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Successful interpretation of available geophysical data requires
experimental and theoretical information on the elasticity of solids
under physical conditions of Earth’s interior. Because iron is con-
sidered as major component in Earth’s core, elastic properties of
iron at high pressures and temperatures are very important for
modeling its composition and dynamics. We use in situ x-ray
diffraction data on «-iron at static pressures up to 300 GPa and
temperatures to 1,200 K to determine the Debye–Waller temper-
ature factors and calculate aggregate sound velocities and Grünei-
sen parameter of «-iron by using an approach that is based on
Rietveld refinement at high pressures and temperatures.

The data on static compression of iron at ambient and elevated
temperatures (1–4) provides important information on com-

pressibility at the conditions present in Earth’s deep interior.
However, information on shear modulus, which is crucial for
calculating sound velocities, is very limited. Mao et al. (5)
published results of a study of elasticity of iron to a pressure of
220 GPa based on a novel method of determination of elastic
moduli with diamond anvil cells (DAC) (6). This method utilizes
the fact that in opposite anvil devices (like DAC) compression
is not hydrostatic. As a result, positions of the reflections on the
powder diffraction patterns depend not only on bulk modulus of
the compressed material, but also on all of the elastic moduli and
a value of deviatoric stress. The method cannot be used at high
temperatures because deviatoric stress in DAC practically van-
ishes above '800 K (4). The mean sound velocities of hcp iron
were extracted from phonon density measurements at pressures
up to 153 GPa and ambient temperature (7, 8). Raman spec-
troscopy (9) of «-Fe at pressures up to 150 GPa gave additional
input to elastic properties of iron at high pressures. However, so
far there are no experimental information on sound velocities of
iron at pressure range of 300 GPa and high temperatures—
conditions that are relevant to Earth’s inner core.

The vibrations of individual atoms, as applied to intensities of
x-ray diffraction peaks, control the Debye–Waller temperature
factor B. This includes all wavelengths of phonons. As a result,
the information on temperature factors has been used over years
to determine Debye temperatures and Gruneisen parameters of
different materials (10–15). The Debye temperature depends on
aggregate elastic properties of a crystal—the adiabatic bulk
modulus KS and shear modulus G (16). Moreover, it was
demonstrated by Anderson (16) that the Debye temperature is
primarily dependent on the shear modulus, and this opens the
way, as we are going to show in the present study, to extract
aggregate shear and compressional sound velocities from data
on temperature factors.

Following Grimvall’s (12) consideration and using dispersion
relation (10, 11)

v~q! 5 VsoundS2qD
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where v is the circular frequency, Vsound is the sound velocities,
q is the wave number of a lattice mode, and qD is the Debye
cut-off wave number. We found for the Debye–Waller temper-
ature factor (15) that
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where \ is the normalized Planck constant, kB the Boltzman
constant, T the temperature, N the Avogadro’s number, V the
molar volume, r the density, Ks the adiabatic bulk modulus, and
M the molar mass.

At high temperatures Eq. 2 could be significantly simplified:
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Eq. 3 makes clear that there is a correlation between shear sound
velocities and the Debye–Waller temperature factor.

In Fig. 1, we compare the aggregate Vs for 30 metals with bcc,
fcc, and hcp structures obtained from direct observations and
calculated with Eq. 2 from temperature factors (10–12, 16–27).
The standard deviation of calculated Vs from the experimentally
observed shear sound velocities is less than 5%. For hcp metals
(Fig. 1), the unit cell parameters (cya) ratio covers the range
from 1.55 to 1.65, which is the whole range expected for « (hcp)
iron (1, 4). For metals Zn and Cd (cya 5 1.88), Vs calculated with
Eq. 2 differ from experimental ones by 30%. For a-Fe, aggregate
shear moduli at pressures to 5 GPa were found (15), in good
agreement with ultrasonic measurements. Therefore, if pressure
and temperature dependence of the temperature factor, adia-
batic bulk modulus, and molar volume are known, it is possible
to estimate the aggregate sound velocity (both shear and com-
pressional), as a function of P and T. Recently (4), we deter-
mined the equation of state for «-Fe based on experimentally
measured P–V–T data (pressures to 300 GPa and temperatures
to 1,400 K). By combining those data with the data on the
temperature factor of «-Fe, as presented here, we can calculate
the aggregate sound velocities of hcp iron at pressures corre-
sponding to the physical conditions of Earth’s core.
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Experimental Procedures
In situ x-ray experiments were performed on the beamline ID 30
at the European Synchrotron Radiation Facility (ESRF,
Grenoble, France) and in Uppsala by using electrical (external
and internal) heating. We also cross-checked volume determi-
nations at high pressures and temperatures at Brookhaven
National Laboratory (BNL, the beamline X-17C).

In Uppsala we obtained powder x-ray diffraction data with a
Siemens x-ray system consisting of a direct-drive rotating anode
generator (18 kW), a charge-coupled device (CCD) area detec-
tor (512 3 512 pixels), a zoom video system for sample visual-
ization and alignment, and a capillary focusing system. MoKa

radiation is focused on a sample position of 30–40 mm full width
half maximum (FWHM). Sample to detector distance varied
from 170–310 mm.

At the ID30 beamline at ESRF two focusing mirrors provide
a bright monochromatic (l from 0.3738–0.4245 A) x-ray beam
in a 8 3 10 mm2 spot at the sample location from two phased
undulators and a channel-cut Si (111) monochromator. Spectra
are collected with an image-plate system (FastScan or MAR345)
placed 250–350 mm from the sample.

At BNL we used polychromatic x-ray radiation collimated to
10 3 12 mm2 in FWHM. Powder diffraction data were collected
with a Ge detector placed at the 2u angle 8°.

In all experiments pressure was determined from the «-Fe
thermal equation of state (4) and, when possible, at pressures
below 45 GPa, cross-checked from the equation of state of a
pressure medium (Ar, NaCl, CsCl, etc.) (49, 50).

We heated the samples externally in a Mao–Bell-type DAC.
Details of experimental set-up and a procedure are described
elsewhere (4, 28). Examination of the samples following com-
plete decompression after experiments did not reveal any signs
of oxidation andyor contaminations.

Results and Discussion
The integrated intensities of a Bragg reflection is related to the
Debye–Waller factor: IBragg ' exp(22Bzsin2uByl) (10). An
experimental determination of ln(Icor) versus (sin2uByl) (uB is
the Bragg diffraction angle, l the wavelength of radiation)
should yield a straight line whose slope is 22B (‘‘Wilson plot’’)
(10). We define Icor as an experimental intensity corrected for a

number of factors [polarization, absorption, extinction, thermal
diffusive scattering (TDS), preferred orientation, etc.]. All of the
corrections in experimental intensities can be introduced simul-
taneously for a whole diffraction pattern in the procedure of the
Rietveld refinement, which allows accurate determination of the
temperature factor (Method I) at elevated temperatures and
pressures (29–31). However, the Rietveld refinement for dia-
mond anvil cell experiments, especially at very high pressures, is
associated with considerable difficulties (32). One problem is
poor crystallite statistics (‘‘spotty lines’’). We used submicron
iron powder, which allowed us to get smooth continuous lines
even at pressures over 300 GPa and temperatures above 1,000 K
(Fig. 2). Another problem is that a strong preferred orientation
usually developed in hcp metals, including «-Fe (1, 4). It leads to
a decrease of intensity or even disappearance of some reflections
[for example (002), reflection of «-Fe; refs. 1, 4, and 32].
Although the Rietveld refinement program can handle the effect
of preferred orientation, we found a strong correlation between
temperature factor parameters and preferred orientations for
«-Fe. Therefore, determination of temperature factor from
powder diffraction data for the samples with strong effects of
texture is unreliable. Fortunately, if the initial sample consists of
submicron particles and the phase a is transformed to « phase at
temperature around 800 K, preferred orientation in «-Fe is
almost absent (Fig. 2).

The most difficult problem in the Rietveld refinement is the
existence of a deviatoric stress in DAC, because it can influence
both the position and the shape of the reflections (5, 6, 32). At
comparably low pressure (below 45 GPa), we conducted exper-
iments in a soft pressure medium (Ar, CsI, CsCl, etc.), but at
multimegabar pressures even helium could not provide hydro-
static conditions, and we did not use any pressure medium above
100 GPa. However, homogeneous heating above 1,000 K dras-
tically reduces stresses (4, 32, 33) (Fig. 2b). To illustrate this
statement we can use the equations of theory of diffraction at
nonhydrostatic conditions (48). According to ref. 48, for a
hexagonal sample under deviatoric stress condition, studied in
the angle-dispersive mode with a loading direction parallel to the
incident beam, one can write

dhk0 5 Hhk0aF1 1
t

6^Ghk0&
~3 sin2uhk0 2 1!G, [4a]

d00l 5 H00lcF1 1
t

6^G00l&
~3 sin2u00l 2 1!G, [4b]

where dhkl is the d-spacing, a and c are the lattice parameters, uhkl
is the Bragg diffraction angle, t is the component of deviatoric
stress, ^Ghk0& and ^G00l& are the average shear modulus in (hk0)
and (00l) planes, respectively, Hhkl is the coefficient: H100 5
=3y2, H110 5 1y2, H002 5 1y2, H004 5 1y4.

The expressions Dhk0 5 d100yd110 2 H100yH110 and D00l 5
d002yd004 2 H002yH004 could be used to evaluate the stress state
in the sample—if Dhk0 and D00l deviate from 0, material is under
stress. For the sample compressed at ambient temperature to
273(2) GPa we obtained Dhk0 5 0.0082(3) and D00l 5 0.0094(3);
upon heating at 274(2) GPa and 640(10) K Dhk0 5 0.0084(3) and
D00l 5 0.0091(3); at 273(2) GPa and 840(10) K Dhk0 5 0.0011(3)
and D00l 5 0.0014(3), and at 273(2) GPa and 1,115(10) K Dhk0 5
0.0003(3) and D00l 5 0.0002(3). In other words, with temperature
increase at 273(2) GPa and 1,115(10) K, stresses in the sample
vanish and an accurate structural refinement is possible (Fig. 2b).

Thermal vibration in hcp metals could be completely charac-
terized by two anisotropic temperature factors, Ba and Bc (10).
Our attempts to refine Ba and Bc separately for «-Fe led to the
same values within the accuracy of calculations. This result could
mean that atomic thermal vibrations in «-Fe are really close to
isotropic, or that our powder diffraction data are not sensitive

Fig. 1. Comparison of aggregate Vs obtained from direct observations and
calculated with Eq. 2, using temperature factors for 30 metals with bcc
(diamonds), fcc (squares), and hcp (hexagons) structures (10–12, 16–27). The
standard deviation of calculated Vs from those experimentally observed is less
than 5%. For hcp metals shown in the figure the cya ratio covers the range
from 1.55–1.65, or all reasonable values expected for « (hcp) iron (1, 4).
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enough for the Rietveld refinement with anisotropic tempera-
ture factors.

Because the Rietveld refinement or the Wilson plot is sensitive
to the deviatoric stress, one may determine the temperature
factor from the temperature dependence of the integrated
intensity of a reflection Ihkl

T at a given pressure (10, 34, 35)
(Method II):

lnSIhkl
T

Ihkl
T0 D 5 2

2
l2 ~B~T!sin2uB

T 2 B~T0!sin2uB
T0! [5]

(intensities are corrected for thermal diffusive scattering and T0
is the reference temperature). If the temperature factor is
obtained by the Rietveld refinement method at a certain tem-
perature T0 (for example, at high pressure and sufficiently high

temperature, when deviatoric stresses are low), the temperature
factor at another temperature could be found by using Eq. 2. We
applied this method for (100), (002), and (101) reflections of
«-Fe (for those lines we were able to record full Debye rings) and
found that the temperature factors, determined from any of
those lines, are the same within the precision of measurements
(Fig. 3a). Therefore, anisotropy of «-Fe does not change signif-
icantly with increasing temperature (at least in the temperature
range of our study up to '1,300 K).

The temperature factor of «-Fe was determined by the two
methods for 46 different P–T points (Fig. 3b). The phonon
density measurements of «-Fe at pressures up to 42 GPa and
ambient temperature conducted by Lübbers et al. (7) allowed for
the extraction of information on mean-squared thermal displace-
ments ^x2&, related to the Debye–Waller temperature factor B 5

Fig. 2. (a) Examples of images collected on the ID30 beam line at the European Synchrotron Radiation Facility with monochromatic 0.3738 Å radiation with
an image plate, demonstrating the dependence of the diffraction pattern on methods of samples preparation. (Left) «-Fe was synthesized under compression
at room temperature in fluid pressure medium from 2-mm-thick iron foil. At 21(1) GPa the (002) diffraction line is absent. (Right) «-Fe at 298(3) GPa and 1,130(10)
K was synthesized from submicron particles and transformed from a to « phase at temperature 800–850 K. The preferred orientation in «-Fe is almost absent
and the reflections (100), (002), and (101) are presented by continuos lines. Spots are due to diamonds. (b) Typical example of analyzed integrated patterns of
the spectrum collected at 1,115(10) K and 273(2) GPa. The GSAS program package (30) was used. The background is subtracted.
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8p2^x2&. It is remarkable that mean-squared thermal displace-
ments, which are usually difficult to reproduce by different
methods (18, 20), came out reasonably close; at 42 GPa, for
example, Lübbers et al. (7) reported 0.00203(7) A2, whereas our
value at the same pressure is 0.0019(1) A2. [Note that the value
given by Lübbers et al. (7) for a-Fe at ambient conditions,
0.00413(7) A2, significantly deviates from the value recom-
mended by the Neutron Diffraction Commission of the Inter-
national Union of Crystallography, 0.00443 A2 (20).]

Measured at different pressures and temperatures, tempera-
ture factors of «-Fe were used for calculating the Vs from Eq. 2
(Fig. 3c). Together with the data on KT, a, and dependence of
Vs on molar volume (4, 16), we may also determine Vp (Fig. 3d).
We should note that the thermal equation of state (4) provides
the isothermal bulk modulus KT, which is related to the adiabatic
bulk modulus as Ks 5 KT(1 1 agT) (a is the thermal expansion,
g the Grüneisen parameter). Numerical estimates show that
differences between KT and Ks for «-Fe (36) are less than 2% at
temperatures lower than 1,400 K, introducing a negligible error
in sound velocities calculated from Eq. 2. If the dependence of
the Grüneisen parameter g on volume has the form of g 5
g0(r0yr)q (r is the density, index 0 refers to the reference state
1 bar and 295 K, q is the constant) (16, 21), one can get the
following equation for the sound velocity Vi (‘‘i’’ could be ‘‘p’’ or
‘‘s’’ for compressional or shear waves, correspondingly)

Vi 5 Vi0Sr0

r
D1y3

expF2
gi0

qi ^Sr0

r
Dqi

2 1&G. [6]

In Eq. 5 we used the acoustic gac approximation to the Grüneisen
parameter g: gac 5 1y3(gp 1 2gs) (16, 37). The results of
determination of parameters of Eq. 5 by fitting all of the
available data (Fig. 3) on sound velocities as a function of volume
are presented in Table 1. We found that Eq. 5, with parameters
from Table 1, reproduces data both on Vs and Vp with accuracy
better than 1% and we used it for further extrapolation of the
sound velocities to the conditions of Earth’s inner core. At the
temperatures of Earth’s core (5,000–7,000 K) the electronic
contribution together with lattice vibrations could affect the
total Grüneisen parameter. However, according to the modern
ab initio theoretical calculations (45) the lattice contribution
dominates the total Grüneisen parameter at high compressions.
For example, it was found (45) that the total and the lattice
Grüneisen parameters were practically the same at 3,000 K and 280
GPa (extreme point probed by calculations in ref. 45). Based on the

Fig. 3. (a) Dependence of the difference between temperature factor at temperature T (BT) and 1,115 K (B1115) on ln(Ihkl
T yIhkl

1115) for the (100), (002), and (101)
reflections of «-Fe (for those lines we registered full Debye rings). (b) Temperature factor of «-Fe determined by different methods (I or II) for 46 different P–T
points. Red hexagons present B obtained from the Rietveld refinement (Method I). Continuous lines correspond to B obtained for constant pressures by Method
II. (c) Shear waves Vs of «-Fe found from temperature factors (symbols are the same as in b). (d) Compressional waves Vp of «-Fe found from temperature factors
(symbols are the same as in b).

Table 1. Parameters of Eq. 5 as obtained by fitting all available
data on sound velocities as a function of volume

Shear sound velocity Compressional sound velocity

gi0 1.549 (8) 2.144 (38)
QI 0.852 (18) 0.656 (62)
Vi0 mys 3142 (28) 5787 (26)
r0*, gycm3 8.298 8.298

*Fixed on value for P 5 1 bar and T 5 295 K (4).
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theoretical data in refs. 45 and 46 and our data for gac, we estimated
maximum possible corrections in sound velocities at 330 GPa and
5,000 K as 2.5%. This value is well below the uncertainties associ-
ated with the theoretical calculations in refs. 45 and 46 or with the
determinations of sound velocities from Eq. 2.

The longitudinal wave velocities in iron to 110 GPa measured
by inelastic x-ray scattering (47) are in quantitative agreement
with our data (Fig. 4). At ambient temperature, aggregate sound
velocities, obtained in the present study, are close to those found
in refs. 5 and 8 to moderate pressures ('100 GPa), but at higher

pressures our value of Vs is lower and for Vp higher than the
values in refs. 5 and 8. Such differences could be, for example,
due to the effect of nonhydrostatic conditions (5, 8), which
should be not so significant in our experiments, because samples
were thermally relaxed. Still, although the mean values of sound
velocities obtained in the present study and ref. 5 are different,
the intervals of uncertainties are overlapping. For example, at
298 K and 211 GPa, the lowest estimated value of Vs in ref. 5 is
5.05 kmys, and the upper limit according to our data is 5.17 kmys.
Theoretical calculations at 0 K (38–40) predict higher Vs, in
comparison with our room- or high-temperature data, but our
results (Fig. 3a) support comparably low anisotropy of «-Fe as
found by ab initio studies (40). The high temperature shock-wave
Hugoniot sound velocities for «-Fe to 200 GPa (41, 42) are close
to our data (Fig. 4), but the difference becomes greater at high
pressure because of high temperature along Hugoniot. Combin-
ing the Hugoniot data on Vp and Vs at 4,407 K and 200 GPa with
low-temperature data from the present study, we estimated
1yVpzDVpyDT 5 22.3 1025 K21 and 1yVszDVsyDT 5 23.9 1025

K21 in good agreement with phenomenological calculations by
Stacey (36). Moreover, the acoustic Grüneisen parameter gac
calculated from our data (Table 1) for 5,000 K and 330 GPa is
equal to 1.207, which is close to the value of the Grüneisen
parameter obtained directly from considerations of the physics
of Earth’s core and the Preliminary Reference Earth Model
(PREM) (36, 43, 44). The large (4–63) extrapolation of our data
in temperature to the inner core conditions requires caution,
because when close to the melting temperature the properties of
a solid could change significantly. However, by using
1yVpzDVpyDT and 1yVszDVsyDT estimated above, we can find Vp
5 10.8(1.1) kmys and Vs 5 3.9(4) kmys (29) at 350 GPa and 6,000
K; these are close to the PREM values of Vp 5 11.18 kmys and
Vs 5 3.60 kmys. Considering the uncertainties in temperature
and PREM values of sound velocities, and a possible change in
the state of iron [in the inner core it could be b- or u-phase (4,
10, 44)], agreement between PREM sound velocities and mea-
sured values is remarkable.
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