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DNA double-strand breaks (DSBs) serve as obligatory intermediates
for Ig heavy chain (Igh) class switch recombination (CSR). The mech-
anisms by which DSBs are resolved to promote long-range DNA
end-joining while suppressing genomic instability inherently associ-
ated with DSBs are yet to be fully elucidated. Here, we use a tar-
geted short-hairpin RNA screen in a B-cell lymphoma line to identify
the BRCT-domain protein BRIT1 as an effector of CSR. We show that
conditional genetic deletion of BRIT1 in mice leads to a marked in-
crease in unrepaired Igh breaks and a significant reduction in CSR in
ex vivo activated splenic B cells. We find that the C-terminal tandem
BRCT domains of BRIT1 facilitate its interaction with phosphorylated
H2AX and that BRIT1 is recruited to the Igh locus in an activation-
induced cytidine deaminase (AID) and H2AX-dependent fashion.
Finally, we demonstrate that depletion of another BRCT-domain pro-
tein, MDC1, in BRIT1-deleted B cells increases the severity of CSR defect
over what is observed upon loss of either protein alone. Our results
identify BRIT1 as a factor in CSR and demonstrate that multiple BRCT-
domain proteins contribute to optimal resolution of AID-induced DSBs.
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Mature B cells responding to antigenic challenge undergo Ig
heavy chain (Igh) class switch recombination (CSR), a

deletional-recombination event that exchanges the default Cμ con-
stant region of IgM for one of a set of downstream constant region
segments (Cγ, Ce, or Cα). The B cell thereby transitions from
expressing IgM to expressing IgG, IgE, or IgA, with each secondary
isotype having a distinct effector function during a tailored immune
response (1). CSR occurs between repetitive, transcribed switch (S)
region DNA elements that precede each of the constant region
genes. Prevalent models of CSR posit that activation-induced cyti-
dine deaminase (AID) deaminates cytidines into uridines at tran-
scribed S regions and instigates a cascade of reactions to generate
DNA double-strand breaks (DSBs). Ligation of DSBs between do-
nor (generally Sμ) and acceptor S regions by components of the
general nonhomologous end-joining (NHEJ) pathway and/or the
relatively poorly understood microhomology-dependent “alterna-
tive” end-joining processes completes CSR (1).
Although they are obligatory CSR intermediates, DSBs are also

one of the most toxic lesions that can occur in a cell; unrepaired
DSBs can lead to cell death or potentiate chromosomal transloca-
tions that are hallmarks of many kinds of cancer, including B-cell
lymphomas (2). It therefore comes as no surprise that multiple
mechanisms restrict AID-induced DSB formation specifically at S
regions during CSR (3). Once generated, the cellular DNA damage
response (DDR) pathways are activated to resolve the DSBs rapidly
to promote CSR and maintain genomic integrity (4). Execution of
DDR relies on activation of phosphoinositide-3-kinase–related ki-
nases, such as ATM, ATR, and DNA-PKCs, and the subsequent
recognition and binding of phosphorylated modules by multiple
effectors of DDR proteins, including those proteins with BRCA1
C-terminal (BRCT) domains (5, 6).

The BRCT domains were first identified in the breast and
ovarian cancer susceptibility gene product BRCA1 and function as
protein–protein interaction modules (5, 6). The architecture of
BRCT domains is variable, ranging from a single module to mul-
tiple, tandem BRCT repeats. The mouse genome contains at least
27 genes coding for proteins with BRCT domains, with over one-
third reported to influence CSR, including 53BP1, PTIP, NBS1,
Rev1, MDC1, and DNA ligase IV (7–13). These proteins partici-
pate in different phases of CSR. For example, ATM-dependent
phosphorylation of 53BP1 facilitates recruitment of factors that
protect against extensive end-resection and promote orientation-
specific end-joining (14, 15), whereas DNA ligase IV is the es-
sential NHEJ component ligating DSBs at S regions during CSR
(12). However, it is unclear whether other BRCT proteins beyond
the proteins enumerated above have a role in CSR.
BRIT1 [BRCT-repeat inhibitor of human telomerase (hTert)

expression] was isolated in a genetic screen for repressors of the
hTert (16). BRIT1 also mapped to one of the 12 loci implicated in
primary microcephaly (hence the name microcephalin or MCPH1),
an autosomal recessive disease characterized by severely decreased
cerebral cortex and varying degrees of mental retardation (17, 18).
This ∼110-kDa ubiquitously expressed protein with one N-terminal
and two tandem C-terminal BRCT domains has been demonstrated
to be a crucial proximal regulator of DDR (19). In cells treated with
ionizing radiation (IR), BRIT1 is rapidly recruited to DSBs via its C
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terminus BRCT repeat-dependent interaction with phosphory-
lated H2AX (γ-H2AX) (20–22). It is believed that the DSB-
bound BRIT1 then serves as a scaffold for Switch/Sucrose
Non-Fermentable (SWI/SNF) chromatin remodeling complexes
that subsequently render the chromatin accessible to DNA repair
factors, including NBS1, 53BP1, MDC1, phosphorylated ATM,
BRCA1/Chk1, and BRCA2/RAD51 (19, 23–25). However, the
nature of the interactions between these different factors could be
cell type-specific. For example, although loss of BRIT1 in the os-
teosarcoma cell line U2OS abrogates formation of 53BP1 foci (24),
53BP1 foci observed in neurons is independent of BRIT1 (26).
In keeping with its role in DDR, loss of BRIT1 in fibroblasts

leads to both spontaneous and IR-induced genomic instability (24,
27). BRIT1-null mice are more susceptible to lymphomagenesis,
and BRIT1 expression was found to be significantly decreased in
ovarian and breast cancer samples, suggesting BRIT1 acts as a tu-
mor suppressor (19, 24, 27). In spermatocytes undergoing meiotic
recombination, loss of BRIT1 leads to a failure to recruit BRAC2/
RAD51 to DSBs, leading to infertility in mice (28). Likewise, de-
fects in DDR, in conjunction with uncoupling of mitosis and cen-
trosome cycles, contribute to the attrition of progenitor neurons in
BRIT1-depleted mouse models of microcephaly (26, 29, 30). De-
spite these studies on the requirement of BRIT1 in the repair of
induced and spontaneous DSBs in many contexts over the past
decade, there is yet to be a comprehensive study on its role in CSR,
a process that represents one of the few physiological instances
wherein DSBs are deliberately introduced into the mammalian
genome. Here, we identify BRIT1 in a targeted short hairpin RNA
(shRNA) screen to identify novel effectors of CSR and demonstrate
that its loss impairs CSR and increases frequency of B cells with
unresolved Igh breaks.

Results
BRIT1 Promotes CSR in CH12 Cells. shRNAs against mRNAs encoding
12 known BRCT domain-containing proteins (Table S1) with no
reported activity in CSR were individually transduced into CH12
cells, a murine B-lymphoma line that undergoes CSR from IgM to
IgA in response to a combination of anti-CD40, interleukin-4
(IL-4), and transforming growth factor β (TGF-β). CSR to IgA
was assessed relative to cells transduced with a scrambled shRNA
by quantification of cells expressing surface IgA using flow cytom-
etry (Fig. 1A). Consistent with its essential role in instigating DSBs
(31, 32), shRNAs against AID led to a marked reduction in CSR
(Fig. 1A). Among the 12 candidates examined, shRNAs against
nine impaired CSR, and of these shRNAs, only two, shDBF4 and
shBRIT1, reduced CSR without markedly altering AID expression
(Fig. 1 A and B and Fig. S1). DBF4 participates in initiation of
DNA replication (33), and the CSR defect in shDBF4 cells likely
reflects impaired proliferation. Because loss of BRIT1 leads to
defects in DNA repair during meiotic recombination and increased
genomic instability (27), we decided to investigate its role in CSR.
In multiple independent experiments, shBRIT1 efficiently de-

pleted BRIT1 mRNA (Mcph1) (Fig. 1C) and protein (Fig. 1D)
from CH12 cells and led to a severe and significant defect in CSR
(∼32% in scrambled versus ∼7% in shBRIT1 cells; P < 0.0001;
Fig. 1E). The CSR defect in BRIT1 knockdown CH12 cells
approached the CSR defect observed upon AID depletion (Fig.
1E). Impaired CSR was not due to a defect in AID expression
(Fig. 1 C and D), germline transcription through Igμ and Igα (Fig.
1F), or cellular proliferation (Fig. 1G). Collectively, these findings
suggest that BRIT1 promotes CSR in CH12 cells.

BRIT1 Is Dispensable for B-Cell Development and Maturation. BRIT1-
null mice are sterile, growth-retarded, and born at sub-Mendelian
ratios (28). Thus, to explore the cell-intrinsic requirement of
BRIT1 in B-cell development, BRIT1fl/fl mice (28) were bred to
Mb1-Cre (Mb1Cre/+) mice in which Cre recombinase, driven by the
Mb-1 promoter, is expressed specifically in B-lineage cells starting

from pro-B cells in the bone marrow (34). Mb1Cre/+; BRIT1fl/fl mice
(henceforth referred to as BRIT KO) and control mice (Mb1Cre/+;
BRIT1+/+ or Mb1+/+; BRIT1fl/fl) had comparable cellularity in the
bone marrow and spleen (Fig. S2A). In the bone marrow, the fre-
quency of pro-B cells (B220lo IgM− CD43+), pre-B cells (B220lo

IgM− CD43−), immature B cells (B220lo IgM+), and recirculating B
cells (B220hi IgM+) was similar to control mice (Fig. S2 B and C).
The spleens of BRIT1 KO mice had a normal frequency of B cells
(B220+ CD43−) (Fig. S2D), and the frequency of mature (IgDhi

IgM+) and immature (IgDlo IgM+) splenic B cells in BRIT1 KO
mice was similar to control mice (Fig. S2E). As expected, B-cell–
specific expression of the Cre recombinase did not perturb T-cell
development in the BRIT1 KO mice (Fig. S2 D and F). Further-
more, the frequencies of splenic B-cell subsets (transitional-1,
transitional-2, marginal zone, and follicular) were similar between
control and BRIT1 KO mice (Fig. S2G). Thus, BRIT1 defi-
ciency does not impair B-cell development and maturation in
bone marrow and spleen.

Loss of BRIT1 Impairs CSR in Splenic B Cells. To delineate the role of
BRIT1 in CSR, mature naive splenic B cells (B220+ CD43−)
from wild-type control and BRIT1 KO mice were purified (Fig.
S2H) and stimulated ex vivo with LPS + IL-4 to induce switching
to IgG1. The relative abundance of BRIT1 did not change upon
stimulation, and, confirming effective deletion of the floxed
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Fig. 1. BRIT1 promotes CSR in CH12 cells. (A) CSR to IgA was assessed in
CH12 cells retrovirally transduced with shRNA against indicated target genes.
The dotted line represents the average CSR in cells transduced with Scr shRNA
(n = 2). Exp, experiment; Scr, scrambled shRNA control. (B) Quantitative real-
time PCR analysis of relative levels of AID mRNA (aicda) in each shRNA
knockdown experiment. (C) Quantitative real-time PCR analysis of relative
mRNA levels of AID and BRIT1 in CH12 cells retrovirally transduced with the
indicated shRNAs. (D) Immunoblot analysis of whole-cell extracts of AID or
BRIT1 knockdown cells using antibodies against BRIT1, AID, or α-tubulin (loading
control). (E) CSR to IgA in shBRIT1 or shAID transduced CH12 cells (n = 8; **P <
0.005). (F) Real-time qPCR analysis of relative levels of Igμ and Igα germline
transcripts in CH12 cells depleted for the indicated proteins. (G) Cell proliferation
was assessed by staining cells with carboxylic acid acetate, succinimidyl ester
(SNARF). One representative flow cytometry plot of SNARF dilution at different
time points in live singlet-stimulated CH12 cells is shown (n = 6).
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allele, BRIT1 KO cells had no detectable BRIT1 protein (Fig.
2A). When CSR was assessed by surface expression of IgG1 at
96 h poststimulation, BRIT1 KO B cells were found to be sig-
nificantly impaired in their ability to undergo CSR to IgG1 relative
to control B cells (∼30% for control versus ∼21% for BRIT1 KO;
Fig. 2 B and C). Decreased CSR in BRIT1-deficient splenic B cells
was also evident in the levels of Iγ1–Cμ circle transcripts derived
from the looped-out extrachromosomal DNA generated as a con-
sequence of recombination between Sμ and Sγ1 (35) (Fig. 2D). The
defect in CSR was not due to altered AID expression (Fig. 2A),
germline transcription (Fig. 2E), apoptosis (Fig. 2F), or B-cell pro-
liferation, as measured by both cell counts (Fig. 2G) and dilution of
the cell surface stain carboxyfluorescein succinimidyl ester (Fig. 2H).
Finally, to assess CSR to IgG3 and IgA, splenic B cells were cultured
ex vivo with LPS or LPS + TGF-β + anti–IgD-dextran, respectively.
Similar to what was observed for CSR to IgG1, BRIT1 deficiency
significantly impaired class switching to IgG3 and IgA (Fig. 2 B and
C). Overall, these findings strongly suggest that BRIT1 positively
regulates CSR in ex vivo cultures of stimulated splenic B cells without
affecting AID expression, germline transcription, or proliferation.

BRIT1 Influences Resolution of DSBs During CSR. To explore the
possibility that BRIT1 might influence the repair of DSBs in B
cells undergoing CSR, we analyzed the nature of S junctions. The
extent of microhomology between recombining S sequences has
been used as an effective parameter to assess end-joining pathways
in switching B cells (12). In wild-type B cells, the majority of
junctions are either blunt or have 1- to 3-bp microhomology, a bias
that is largely altered in cells with defects in NHEJ proteins (12).
To assess end-joining pathways mediating CSR, we cloned and
sequenced Sμ–Sγ1 junctions from B cells stimulated with LPS +
IL-4. We observed that BRIT1 KO B cells have fewer S junctions
that are either blunt or have single-nucleotide microhomology
(Fig. 2I). This alteration suggested an aberration in the end-
joining phase of CSR. To substantiate this notion, we performed
two-color fluorescence in situ hybridization (FISH) on metaphase
spreads from activated splenic B cells with probes specific for
sequences upstream and downstream of Igh (36). Although nearly
all metaphases from AID KO B cells showed colocalization of the
two Igh probes, split signals (separated red and green signals) were
significantly higher in BRIT1 KO B cells compared with control B
cells (∼8% versus ∼2.4%, n = 4; P < 0.001; Fig. 2J). These results
demonstrate that a substantial subset of Igh DSBs was left unre-
paired in the absence of BRIT1. Thus, BRIT1 appears to influ-
ence CSR by promoting the resolution of AID-induced DSBs.

BRCT Domains of BRIT1 Are Required for Efficient CSR.The influence of
BRIT1 on the DNA repair phase of CSR suggested that the BRCT
domains might play a crucial role in this process. The correlation
between BRCT domains, per se, and molecular functions in CSR is
not straightforward. For example, the N terminus BRCT domain
of PTIP is required for CSR, whereas the C terminus BRCT
repeats of 53BP1 are dispensable (37, 38). BRIT1 contains an
N-terminal BRCT domain and two C-terminal BRCT domains
(Fig. 3A). To determine the critical BRCT domains that influence
CSR, cDNAs encoding full-length BRIT1 (BRIT1-FL), N-terminal
BRCT-truncated BRIT1 (BRIT1-ΔN) deletions, or C-terminal
BRCT-truncated (BRIT1-ΔC) deletions were cloned into the ret-
roviral vector pMIG (Fig. 3A). These pMIG-BRIT1 constructs
were individually transduced into BRIT1 KO splenic B cells acti-
vated with LPS + IL-4, and CSR to IgG1 was assessed (Fig. 3B).
Although BRIT-FL restored CSR frequency to wild-type levels,
neither BRIT1-ΔN nor BRIT1-ΔC could rescue CSR in BRIT1 KO
cells to a level higher than observed with pMIG alone (Fig. 3 C and
D). Immunoblot analysis showed that the different BRIT1 protein
domains, as well as AID, were expressed at similar levels (Fig. 3E).
These findings suggest that both the N-terminal and C-terminal
BRCT domains of BRIT1 are required for optimum CSR.

BRIT1 Interacts with γ-H2AX in B Cells Undergoing CSR. In fibroblasts
and in cell lines treated with IR, BRIT1 colocalizes with γ-H2AX
foci, and this interaction is dependent on its C terminus tandem
BRCT domains (21, 22). To examine if the interaction between
BRIT1 and γ-H2AX could be detected in splenic B cells, we
immunoprecipitated BRIT1 from BRIT1 KO splenic B cells
retrovirally transduced with BRIT1-FL. Phosphorylated H2AX
(γ-H2AX), but not histone H3, was readily detected in the
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Fig. 2. CSR is compromised in BRIT1-deficient splenic B cells. (A) Immunoblot
analysis of BRIT1 and AID in whole-cell lysates of splenic B-cells from Mb1-Cre
control (Ctrl) and BRIT1 KO mice (0 h, naive; 48 h and 96 h, LPS + IL-4 stimula-
tion). (B) Representative flow cytometry of CSR to IgG1, IgG3, and IgA in splenic
B cells from Mb1-Cre Ctrl and BRIT1 KO mice. (C) Quantification of CSR to IgG1,
IgG3, and IgA in splenic B cells from Mb1-Cre Ctrl and BRIT1 KO mice. (n = 7;
**P < 0.005). (D) Iμ–Cγ1 “circle” transcripts from looped out extrachromosomal
DNA in splenic B cells activated with LPS + IL-4 were assessed by real-time qPCR.
**P < 0.005. (E) Real-time qPCR analysis of relative levels of Igμ and
Igγ1 germline transcripts in splenic B cells activated with LPS + IL-4 at 48 h.
(F) Cell viability of LPS + IL-4 activated splenic B cells was assessed by annexin
V staining. (G) Cell number at different times following stimulation of splenic
B cells with LPS + IL-4 was determined by counting in a hemocytometer. (H) Cell
proliferation was assessed following staining with carboxyfluorescein succini-
midyl ester (CFSE). Representative flow cytometry plot of CFSE dilution at dif-
ferent time points in live singlet splenic B cells stimulated with LPS + IL-4 (n = 6).
Max, maximum. (I) BRIT1 KO and Ctrl B cells were stimulated with LPS + IL-4 for
72 h, genomic DNAwas amplified by PCR, and Sμ–Sγ1 junctions were sequenced.
The percentage of junctions with the indicated nucleotide overlap is indicated
(131 Ctrl and 145 BRIT1 KO sequences were analyzed from three independent
experiments). (J, Left) Splenic B cells were treatedwith colcemid at 72 h after LPS +
IL-4 stimulation, and metaphase spreads were hybridized with probes specific
for sequences upstream of the Igh variable domain (5′ Igh, labeled for green
signal) and sequences immediately downstream of the Igh constant region exons
(3′ Igh, labeled for red signal), and then counterstained with DAPI (blue). The
percentage of metaphases with split signals was quantified. At least 200 meta-
phases for each group were analyzed in four independent experiments. **P <
0.005. Error bars represent means ± SD. (J, Right) Representative examples show
signal from an intact Igh locus (i) and Igh break (ii). (Scale bar, 1.5 μm.)
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immunoprecipitated fraction (Fig. 4A). Additionally, while BRIT1-
ΔN could interact with γ-H2AX, deletion of the C terminus BRCT
domains abolished the interaction (Fig. 4A). Taken together, these
results indicated that in activated B cells, the tandem C terminus
BRCT domains of BRIT1 facilitate its interaction with γ-H2AX.
The interaction between γ-H2AX and BRIT1 in splenic B cells

prompted us to explore if BRIT1 associates with S regions in an
H2AX-dependent fashion. We performed chromatin immunopre-
cipitation (ChIP) experiments with BRIT1 antibodies to assess
BRIT1 localization at the Igh locus. Antibodies against histone
H3 and nonspecific IgG were used as positive and negative controls,
respectively. ChIP-quantitative PCR (qPCR) analysis demonstrated
that BRIT1 was significantly enriched at Sμ compared with the IgG
control and not detected in BRIT1 KO B cells (Fig. 4B). As
expected, γ-H2AX was detected at Sμ in control cells but not in
AID-deficient B cells (Fig. 4B). Additionally, loss of BRIT1 did not
impair occupancy of γ-H2AX at Sμ (Fig. 4B) in keeping with the
notion that γ-H2AX foci are not regulated by BRIT1 (24, 30).
Significantly, BRIT1 was not bound to S region DNA in either AID-
deficient or H2AX-deficient B cells (Fig. 4B), even though BRIT1
protein levels were unaltered in these mutants (Fig. 4C). Taken
together, these results strongly suggest that the C terminus BRCT
domains of BRIT1 facilitate its recruitment to AID-instigated DSBs
at S regions via interaction with γ-H2AX.

Multiple BRCT-Domain Proteins Influence CSR. To examine how the
defect in DSB resolution in an ex vivo setting is manifested during
an immune response in vivo, BRIT1 KO mice were challenged

with the model antigen 4-hydroxy-3-nitrophenylacetyl-chicken
gamma globulin (NP-CGG) (Fig. S3A). In contrast to the CSR
defect observed in splenic B cells activated in culture, no marked
difference in serum Ig levels (Fig. S3B), frequency of NP-specific
germinal center B cells (Fig. S3 C–E), or NP-specific serum Ig
levels (Fig. S3 G and H) were observed. This lack of correlation
between the ex vivo and in vivo results suggests the existence of
compensatory mechanisms en route to mounting an effective
immune response. To explore potential compensatory mecha-
nisms in BRIT1 KO B cells, we used the ex vivo B-cell culture
system as a convenient platform for molecular dissection of CSR.
The DDR protein ATM is a major effector of CSR, in part,

through its ability to phosphorylate H2AX. To explore the ATM–

γ-H2AX–BRIT1 axis in CSR further, we treated splenic B cells
with the small-molecule ATM inhibitor ATMi (39). In control
cells, ATMi addition led to an ∼50% reduction in CSR to
IgG1 over what was observed upon vehicle treatment without al-
tering levels of BRIT1 or AID (Fig. 5 A–C). Inhibition of ATM in
BRIT1 KO B cells also led to a significant reduction in CSR.
However, loss of BRIT1 did not exacerbate the CSR defect im-
posed upon ATM inhibition (Fig. 5 A and B), suggesting that ATM
and BRIT1 likely participate in overlapping pathways, with ATM
acting upstream of BRIT1 by phosphorylating H2AX, and the
γ-H2AX subsequently recruiting BRIT1 to DSBs. These results,
along with the observation that the CSR defect in ATM-deficient B
cells (40–42) is more severe than in BRIT1 KO B cells, lend support
to the notion that a putative BRIT1-independent DSB resolution
factor would function downstream of the ATM–γ-H2AX axis.
Besides interacting with BRIT1, γ-H2AX also interacts with the

BRCT-domain protein MDC1 to facilitate its recruitment to DSBs
(22). In fact, the BRCT domains of both BRIT1 and MDC1 interact
with γ-H2AX peptide with similar affinities (22), suggesting that
BRIT1 andMDC1 could provide alternate mechanisms to the repair
of DSBs downstream of the ATM–γ-H2AX axis (22, 43). We
therefore sought to examine if BRIT1 and MDC1 could both con-
tribute to CSR. We used several shRNAs to deplete MDC1 from
control or BRIT1 KO splenic B cells (Fig. 5D and Fig. S4). Loss of
MDC1 led to a significant yet modest reduction in CSR (Fig. 5 E
and F), in keeping with what was observed in MDC1 KO B cells (8).
However, loss of MDC1 in BRIT1 KO splenic B cells led to a sig-
nificantly more profound defect in CSR than observed in B cells
lacking either factor (Fig. 5 E and F and Fig. S4 B and C). These
results suggest that MDC1 has BRIT1-independent activity in CSR
and support the idea that both BRIT1 and MDC1 could process
DSBs downstream of the ATM–γ-H2AX axis. The findings, in ad-
dition, raise the intriguing possibility that MDC1-mediated mecha-
nisms could be engaged in the absence of BRIT1 in vivo, leading to
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compensation for DSB-resolving activity and lack of an observable
phenotype in BRIT1 KO mice during an in vivo immune response.
Further studies using genetic models will be required to evaluate how
loss of both BRIT1 and MDC1 impacts an in vivo immune response.

Discussion
In this work, we identified BRIT1 as an effector of the DDR re-
sponse during CSR. Our results are consistent with a model wherein
AID-instigated DSBs lead to ATM activation, H2AX phosphoryla-
tion, and association of BRIT1 at the Igh loci. Bound to Igh DSBs,
BRIT1 could serve as a scaffold to recruit factors that resolve S re-
gion DSBs to complete CSR; the identity of such factors remains
to be elucidated. Our results also demonstrate a previously
underappreciated genetic interaction between BRIT1 and MDC1 in
CSR. Although loss of either protein alone leads to a significant,
albeit modest, reduction in CSR, loss of both proteins together
markedly accentuates the defect. These results support the notion
that the C-terminal BRCT domains of both BRIT1 andMDC1 could
individually interact with γ-H2AX (22) and be recruited to S region
DSBs during the resolution phase of CSR. Whether the DSBs pro-
cessed by MDC1 and BRIT1 use distinct or overlapping sets of
proteins to mediate ultimate end-joining is yet to be resolved.
The DDR protein 53BP1 has been implicated in BRIT1-

dependent DSB resolution following IR-induced damage;
53BP1 loss also leads to a profound CSR defect (8, 11, 19, 44–
46). However, the reduction in levels of 53BP1 bound to S
regions in BRIT1 KO B cells is modest and statistically insignificant
(Fig. S5), suggesting either that BRIT1-independent mechanisms
promote interaction of 53BP1 with DNA or that subtle changes in
chromatin–protein interactions could not be evaluated in our ChIP

assays. Interestingly, there are significant levels of 53BP1 bound to
S regions in AID-deficient B cells (Fig. S5). This observation leaves
open the possibility that BRIT1 with associated SWI/SNF might
facilitate the recruitment of proteins, such as Rif1 (14), that are
required for 53BP1 function in CSR. An additional layer to this
complexity is derived from the observation that H2AX-dependent
and H2AX-independent pathways exist for the recruitment of
factors such as 53BP1 to execute efficient DSB repair (47, 48).
This observation could also explain why the CSR defect in 53BP1-
deficient B cells is more profound than the CSR defect observed
upon loss of BRIT1 (44).
During V(D)J recombination, the RAG proteins remain bound

to the DSBs as a postsynaptic complex and shepherd the lesions in
such a fashion that end-joining is almost entirely reliant on NHEJ
(49). On the other hand, AID, per se, has no reported role in
enforcing a specific end-joining pathway during the resolution of
DSBs. Although AID can directly promote recruitment of factors
such as RPA that protect DNA ends (50, 51), in all likelihood,
AID-instigated DSBs can be processed by multiple factors and
parallel pathways, including BRIT1 and MDC1. Additional work
would be required to delineate the BRIT1-reliant and BRIT1-
independent pathways that can resolve Igh breaks to promote
CSR and suppress genomic instability.

Materials and Methods
Animals. Aicda−/− mouse strain (AID KO) was a kind gift of Tasuku Honjo,
University of Kyoto, Kyoto, Japan (31). Other mice used in the study, including
Mb1Cre/Cre, Mb1 (for breeding), Mb1Cre/+ (for controls), H2AXfl/fl, and Mcph1fl/fl,
have been described previously (28, 34, 52). The care and use of mice were
performed with the approval of the Memorial Sloan Kettering Cancer Center
(MSKCC) Institutional Animal Care and Use Committee in accordance with
institutional guidelines.

Real-Time Quantitative PCR. To assess germline (switch) transcripts and circle
transcripts (10), total RNA was extracted with TriZOL reagent (Invitrogen)
from CH12 cells or primary B cells and cDNA was synthesized using Super-
ScriptIII reverse transcriptase (Invitrogen), followed by real-time PCR analysis
(SYBR green; BioRad). Values were normalized to β-actin mRNA. Primers are
listed in Table S2. Knockdown efficiency of shRNA in CH12 cells was de-
termined by RT-qPCR analysis, normalized to β-actin mRNA as described pre-
viously (54). Primers for target genes are listed in Table S1.

B-Cell Purification and Retroviral Infection in Splenic B Cells. Splenic B cells
were purified from 8- to 10-wk-old mice by negative selection using anti-
CD43magnetic beads (Miltenyi Biotec) according to themanufacturer’s protocol.
A total of 3 × 106 B cells were plated at a density of 1 × 106 cells per milliliter and
stimulated with 30 μg/mL LPS (Sigma) plus 25 ng/mL mouse IL-4 (R&D Systems).
At 24 h and 48 h poststimulation, cells were layered with retroviral supernatants
generated and centrifuged at 2,000 × g for 90 min at 32 °C, after which viral
supernatants were aspirated and fresh B-cell media plus LPS and IL-4 were
added. B cells were harvested at 96 h for flow cytometry analysis or to prepare
lysates for Western blotting. Retrovirus supernatant was prepared by cotrans-
fecting pMIG or pMIG-BRIT1 with packaging vector pCL-Eco into HEK293T cells
using calcium phosphate. In MDC1 knockdown experiments, retrovirus super-
natant was prepared by pSuperior.retro.puro MDC1 shRNAs (sh1 and sh2) or
pGFP-V-RS mouse MDC1 shRNAs (sh3 and sh4) into Phoenix cells. The shRNAs
(sh1 and sh2) against mouse MDC1 (53) were obtained from Titia de Lange,
Rockefeller University, New York. For MDC1 shRNA (sh1 and sh2) knockdown
experiments, puromycin (Sigma) at a concentration of 2.5 μg/mL was added to
the culture 24 h after retroviral infection. The shRNAs (sh3 and sh4) against
mouse MDC1 were obtained from Origene (TG517490). Target sequences are
listed in Table S3.

ChIP. ChIP was performed as described elsewhere (55) with 1 μg of antibodies to
H3 (no. 1791; Abcam), γ-H2AX (07-164; Millipore), 53BP1 (Novus Biologicals), and
BRIT1 (no. 4120; Cell Signaling Technology and no. 2612; Abcam). Splenic B cells
from 8- to 10-wk-old mice were isolated by CD43− selection (Miltenyi Biotec) and
stimulated with LPS + IL4 for 48 h. Relative abundance of regions of interest in
ChIP DNA was measured by qPCR using Power SYBR-Green PCR master mix
(BioRad). Primers for Sμ were as follows: forward, 5′-TAGTAAGCGAGGCTC-
TAAAAAGCAT-3′, and reverse, 5′-AGAACAGTCCAGTGTAGGCAGTAGA-3′.
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Two-Color FISH Analysis. Two-color FISH was performed as described else-
where (36). The 3′ end of Ighwas detected using BAC199, and the 5′ end was
detected using BAC207, a gift from the laboratory of Frederick W. Alt,
Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA.
Chromosome spreads from splenocytes were performed as previously de-
scribed (36). Briefly, cells were incubated in 50 ng/mL colcemid (KaryoMAX;
GIBCO), harvested, hypnotically swollen with 0.075 mol/L KCl for 15 min at
37 °C, fixed, washed in ice-cold 3:1 methanol/acetic acid, and dropped on
slides. Slides were denatured at 75 °C for 4 min, hybridized with probes
overnight at 37 °C, washed, dehydrated, stained with DAPI, and mounted with
VECTASHIELD (Vector Laboratories). Images were captured using a DeltaVision
Elite Imaging System with a customized Olympus IX71 microscope stand
(General Electric). More than 200 spreads were scored for each genotype.
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