all 881 subjects
were concatenated into a 59412 3 881 matrix. Each element
of this matrix contained the value of myelin content (i.e.,
T1w/T2w ratios) of a grayordinate (59412 cortical grayordi-
nates in total) for a subject (881 subjects in total). A single-
session ICA was then performed on this concatenated
matrix using FSL’s MELODIC tool (http://fsl.fmrib.ox.ac.
uk/fsl/fslwiki/MELODIC) [Beckmann et al., 2005; Guo
et al., 2015]. The number of independent components was
estimated to be 332 using the method of Laplace approxima-
tion to the model evidence (Lap) [Beckmann and Smith,
2004]. As a result, the whole-brain myelin content matrix
was decomposed into 332 ICA component maps and a mix-
ing matrix (881 subjects by 332 sources). Two out of 332
independent components were identified as artefactual
components, based on the criterion that the spatial covari-
ance patterns of these two components were dominated by

single subjects (i.e., a single subject had a weight (>15) far
greater than any other subjects). Indeed, the spatial maps of
these two artefactual components failed to show any mean-
ingful patterns that could be captured by any anatomical or
functional brain structures. These two artefactual compo-
nents were regressed out from the myelin content matrix.

Calculation of the Myelination Covariance Matrix

Myelination covariance between each pair of cortical
grayordinates was quantified using the Pearson cross-
correlation coefficient of their myelin content across all 881
subjects. This calculation generated a 59412 3 59,412
grayordinate-wise myelination covariance matrix.

Reproducibility of Myelination Covariance

Reproducibility of myelination covariance was assessed
by a split-group approach. All 881 subjects were randomly
divided into two subgroups: subgroup 1 of 440 subjects (193
males and 247 females) and subgroup 2 of 441 subjects (194
males and 247 females). No family members were assigned
to both subgroups to ensure subgroup independence.
Grayordinate-wise myelination covariance matrix was inde-
pendently computed for each subgroup. Reproducibility of
myelination covariance was evaluated by Pearson correla-
tion of the corresponding grayordinate-wise myelination
covariance values between the two subgroups.

Construction of the Myelination Covariance

Network

The myelination covariance-based brain network was
constructed using brain parcels from a multimodal parcel-
lation of the human cerebral cortex (360 parcels) as nodes
[Glasser et al., 2016]. First, the within-parcel homogeneity
of myelination covariance was quantified to assess the
suitability of this parcellation scheme for constructing the
myelination covariance-based network. For each grayordi-
nate in a given parcel, the Pearson cross-correlation coeffi-
cient was computed between the myelin content of this
grayordinate and the mean myelin content of all grayordi-
nates within the parcel across subjects. This correlation
coefficient was then Fisher Z-transformed and averaged
across all grayordinates within the parcel. This averaged Z
value was transformed back to r value, which was used to
quantify the within-parcel homogeneity.

Edges of the myelination covariance network were
defined using significant myelination covariance between
parcels. For each subject, the myelin content of each parcel
was first quantified by regionally averaging the myelin
content of all grayordinates within the parcel. This step
obtained a 360 3 881 data matrix. Second, the myelination
covariance between each pair of parcels was quantified by
the Pearson cross-correlation coefficient between their par-
cel myelin content across all subjects, which generated a
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between-parcel myelination covariance matrix (360 3 360).
The statistical significance of between-parcel myelination
covariance was thresholded at a false discovery rate (FDR)
of 0.05 [Genovese et al., 2002].

Graph Analysis of the Myelination

Covariance Network

Fundamental global graph properties describing net-
work segregation (average clustering coefficient and modular-
ity), network integration (characteristic path length and
global efficiency), network resilience (assortativity), and small
worldness were calculated at each connection density in
the range from 0.2 to 0.8 with a step size of 0.01. Specifi-
cally, the modularity was calculated based on the Louvain
community detection algorithm [Blondel et al., 2008]. For
each density, the myelination covariance network was
binarized. Average clustering coefficient, characteristic path
length and global efficiency were also normalized to a ran-
dom network at the same density, generated by randomiz-
ing the original binarized network, and this process was
iterated for 1000 times. Brain Connectivity Toolbox
(https://sites.google.com/site/bctnet/) was used to com-
pute all these graph metrics. Detailed definitions of these
metrics were reported in Rubinov and Sporns [2010].

Evaluation of the Relationship Between

Myelination Covariance and RSFC

The relationship between myelination covariance and
RSFC was grayordinate-by-grayordinate evaluated based
on the spatial similarity between whole-brain cortical con-
nectivity profiles measured by myelination covariance and
RSFC, respectively. For each cortical grayordinate, its
whole-brain cortical connectivity profiles were separately
obtained by its cortical myelination covariance and RSFC
with all other cortical grayordinates. The spatial similarity
between the two profiles was then quantified by their Pear-
son correlation coefficient. This analysis generated a spatial
map of the correlations between myelination covariance and
RSFC profiles. To control for the influence of the myelin con-
tent variance on the between-profile correlation, group-
averaged grayordinate-wise values of myelin content were
also regressed out from this between-profile correlation
map. These between-profile correlation maps (i.e., without
or with the regression of myelin content) were compared
against well-established RSNs defined by an RSFC-based
parcellation [Gordon et al., 2016].

RESULTS

Reproducibility of Grayordinate-Wise Myelination

Covariance

We first show that cross-subject myelination covariance
was highly robust. Figure 1a displays the grayordinate-

wise cortical myelination covariance matrix (59412 3

59412) that contained the myelination covariance value
between every pair of cortical grayordinates. Relatively
strong myelination covariance was observed between
homotopic cortical grayordinates across contralateral hemi-
spheres. To examine the robustness of myelination covari-
ance, we randomly split all subjects into two subgroups.
We assigned biologically related subjects to the same sub-
group to ensure independence of the two subgroups. Both
subgroups displayed almost identical myelination covari-
ance patterns (Fig. 1b), which were also highly consistent
with the myelination covariance pattern from all subjects
(Fig. 1a). In addition, grayordinate-wise myelination
covariance values were highly correlated between the two
subgroups with a significant correlation coefficient
(r 5 0.89, P � 0). The bivariate tiled histogram (Fig. 1c)
shows that the vast majority of myelination covariance val-
ues from the two subgroups were distributed narrowly
along the diagonal, evidenced by a least-square fitting line
with a slope close to 1 (0.97) and the intercept close to 0.
Taken together, these results indicate that cross-subject
grayordinate-wise myelination covariance was highly
reliable.

Organization of Cortical Myelination Covariance

We next examined intersubject myelination covariance
patterns across the cortex using ICA. Figure 2a shows the
spatial patterns of all (330) myelination covariance ICA
components. To avoid potential overlaps between compo-
nents, each grayordinate was uniquely assigned to the
component that it had the largest Z score among all com-
ponents. Of these components, 87 were bilateral. The num-
ber of ipsilateral components in each hemisphere was
approximately the same (118 left components and 115
right components). A number of well-defined brain
regions previously reported can be captured by these inde-
pendent components of myelination covariance [Allen
et al., 2011; Guo et al., 2015; Smith et al., 2009, 2013a; Yeo
and Eickhoff, 2016]. For instance, Figures 2b,c shows the
components located at the posterior and anterior parts of
the primary visual cortex (V1), respectively. Components
shown in Figures 2d,e represent ventral and dorsal parts
of the primary somatosensory cortex (S1), respectively.
Figures 2f,g shows the lateral and medial portions of the
primary motor cortex (M1), respectively. In addition to
sensory and motor components, ICA analysis of myelina-
tion covariance revealed functionally well-characterized
regions such as the posterior cingulate cortex (PCC, Fig.
2h) and orbital frontal complex (OFC, Fig. 2i). Components
in Figures 2j,k represent left and right anterior cingulate
cortex (ACC), respectively. Taken together, our results
suggest that myelination covariance patterns revealed an
organization of the human cerebral cortex similar to alter-
native brain connectivity measures.
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Topological Features of Myelination

Covariance Network

Human brain networks based on various connectivity
measures are typically organized in a nontrivial manner and
contain common topological features such as small-
worldness [Bullmore and Sporns, 2009; Wang et al., 2010].
Our data demonstrate that the myelination covariance-
based network shared this common topological architecture.
The myelination covariance network was constructed with
nodes defined by parcels in a multimodal parcellation of the
human cerebral cortex [Glasser et al., 2016], and edges
defined by myelination covariance between parcels.

To ensure that this parcellation scheme was appropriate
for constructing the myelination covariance network, we
first examined the within-parcel homogeneity of myelina-
tion covariance (Fig. 3a). Our data show that most parcels

had high within-parcel myelination covariance homogene-
ity (98% parcels’ homogeneity >0.5). The mean homogene-
ity (6SD) of all parcels was 0.71 6 0.09. This result shows
that the within-parcel homogeneity was high for small-size
parcels in general, but large-size parcels (>400 grayordi-
nates) also exhibit reasonable homogeneity (> 0.5). These
results confirm the validity of adopting this multimodal
parcellation scheme [Glasser et al., 2016] for constructing
the myelination covariance network.

Using graph theory analysis, we investigated the intrinsic
organization of this myelination covariance network (Fig.
3c). Figure 3d summarizes the fundamental global graph
metrics of the myelination covariance network as a function
of connection density. Average clustering coefficient and
modularity were used to describe network segregation
properties. Characteristic path length and global efficiency
were used to characterize network integration properties.

Figure 1.

(a) Grayordinate-wise myelination covariance matrix of all subjects. (b) Grayordinate-wise myeli-

nation covariance matrices of subgroups 1 and 2. (c) Correlation of grayordinate-wise myelina-

tion covariance strength (r values) between two subgroups. No subjects between subgroups

have kinship. [Color figure can be viewed at wileyonlinelibrary.com]
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Small-worldness was adopted to evaluate the balance
between network segregation and integration. Assortativity
was used to assess network resilience. At relatively low den-
sities (i.e., sparse network, density <0.5), the clustering

property of the myelination covariance network was higher
than that of random networks, and the network exhibited a
strong modular structure. This network also demonstrated
relatively high efficiency reflected by high normalized

Figure 2.

(a) Spatial patterns of non-artefactual ICA components with

each component displayed in a different color. (b–k) Spatial

maps of representative ICA components (thresholded at Z> 5)

of myelination covariance displayed on inflated brain surfaces.

V1, primary visual cortex; S1, primary sensory cortex; M1, pri-

mary motor cortex; PCC, posterior cingulate cortex; OFC,

orbital frontal complex; ACC, anterior cingulate cortex. [Color

figure can be viewed at wileyonlinelibrary.com]
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global efficiency and low normalized characteristic path
length. These results indicate that this myelination covari-
ance network has a small-world topology. Additionally, this
network displayed positive assortativity, which suggests the
presence of a resilient core of interconnected hubs. Taken
together, these results indicate that the myelination covari-
ance network contained topological features similar to brain
networks generated by other connectivity measures such as

RSFC [Bullmore and Sporns, 2009; Wang et al., 2010] and
diffusion tractography [Gong et al., 2012].

The Quantitative Relationship Between

Myelination Covariance and RSFC

We found that the correlation between myelination
covariance and RSFC was dependent on specific resting-

Figure 3.

(a) Map of parcel homogeneity of myelination covariance. (b)

Myelination covariance homogeneity value plotted against the cor-

responding parcel size (in the number of grayordinates). (c) Myeli-

nation covariance network (thresholded at the connection density

of 0.1) displayed in sagittal, axial, and coronal views, respectively.

Each node represents a brain parcel located at its centroid posi-

tion with the node size proportional to the number of

grayordinates in this parcel. The thickness of edge is proportional

to the strength of myelination covariance with red edges repre-

senting positive covariance and blue edges representing negative

covariance. BrainNet Viewer was used for the display of this net-

work (Xia et al., 2013). (d) Global topological metrics of the cor-

tical myelination covariance network as a function of connection

density. [Color figure can be viewed at wileyonlinelibrary.com]

r Ma and Zhang r

r 4736 r

http://wileyonlinelibrary.com


state networks (RSNs). To quantitatively investigate the
relationship between the connectivity measures of myeli-
nation covariance and RSFC across the brain, we first com-
puted the profiles of RSFC and myelination covariance of a
given cortical grayordinate with all other cortical grayordi-
nates, respectively. The spatial similarity between the brain-
wide myelination covariance and RSFC profiles for this
grayordinate was then determined using spatial correlation.
Figure 4 shows the map of this grayordinate-wise between-
profile correlations. To facilitate the comparison of this
between-profile correlation pattern to RSNs, on the same brain
surfaces, well-established RSNs were displayed and color
coded. These RSNs were defined by an RSFC-based parcella-
tion scheme [Gordon et al., 2016], in which borders of parcels
were also delineated on the same map. The correspondence of
myelination covariance and RSFC seemed rather uniform
within each RSN, but displayed sharp changes at the borders
of different RSNs. For example, myelination covariance–RSFC
correlation values were relatively homogeneous within the
default-mode, visual, and somatomotor networks, but sharply
increased from the default-mode network to the visual and
somatomotor networks. Importantly, after regressing out the
variance of myelin content from the myelination covarian-
ce–RSFC correlation map, these aforementioned patterns
remained consistent (Supporting Information, Fig. S1), which
rules out the possibility that such relationship was driven by
the variance of myelin content itself. Taken together, these
results suggest that the correlation between myelination
covariance and RSFC was RSN dependent.

In addition to the spatial specificity at relatively large
RSN scales, we asked whether the spatial pattern of myeli-
nation covariance–RSFC correlation within an RSN

contained more fine-grained functional architecture. To
answer this question, the grayordinate-wise between-profile
correlation map was compared against retinotopic and
somatotopic organizations, obtained from a previously pub-
lished visual eccentricity map [Glasser et al., 2016], and
task-fMRI contrast maps of finger tapping, toe squeezing,
and tongue moving in the HCP (900 Subjects Data Release).
These task-fMRI contrast maps were thresholded at an arbi-
trary but statistically stringent threshold (Z> 10) to separate
hand, foot and tongue areas within somatomotor networks.
As shown in Figure 5a, the pattern of myelination covarian-
ce–RSFC correlation within the visual network clearly cap-
tured regions corresponding to foveal and peripheral visual
areas, as shown in the visual eccentricity map. Similarly,
the myelination covariance–RSFC correlation pattern in the
somatomotor network could differentiate hand and foot
areas revealed by the task-fMRI maps (Figure 5b, right).
Also, the myelination covariance–RSFC correlation pattern
largely identified the tongue area (Figure 5c, right) in the
lateral somatomotor network. These results collectively
demonstrate that the correlation between whole-brain mye-
lination covariance and RSFC profiles share similar transi-
tions in sensory and motor networks, and reveal fine-
grained functional architectures within RSNs.

Stronger Myelination Covariance–RSFC

Correlation in Sensory and Motor Networks

Than in Cognitive and Polymodal Association

Networks

We observed that myelination covariance–RSFC correla-
tion was stronger in sensory and motor networks

Figure 4.

Grayordinate-wise myelination covariance–RSFC correlation map displayed on inflated (columns 1

and 2) and flattened surfaces (column 3). To facilitate the comparison of this correlation map to RSN

patterns, on the same brain surfaces, the borders of parcels generated by a RSFC-based parcellation

scheme (Gordon et al., 2016) are delineated and color coded based on the RSN they belong to.

[Color figure can be viewed at wileyonlinelibrary.com]
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including visual, somatomotor, lateral somatomotor, and
auditory networks than in cognitive and polymodal associ-
ation networks including parieto-occipital, attention,
salience, default-mode, fronto-parietal, cingulo-opercular,
and parietal-memory networks. To compare the myelina-
tion covariance–RSFC correlation across RSNs, Fisher Z-
transformed correlation values within each parcel were
averaged. As shown in Figure 6a, parcels within sensory
and motor networks clearly showed higher correlation val-
ues than parcels in cognitive and polymodal association
networks. Then, we averaged Fisher Z-transformed corre-
lation values for all grayordinates belonging to the same
RSN. Figure 6b shows the mean Z values (6 SE) of 12
RSNs. Averaged correlation values were stronger in sen-
sory and motor networks (i.e., visual, somato-motor, lat-
eral somato-motor, and auditory networks) than cognitive
and polymodal association networks (i.e., parieto-occipital,
attention, salience, default-mode, fronto-parietal, cingulo-

opercular, and parietal-memory networks). One-way anal-
ysis of variance (ANOVA) was used to determine
whether there was statistical difference among the mean
Z values of these 12 RSNs. ANOVA results showed that
these 12 means were not all equal (P � 0). Specifically,
the mean Z values of visual, somato-motor, lateral
somato-motor, auditory, parieto-occipital, fronto-parietal,
and default-mode networks were statistically significantly
different from each other and any other RSNs. For
attention-related networks (i.e., dorsal attention, ventral
attention, and salience networks), their mean Z values
were not significantly different among themselves,
whereas these three means were significantly different
from the other 9 RSNs. The mean Z value of the cingulo-
opercular network was not significantly different from
that of the parietal memory network, but both these net-
works showed statistically significant difference from the
other 10 RSNs. Collectively, these results demonstrate the

Figure 5.

Fine-grained features in the myelination covariance-RSFC corre-

lation map. (a) The left two columns are myelination covari-

ance–RSFC correlation in the visual cortex displayed on

spherical surfaces. The right two columns are the visual eccen-

tricity contrast map (Glasser et al., 2016). (b) Left two columns

are myelination covariance–RSFC correlation in the somato-

motor cortex (thresholded at 0.55< r< 0.65) displayed on

inflated surfaces. Right two columns are hand and foot areas

obtained by fMRI activation patterns (Z> 10) during finger tap-

ping and toe squeezing movement, respectively. (c) Left two col-

umns are myelination covariance–RSFC correlation in the lateral

somato-motor cortex (thresholded at 0.45< r< 0.55). Right

two columns are the tongue area obtained by the fMRI activa-

tion pattern (Z> 10) during tongue movement. [Color figure

can be viewed at wileyonlinelibrary.com]
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RSN-specific relationship between myelination covariance
and RSFC.

DISCUSSION

This work systematically characterized myelination
covariance across the entire human cerebral cortex in a
large group of subjects (>800) using T1/T2 ratio myelin
maps. We first demonstrated that cross-individual myeli-
nation covariance was highly robust (Fig. 1). We then
showed that large-scale myelination covariance patterns
revealed an organization (Fig. 2) comparable to that gener-
ated by alternative connectivity measures [Allen et al.,
2011; Guo et al., 2015; Smith et al., 2009, 2013a; Yeo and
Eickhoff, 2016]. Furthermore, we characterized topological

properties of the whole-brain network based on myelina-
tion covariance and a well-recognized cortical parcellation
scheme [Glasser et al., 2016] (Fig. 3). Finally, we quantita-
tively investigated the relationship between myelination
covariance and RSFC, and found that their correspondence
was dependent on specific RSNs at both large and fine-
grained scales (Figs. 4 and 5). Interestingly, myelination
covariance–RSFC correlation was higher in sensory and
motor networks than in cognitive and polymodal associa-
tion networks (Fig. 6). Taken together, these results dem-
onstrate a new method to investigate interareal
connectivity based on cortical myeloarchitectonics—a fea-
ture characteristic of axon fibers. This work also provides
new insight into our understanding of the structur-
e–function relationship in the human brain connectivity.

Figure 6.

(a) Parcel-wise mean correlation map displayed on inflated and flat-

tened surfaces. The myelination covariance–RSFC correlation values

of all grayordinates within each parcel (Gordon et al., 2016) were

averaged and the mean correlation values were displayed for all par-

cels in the map. (b) Mean correlation values averaged across all

grayordinates within each RSN. The parcellation scheme and net-

work definition are shown in the inset (Inset reproduced from Gor-

don et al., 2016, with permission). [Color figure can be viewed at

wileyonlinelibrary.com]
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Brain Organization of Myelination Covariance

Although the definitive biological mechanisms underly-
ing cross-population covariance of brain morphometric
measures are still under active investigation, structural
covariance is believed to be attributed to coordinated neu-
rodevelopment of connected brain regions [Alexander-
Bloch et al., 2013a,b]. Direct anatomical connections
between brain regions can cause functional co-activation,
which in turn lead to coordinated neurodevelopment of
brain structures and thus covariant brain morphology
[Alexander-Bloch et al., 2013a]. Therefore, cross-population
structural covariance can provide a measure of connectiv-
ity between regions. Notably, other factors such as genetic
and environmental influences, which can control synchro-
nized morphological changes during development, could
also affect inter-regional myelination covariance [Alexan-
der-Bloch et al., 2013a].

Previous studies in this line of research predominantly
used bulky morphometric measures with mixed compart-
ments, such as gray matter density or cortical thickness
[Alexander-Bloch et al., 2013a; Lerch et al., 2006; Mechelli
et al., 2005], while such analysis based on a specific subdi-
vision like myelin content is rare. To bridge this knowl-
edge gap, in this study, we systematically analyzed the
covariance of myelin content across the cerebral cortex.
Our results showed that this axon-related structural
covariance can reveal brain connectivity organization con-
sistent with other connectivity measures [Smith et al.,
2009]. For example, ICA analysis uncovered myelination
covariance in anatomically and functionally well-defined
sensory and motor regions like V1, S1, and M1 (Figs.
2b–g), as well as cognition-related regions such as ACC,
PCC, and OFC (Figs. 2h–k). These results uncovered the
connectivity patterns between brain regions determined by
their coordinated development of myeloarchitecture, and
confirmed the validity of cross-modality comparison of
brain connectivity measures.

Whole-Brain Network Based on Myelination

Covariance

Using myelination covariance as a connectivity measure,
we constructed a whole-brain network and evaluated its
topological architecture. The node definition was based on
a multimodal parcellation of the human cerebral cortex
using structural MRI, task-fMRI, T1w/T2w ratio myelin
maps, and rsfMRI data in the HCP. This 360-parcel
scheme was established using a semi-automatic approach,
in which parcel borders were identified based on sharp
transitions in cortical myelination, thickness, task fMRI
contrasts, RSFC, and topography [Glasser et al., 2016]. This
approach can detect brain region boundaries not obvious
in any single modality, and the consistency across differ-
ent modalities also increases the confidence of the borders
identified in this parcellation scheme [Yeo and Eickhoff,
2016].

We first confirmed that this node definition is appropri-
ate to use for constructing the myelination covariance-
based network. Network topological properties are very
sensitive to different parcellation schemes [Wang et al.,
2009], and inaccurate parcellation can severely damage the
network characterization [Smith et al., 2011]. To avoid this
pitfall, a parcellation scheme used to construct a network
ought to be homogeneous within individual parcels. Our
data show that myelination covariance was highly homo-
geneous for the vast majority of parcels in this multimodal
parcellation scheme (Figs. 3a,b), suggesting that it is
appropriate to construct and evaluate the myelination
covariance network using this cortical parcellation scheme.

We found that the resulting myelination covariance net-
work displayed nonrandom, clustered, modular, and effi-
cient properties at sparse connection densities (Fig. 3d).
These topological properties have been repeatedly demon-
strated by brain networks generated using various connec-
tivity measures like diffusion tractography and RSFC
[Bullmore and Sporns, 2009; Gong et al., 2012; Wang et al.,
2010]. All these results collectively suggest that myelina-
tion covariance-based network is organized in a nontrivial
manner and shares the common topological architecture of
human brain networks.

RSN-Dependent Myelination Covariance–RSFC

Relationship

The correspondence between myelination covariance
and RSFC across the cortex was quantitatively evaluated
by correlating whole-brain myelination covariance and
RSFC profiles for each cortical grayordinate. We found
that this correspondence was rather uniform within each
RSN, but could vary sharply across different RSNs. This
nature (i.e., relatively uniform myelination covarian-
ce–RSFC correlation in functionally homogeneous units)
existed at multiple scales from large-scale networks to
fine-grained functional architectures like retinotopic and
somatotopic organizations.

Interestingly, stronger myelination covariance–RSFC cor-
relation was observed in sensory and motor networks than
in cognitive and polymodal association networks. This
result is consistent with a recent study comparing structural
covariance of myelination measured by magnetization
transfer with RSNs measured by magnetoencephalography,
and showed stronger structure-function relationship in the
occipital and parietal lobes but weaker relationship in the
frontal areas [Hunt et al., 2016]. Our result is also consistent
with another report comparing gray matter density covari-
ance and RSFC at the network level, which demonstrated
high spatial overlaps between structure covariance and
RSFC in the medial and lateral visual cortices and the sup-
plementary motor area of the human brain [Segall et al.,
2012].

Differences in the distribution of myelination covarian-
ce–RSFC correlation across individual RSNs might be
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attributed to their different circuitry structures. Notably,
sensory and motor networks are usually local networks
and characterized by canonical circuit organization, where
structurally connected areas tend to be close to each other.
On the other hand, cognitive and polymodal association
networks are often distributed and possess a noncanonical
circuit structure [Buckner and Krienen, 2013]. Stronger
association between myelination covariance and RSFC in
RSNs possessing canonical circuit organization might sug-
gest that short-distance connections similarly affect RSFC
and myelination covariance. Conversely, long-distance
connections may have more diverse effects on RSFC and
myelination covariance in RSNs with the noncanonical cir-
cuit structure. These results can help us better understand
the structure–function correspondence in different connec-
tivity measurements.

Potential Implication in Studying Axon

Development

Because myelination covariance might reflect coordi-
nated neurodevelopment of myeloarchitecture between
connected brain regions, results of this study may provide
a new avenue to investigating axon fiber development in
the human brain. MRI studies have shown that brain
regions co-varying in cortical thickness were also corre-
lated in their rate of cortical thickness change during
development [Alexander-Bloch et al., 2013b], suggesting
that structural covariance can provide a measure of coordi-
nated neurodevelopment. Importantly, it has been shown
that myelination covariant regions were also synchro-
nously myelinated during the development of the neonatal
brain [Bozek et al., 2016]. Considering that myelination is
specific to axons, myelination covariance analysis might
provide great value to the investigation of coordinated
axon fiber development between connected brain regions.

CONCLUSIONS

This study has systematically characterized myelination
covariance in the human cerebral cortex. We identified
reproducible myelination covariance patterns across the
human cerebral cortex, and demonstrated the nontrivial
topological architecture of the myelination covariance net-
work. Our study also revealed a RSN-dependent relation-
ship between myelination covariance and RSFC.
Myelination covariance and RSFC were found to be more
strongly correlated in sensory and motor networks, which
are dominated by a canonical circuit structure, than in cog-
nitive and polymodal association networks, which possess
a noncanonical circuit structure. Taken together, this study
has established a new connectivity measure based on the
covariance of the axon-related myeloarchitectonic feature.
These results can shed light on the structure–function rela-
tionship in brain connectivity organization. They may also
be useful for studies of coordinated axon development.

The significance of this study can be further extended to
the research of neurological disorders. Accruing evidence
has shown that cortical demyelination is implicated in
multiple brain disorders like multiple sclerosis [Hulst and
Geurts, 2011], suggesting that cortical myeloarchitecture
might be a potential biomarker for these brain diseases. As
a result, mapping the myelination covariance pattern of
the human cerebral cortex in a healthy group of subjects
has provided a critical reference point that can facilitate
the identification of abnormal brain myeloarchitecture-
related endophenotypes in disease states.
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