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Accurate mechanistic description of structural changes in bio-
molecules is an increasingly important topic in structural and
chemical biology. Markov models have emerged as a powerful
way to approximate the molecular kinetics of large biomolecules
while keeping full structural resolution in a divide-and-conquer
fashion. However, the accuracy of these models is limited by that
of the force fields used to generate the underlying molecular
dynamics (MD) simulation data. Whereas the quality of classical
MD force fields has improved significantly in recent years, remain-
ing errors in the Boltzmann weights are still on the order of a
few kT , which may lead to significant discrepancies when com-
paring to experimentally measured rates or state populations.
Here we take the view that simulations using a sufficiently good
force-field sample conformations that are valid but have inaccu-
rate weights, yet these weights may be made accurate by incor-
porating experimental data a posteriori. To do so, we propose
augmented Markov models (AMMs), an approach that combines
concepts from probability theory and information theory to con-
sistently treat systematic force-field error and statistical errors in
simulation and experiment. Our results demonstrate that AMMs
can reconcile conflicting results for protein mechanisms obtained
by different force fields and correct for a wide range of stationary
and dynamical observables even when only equilibrium measure-
ments are incorporated into the estimation process. This approach
constitutes a unique avenue to combine experiment and com-
putation into integrative models of biomolecular structure and
dynamics.

molecular dynamics | integrative structural biology | maximum entropy |
Markov state models | augmented Markov models

A tomistic molecular dynamics (MD) simulation is a popu-
lar tool to investigate mechanisms underlying biomolecu-

lar function, including ligand binding (1, 2) and allostery (3),
whereas coarse-grained molecular models are often used when
studying assembly and interactions of supramolecular systems
(4, 5). With recent advances in massively paralleled computa-
tion, simulating thousands of short- to medium-length realiza-
tions of many biomolecular systems has become feasible (6, 7).
Systematic analysis of such large sets of MD data in terms of
Markov state models (MSMs) (8, 9) now enables the study of
slow dynamic processes, including protein folding (10, 11), con-
formational transitions (12, 13), and quantitative comparison
with experiments (14–16) otherwise affordable only on special-
purpose supercomputers (17).

Whereas these technologies are closing the gap as to which
macromolecular systems and timescales can be directly simu-
lated, it is becoming increasingly evident that systematic errors
in empirical models—force fields—limit our ability to predict
experimental data quantitatively (18). Although force fields are
undergoing continuous improvement, high accuracy needs to be
balanced with computational efficiency. A viable approach is to
aim at force fields that are good enough such that they can be
reweighted or biased by experimental data and thus make them
quantitatively predictive (19, 20).

Key to this approach is a consistent framework to integrate
simulation and experimental data. Popular approaches include

using available experimental data to bias the empirical models
during simulation in an ad hoc fashion (21), using Bayesian
(22–25) or maximum entropy (26–28) frameworks, or using a
posteriori reweighting of the simulated ensembles (24, 29–31).
Although these approaches generally improve agreement with
experimental data, they have several technical issues (32) and
a number of intrinsic limitations: Biased simulation strategies
make it difficult to reuse simulation data if new experimental
data become available. Existing reweighting techniques come
at the cost of losing dynamic information in the unbiased sim-
ulation data. Both approaches currently require that the sim-
ulation ensemble can be sampled directly and do not make
use of MSMs to sample long timescales. Further, most existing
approaches do not clearly distinguish between systematic (force-
field) error and statistical (sampling) error, which may result in
unexpected behavior or involve user-specified weighting factors.
Several Markov state model estimators have been developed that
are conditioned on auxiliary data, especially microscopic quanti-
ties such as the stationary distribution or functions of the tran-
sition probability matrix (33–37). However, the direct augmen-
tation of Markov state models with experimental data using a
judicious treatment of force-field and sampling errors is still an
open issue.

This work introduces augmented Markov models (AMMs).
AMMs are MSMs that balance information from simulation
and averaged experimental data during estimation. This bal-
ance is achieved by an information-theoretic treatment of sys-
tematic force-field errors and a probabilistic treatment of sam-
pling and experimental errors. Using this approach, we show that
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Fig. 1. Scheme illustrating AMMs. Unknown variables are shown in blue,
and observed experimental and computational data are shown in orange.

AMMs more accurately recapitulate complementary stationary
and dynamic experimental data than their MSM counterparts.
AMMs are therefore a unique way to approach integrative struc-
tural biology, where information about the kinetics of conforma-
tional transitions is also accessible. This method moves the field
closer to truly mechanistic data-driven models.

Theory
Augmented Markov Models. MSMs describe the kinetics between
a set of n segments of configuration space in terms of a matrix
P = [pij ], where pij is the probability of transitioning to state j
at time τ after having being in state i . MSMs therefore approx-
imate the system’s full phase-space dynamics by a discretiza-
tion of space (via the n Markov states) and time (lag time τ)
(9). The transition probability matrix is estimated through sta-
tistical inference based on transition counts, cij , observed in
one or multiple independent MD trajectories (9). When mod-
eling equilibrium dynamics, one typically enforces microscopic
reversibility or detailed balance in the estimation procedure (34,
38, 39). Here, we present a way to combine statistics from MD
trajectories and experimental data into a joint estimate of the
matrix P .

Simulations rarely match the in situ conditions of experiments
exactly; however, even if they could, we would still expect system-
atic errors in the Boltzmann weights of the simulation’s molec-
ular configurations due to inaccuracies of the force field. As a
result, quantities computed from simulation and measured by
experiment will differ even in the limit of extensive MD sam-
pling. Specifically, the experimental state probability π̂i of the
Markov state Ωi that affects measurable expectation values is∫

Ωi
µ̂(x ) dx— where µ̂(x ) is the “true” Boltzmann distribution of

the system probed experimentally. In addition to this systematic
difference, computing quantities from simulation data and mea-
suring them by experiment are both subject to statistical error or
noise. Here, we combine ideas from probability theory and infor-
mation theory to account for the systematic and statistical errors
and formulate an inference framework for AMMs that combines
these two sources of data (Fig. 1).

Estimating AMMs from Simulation and Experimental Data. Con-
sider that we measure the expectation values of K experimental
observables εk , k ∈ (1, . . . ,K ). Whereas these observables have
noise-free expectations (m̂1, . . . , m̂K ) according to the exper-
imental Boltzmann ensemble, we assume that due to experi-
mental noise our experiment measures expectation values ok
that are normally distributed around the noise-free values m̂k ,
as ok ∼ N (m̂k , σk ), with experimental uncertainties σk .

Although we do not have direct access either to the true equi-
librium distribution of the experimental ensemble π̂ or to the
noise-free expectations, m̂k , we can connect them by means of
the experimental observable. The expectation value of the k th
spectroscopic observable in the i th Markov state can be written
as a vector ek =

(
(ek )1, . . . , (ek )n

)
with elements

(ek )i =

∫
Ωi

µ̂(x )

π̂i
εk (x ) dx .

Here, εk (x ) is a scalar function that computes the experimental
observable for a given molecular structure x (a forward model).
The noise-free expectations can then be written as m̂k = π̂ · ek.

Now we can write an expression of the true experimental dis-
tribution π̂ in terms of the biased simulation model distribution
π and k Lagrange multipliers λv . We reweigh the biased distri-
bution with the principle of adding a minimal amount of addi-
tional information (maximum entropy), which can be achieved
by minimizing the Kullback–Leibler divergence of π and π̂ (SI
Appendix, Theory):

π̂i =
πi exp(

∑
v λv (ev )i)∑

j πj exp(
∑

v λv (ev )j )
. [1]

The Lagrange multipliers, λk , are then obtained by enforcing the
constraint of all measured values ok matching their correspond-
ing expectations m̂k .

Whereas Eq. 1 couples the experimental observations made in
the ensemble π̂ to the simulation data generated in the ensemble
π, both the experimental observations and the MD simulation
data are subject to statistical errors. To account for these errors,
we express the measured values and MD trajectory statistics by
means of the following augmented Markov model likelihood:

A

D E

C

B

Fig. 2. Illustration of AMMs on a protein-folding model with true ther-
modynamics and kinetics shown in green. A representative biased sim-
ulation with ∆∆Gfold≈− 3 kT compared with the true model is shown
in blue whereas the AMM-corrected values are shown in magenta.
(A) Kinetic network topology. Each state is annotated by its true free energy
in kT . (B and C) Equilibrium distributions (solid line) and expectation val-
ues (dashed/dashed-dotted lines) of helicity and fluorescence quenching
observables. (D and E) Mean first passage times of folding and unfolding,
respectively, of biased and AMM models as a function of the degree of bias,
∆∆Gfold (Materials and Methods).
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L ∝
∏
i,j

p
cij
ij︸ ︷︷ ︸

simulation

∏
k

exp
(
−wk (m̂k − ok )2)

︸ ︷︷ ︸
experiments

. [2]

Here, cij counts the transitions between pairs of microstates
(clusters) i and j at time-step τ sampled in the simulation(s),
and pij are the state-to-state transition probabilities subject to
the detailed balance constraint with respect to the simulation’s
equilibrium distribution π. This first part is the well-known
MSM likelihood (9). The second term is the probability to
measure k experimental expectation values given the noise-free
expectations m̂k through a normal error model with variance
σ2
k = 1/2wk . Thus, wk encodes the reliability (inverse uncer-

tainty) of the k th experimental observation. An error model
taking cross-correlations between the experimental observations
into account may be used when such information is available (SI
Appendix, Theory). Furthermore, the likelihood can be combined
with a prior on the transition counts to enable Bayesian infer-
ence (SI Appendix, Theory), which was used to compute AMM
uncertainties in the present article.

We can maximize Eq. 2 with respect to the unknown parame-
ters pij and λk to obtain an AMM that balances simulation data
with experimental observables. The algorithm involves alternat-
ing between rounds of updating the estimate of π, the Lagrange
multipliers λv , and π̂, independently, while keeping all other
unknowns fixed. Once these parameters have converged, the
maximum-likelihood transition matrix pij given cij and con-
strained to the equilibrium distribution π̂ is estimated using
equations in section 4 of ref. 37. The estimation procedure
is covered in more detail in SI Appendix, Theory. The AMM
estimator is available in the PyEMMA software, version 2.5
(www.pyemma.org) (40).

Results
Rescuing Biased Relaxation Dynamics in a Protein-Folding Model. To
illustrate the potential power of AMMs, we turn to an eight-state
model of protein folding. The states represent different stages of
folding of an idealized bundle of helices, a, b, and c, along mul-
tiple parallel folding pathways (Fig. 2A and Materials and Meth-

A B

C

Fig. 3. AMMs reconcile the equilibrium distributions simulated with different force fields. (A) Equilibrium density (log scale) sampled with C22* (teal)
and C-h (orange) and both force fields (gray) as a function of the slowest and third-slowest TIC. A, Insets illustrate characteristic structural features in of
metastable states S ={A, B, C, D*, E, and F} determined using Perron-cluster cluster analysis (41). All but one Inset illustrate more than one metastable
state (A and F). In the case of the A/F Inset, F is shown in dark gray and A in light gray. For D* a representative structure from each of the force fields is
shown, colored as the equilibrium densities. (B) Viewpoints (V1, V2, and V3) used in Insets shown in A. (C) Comparison of the equilibrium probability (p(S))
of metastable states in MSMs and AMMs. Sixty-eight percent CIs are shown as error bars.

ods). For each state we assign a value to each of two observables:
an average helicity, h , and the propensity of helix c to form an
end-to-end contact, % (SI Appendix, Table S1). Consequently,
given an equilibrium distribution of the states we can evalu-
ate expectation values of these observables that may correspond
to bulk circular dichroism and fluorescence quenching exper-
iments, respectively. We generate a number of different vari-
ants of this model: a true reference model (∆Gfold = − 4.92 kT )
and six biased models where the enthalpic contributions to the
free energy of each state are increased such that the ∆∆Gfold
varies between −0.095 kT and −4.07 kT , compared with the
true model (SI Appendix, Table S1). As a result, the equilib-
rium distribution and kinetics of the biased models differ to an
increasing degree from the true model.

For each model, we generated numerous simulation trajec-
tories (SI Appendix, SI Materials and Methods). Indeed, the
obtained distributions of observables h and % differ systemati-
cally between the biased models and the true model, also lead-
ing to a significant bias in the expectation value of h (Fig. 2 B
and C). Kinetic quantities such as the mean first passage times
(mfpts) of unfolding and folding are also affected by the bias
(Fig. 2 D and E). To recover from this bias, we combine the
biased simulation data with an “experimental” measurement of
the unbiased expectation values of h , using the AMM estima-
tor outlined above. This case corresponds to a situation where
we have good statistics in simulation and experiment and serves
to illustrate the compensation of systematic errors. Furthermore,
because the experimental restraint falls within the support of the
helicity observable of all of the biased ensembles, the maximum
of our likelihood may always fulfill the experimental constraint
exactly (SI Appendix, Theory).

Although we restrain only the mean helicity to the true
expectation value, the AMMs accurately recover the equilib-
rium distributions of both the helicity and the fluorescence
quenching observables (Fig. 2 B and C) and improve agree-
ment with dynamic observables such as mfpts (Fig. 2 D and E).
Thus, when the stationary distribution of the simulation model,
π, is sufficiently close to the experimental ensemble π̂, using
AMMs may not only have improved thermodynamics but also
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improved kinetics compared with estimates using only simula-
tion data.

Incorporating Experimental Data Increases the Similarity Between
Protein Simulations in Different Force Fields. Next, we estimate
MSMs and AMMs of two previously published 1-ms trajectories
of the native-state equilibrium fluctuations of ubiquitin, using the
CHARMM22* (C22*) (42) and CHARMM-h (C-h) (43) force
fields. Previous analyses of these simulations have shown that the
stability of certain configurations is overestimated, either due to
insufficient sampling or due to minor force-field inaccuracies (42,
43). Both force fields are among the state-of-the-art force fields
for folded proteins and thus represent an interesting test case
for AMMs. However, they are highly similar, differing only by a
term to aid cooperativity of helix formation in C-h (44). Ubiqui-
tin further serves as an ideal test system, as multiple sources of
stationary and dynamic experimental data are readily available.
These conditions put us in a a great position to thoroughly eval-
uate the presented methodology.

The simulations are embedded in a joint space of time-lagged
independent components (TICs) (11, 45). TICs express slow order
parameters in a system as linear combinations of a large num-
ber of input features or molecular descriptors. This space is then
discretized into 256 nonoverlapping microstates, using k -means
clustering (SI Appendix, SI Materials and Methods). Transition
counts were determined for each trajectory independently and
used as input for estimation of MSMs and AMMs. The MSMs
were tested for convergence and self-consistency before we pro-
ceeded to estimation of AMMs (SI Appendix, Fig. S1). The
AMMs used observables from NMR spectroscopy as experimen-
tal restraints: NH−αH 3J couplings (46) and an extensive set of
H–N residual dipolar couplings (RDCs) from 36 different align-
ment conditions (47–50).

The two MD simulations have significant overlap in their densi-
ties in the TIC space. Yet there are regions that are sampled only
in the C22* or only in the C-h simulation (Fig. 3A). This obser-
vation can be due to either insufficient sampling or the slightly
different parameterizations of these force fields: The number of
microstates visited in both trajectories is 188 or roughly 73% over-
lap in terms of states and 96% of the probability mass. We use
the Jensen–Shannon divergence (H, subscript and superscript are
lower and upper bounds of a 95% CI, respectively) as a mea-
sure to compare the equilibrium distributions in microstates vis-
ited by both simulations in units of information entropy (nats) (SI
Appendix, SI Materials and Methods). For the two MSMs we find
H= 0.1150.118

0.112 nats. In comparison, the corresponding value for
the AMMs is 0.0880.090

0.087 nats. This result suggests that the AMMs
are thermodynamically closer to each other than the correspond-
ing MSMs. Comparing the MSM and the AMM for each of the
two force fields reveals that C-h changes little (0.0260.028

0.024 nats)
compared with C22* (0.1120.115

0.108 nats) when experimental data
are included. In addition, the correlation times of AMMs are
generally also closer to each other than in the correspond-
ing MSMs, suggesting that the AMMs are kinetically closer to
each other than the respective MSMs.

AMMs Reconcile Stationary and Dynamic Experimental Data. The
estimated AMMs show an improved agreement with the 3J cou-
pling and RDC experimental data (SI Appendix, Figs. S2 and S3)
used in the estimation process compared with the MSMs esti-
mated from simulation data alone. The improvement in RDCs
for the C-h AMM may seem insignificant when judged by the Q
factor only; however, a detailed inspection of the most strongly
enforced experimental data restraints (largest |λv |) reveals sub-
stantial changes in localized residues (SI Appendix, Fig. S4).
The predicted ensemble averages of complementary data includ-
ing cross-correlated relaxation (CCR) (51) and exact nuclear
Overhauser enhancements (eNOEs) (52) show an on par agree-

ment compared with their corresponding MSMs (SI Appendix,
Table S2). This suggests that these experimental observables
are largely insensitive to the changes in the equilibrium distri-
butions in the AMMs relative to those in the MSMs and that
we are not overrestraining when estimating the AMMs. Never-
theless the predictions of these experimental observables given
by the MSMs and AMMs agree fairly well with their experi-
mental values.

The slowest correlation times (τ1, . . . , τ4) of both AMMs are
significantly faster than in the corresponding MSMs estimated
from simulation alone (SI Appendix, Table S2). Dielectric relax-
ation spectroscopy data of ubiquitin has identified a process with
a timescale in the fast microsecond range (53), which indicates
that the AMMs may be giving a more realistic kinetic description
compared with the corresponding MSMs, although no kinetic
data were used in the model generation.

This finding prompted us to analyze the molecular kinetics of
the AMMs and MSMs more quantitatively by comparing predic-
tions of NMR spin-relaxation data (14) with recently reported
experimental measurements (54). These data are sensitive to the
correlation times of conformational transitions, the structures

A

B

C

D

E

F

Fig. 4. Comparison of R1ρ relaxation dispersion predicted from MSMs and
AMMs (14) with experiments at 292 K and 308 K (54). (A and B) Represen-
tative spin-relaxation profiles from R1ρ of I36 1HN at 292 K of AMMs and
MSMs in C22* (A) and C-h (B). (C and D) Representative spin-relaxation pro-
files from R1ρ of G53 1HN at 308 K of AMMs and MSMs in C22* (C) and C-h
(D). Shaded area corresponds to a 95% CI. (E and F) Improvement of AMMs
relative to MSMs in reproducing R1ρ spin-relaxation data at 292 K (E) and
308 K (F), measured by Bayes factors. y axes in E and F are truncated at (0,
150) for clarity. An asterisk (*) is shown for datasets where the AMM is not
significantly better than the MSM (less than 4.6 nats).
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of the metastable configurations involved in the transitions, and
their relative populations (55). As the data are resolved at
the single-spin level, they provide a direct means to validate
the altered dynamics seen in the AMMs at atomic resolution.
We compare with data recorded at 292 K and 308 K (54) (SI
Appendix, Figs. S5 and S6), both fairly close to the simulation
temperature of 300 K. It is apparent that the AMMs improve
the overall agreement with these data compared with the MSMs.
We quantify this impression by computing χ2 values and Bayes
factors—the latter testing whether the AMMs were significantly
better than the corresponding MSMs within the model uncer-
tainty. As an example, if the integrated posterior probability of
a model is 100-fold larger than a competing model, the Bayes
factor is 4.6 nats (Fig. 4 E and F and SI Appendix, SI Materi-
als and Methods). AMMs have dramatically improved χ2 values
compared with the MSMs in both the C-h (Fig. 4 B and D and
SI Appendix, Fig. S5) and C22* (Fig. 4 A and C and SI Appendix,
Fig. S6) force fields, although many χ2 values remain large. The
Bayes factors also favor the AMMs, although four datasets at
292 K either favor the MSM or do not strongly support the
AMM, when taken in isolation (Fig. 4 E and F). Still, as these
improvements correlate with improved agreement with station-
ary experimental observables (RDCs and 3J couplings), it sug-
gests that estimation of AMMs may be a powerful way to mutu-
ally reconcile stationary and dynamic experimental observables
with simulation data.

Microscopic Differences in MSMs and AMMs. Above we noted how
integration of experimental data into the Markov model estima-
tion procedure results in more similar models, compared with
models trained on simulation data only. The latter observa-
tion opens the question of whether the underlying microscopic
changes of the model also become more similar. To this end, we
coarse grained the MSMs and AMMs into six metastable states,
corresponding to density peaks in the equilibrium distribution
(Fig. 3A). Five of these states consist of very similar molecular
structures that overlap in the TIC projection between the two
force fields. The F state is by far the most thermodynamically
stable of these and closely resembles the configuration identified
by X-ray and NMR structure determination. Metastable state A
is very similar to F, but has a different backbone configuration
in residues 58–62. The E state differs in its propensity to flip
the configuration of residues 50–55. In states C and B one and
two turns of the central α-helix (residues 23–34) are unwound
from the C-terminal end, respectively. Both of these states have
an increased flexibility in the C-terminal loop following the helix.
The D* states are distinct in the two force fields: K33 persistently
interacts with solvent-exposed carbonyl oxygens in residues A28
and K29; this interaction is found in both force fields, yet the
backbone configurations in residues 34–40 differ.

The probabilities of most of the metastable states change con-
siderably in the AMMs relative to the corresponding MSMs (Fig.
3C). The combined population of the native-like states F and
A increases in both cases, whereas the populations of all other
metastable states are significantly reduced in the AMMs relative
to the MSMs. This result mirrors the findings in SI Appendix, Fig.
S4: The RDCs enforced the strongest in the AMMs are localized

to residues 10–12, 30–40, and 45–55, which roughly correlates
with the structural differences between states A and F and all
of the others states. This illustrates how the same experimen-
tal restraints enforced in AMMs of different force fields roughly
translate into consistent microscopic changes in the inferred
AMMs, compared with their corresponding MSMs.

Conclusion
We present a method to combine simulation data generated
using an empirical force field with unknown systematic errors
and averaged, noisy, experimental data into kinetic models of
molecular dynamics: AMMs. We show how this approach can
accurately recover thermodynamics and kinetics in a protein-
folding model subject to varying degrees of systematic error. In
addition, we find the method improves the accuracy of models
derived from atomistic molecular dynamics simulations. In par-
ticular, when including experimental data via AMMs, both ther-
modynamics and kinetics extracted from simulation data using
two different molecular mechanics force fields become more
alike, and their agreement with complementary experimental
data, both stationary and dynamic, improves.

The presented method makes it possible to preserve dynamic
information following integration of stationary experimental
data. This account shows how the integration of stationary exper-
imental data in such a framework may also improve the predic-
tion of complementary dynamic observables. These two results
open up the possibility of establishing more elaborate models
for integrative structural biology where full thermodynamic and
kinetic descriptions may be obtained. Future developments may
allow for the integration of dynamic observables, such as relax-
ation rates or correlation functions, into AMMs by adopting a
maximum caliber functional (56) or Bayesian methods (33, 34)
to account for the systematic errors in these quantities.

Materials and Methods
Protein-Folding Model System. Seven eight-state Markov models were con-
structed for the different free-energy potentials Fi(·) = Ui(S) − T · S(S) (SI
Appendix, Table S1). For each one, transition probabilities were obtained
using kinetic Monte Carlo by row normalization of a matrix with p̃ij ∝
Γi,j exp (−β[F(j)− F(i)]). The values Γi,j encode the topology shown in Fig.
2A, β = (kT)−1, where k is Boltzmann’s constant and T = 300 K is the tem-
perature. Further details on estimation, simulation, and analysis are given
in SI Appendix, SI Materials and Methods.

AMMs and MSMs of Ubiquitin. Estimation and validation were carried as out-
lined in Results above; further details are given in SI Appendix, SI Mate-
rials and Methods. Uncertainties were estimated using a Bayesian scheme
(SI Appendix, Theory), and AMMs and MSMs were compared using Bayes
factors and the Jensen–Shannon divergence (SI Appendix, SI Materials and
Methods).
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