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Abstract

With the increasing prevalence of end stage renal disease there is a growing need for hemodialysis. 

Arteriovenous fistulae (AVF) are the preferred type of vascular access for hemodialysis but 

maturation and failure continue to present significant barriers to successful fistula use. AVF 

maturation integrates outward remodeling with vessel wall thickening in response to drastic 

hemodynamic changes, in the setting of uremia, systemic inflammation, oxidative stress and 

preexistent vascular pathology. AVF can fail due to both failure to mature adequately to support 

hemodialysis, as well as development of neointimal hyperplasia (NIH) that narrows the AVF 

lumen, typically near the fistula anastomosis. Failure due to NIH involves vascular cell activation 

and migration and extracellular matrix remodeling with complex interactions of growth factors, 

adhesion molecules, inflammatory mediators, and chemokines, all of which result in maladaptive 

remodeling.

Different strategies have been proposed to prevent and treat AVF failure, based on current 

understanding of the modes and pathology of access failure; these approaches range from 

appropriate patient selection and use of alternative surgical strategies for fistula creation, to the use 

of novel interventional techniques or drugs to treat failing fistulae. Effective treatments to prevent 

or treat AVF failure requires a multidisciplinary approach involving nephrologists, vascular 

surgeons and interventional radiologists, allowing careful patient selection and the use of tailored 

systemic or localized interventions to improve patient-specific outcomes. This review provides 
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contemporary information on the underlying mechanisms of AVF maturation and failure and 

discusses the broad spectrum of options that can be tailored for specific therapy.
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Introduction

1. The prevalence of ESRD is increasing

Chronic kidney disease (CKD) is increasing in incidence worldwide, and with an estimated 

prevalence of 8%–16%, contributes significantly to the global burden of disease [1, 2]. The 

global prevalence of diabetes in adults is 9.1% (415 million people) according to a report 

published in 2015 by the International Diabetes Federation, rising beyond 10.4% (642 

million people) by 2040 [3], largely due to the global increase in type 2 diabetes and obesity, 

especially in China, India and some developing countries in Africa [4–6]. This increase in 

the number of people developing diabetes has had a major impact on the development of 

diabetic kidney disease (DKD). DKD and an aging population have become the two 

challenges in managing end-stage renal disease (ESRD) worldwide. DKD is the leading 

cause of ESRD, accounting for approximately 50% of cases in the developed world. 

Although overall incidence rates for ESRD attributable to DKD have recently stabilized in 

the USA, these rates continue to rise in high-risk groups such as middle-aged African 

Americans, Native Americans, and Hispanics. The elderly population constitutes the fastest 

growing sector of the ESRD population and have unique needs by virtue of their high 

prevalence of comorbid conditions, slower progression of renal disease, and reduced 

survival; in the Medicare population alone, DKD-related expenditure among the elderly was 

nearly $25 billion in 2011 [7, 8]. With the increasing prevalence of ESRD, there is a growing 

need for renal replacement therapies (RRT).

2. AVF is the preferred form of RRT but is far from optimal

RRTs are the lifeline for ESRD patients. Modes of RRT include peritoneal dialysis (6.4%), 

renal transplant (29.3%), and hemodialysis (HD) (64.2%) [9, 10]. In 2010, 64.7% of patients 

in the United States with ESRD were treated with HD with either arteriovenous fistula 

(AVF), arteriovenous grafts (AVG), or tunneled and non-tunneled central venous catheters 

[11].

The National Kidney Foundation Kidney Disease Outcomes Quality Initiative (NKF-

KDOQI) guidelines and the Fistula First Breakthrough Initiative prefer AVF as the optimal 

access for HD [12], as they have superior patency rates, fewer complications and lower 

health care costs [11, 13–15]. Additionally, a recent systematic review and meta-analysis on 

outcomes of vascular access for hemodialysis remains in support of autogenous access as the 

best approach when feasible: AVF were associated with the best patency and lowest 

infection and mortality outcomes, followed by AVG and catheters [16, 17]. AVF have also 

been recommended in the pediatric population [18].
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However, AVF are not immediately available for use as an access for HD as they must 

mature, e.g. dilate and thicken. Unfortunately, AVF have a high rate of primary maturation 

failure with up to 60% not suitable for HD by 5 months after creation [19–22]. Furthermore, 

a recent systematic review and meta-analysis reported that the primary patency rates of AVF 

were 60% at 1 year and 51% at 2 years, with secondary patency rates of 71% at 1 year and 

64% at 2 years, clearly suboptimal for a permanent treatment [23]. Although there are 

conflicting results regarding sex influence on AVF failure, most studies demonstrated that 

women have prolonged maturation time and decreased patency rate [17, 24, 25]; early 

thrombosis was also associated more frequently with women [26]. Controversially, AVF 

may not be favored for HD access in older patients [27–29]. Olsha et al demonstrated that 

88% of their patients who were older than 80 years had vasculature suitable for autogenous 

access construction, with patency and complications similar to those of their younger 

counterparts, with adequate preoperative planning and postoperative maintenance [29]. 

However, elderly patients with ESRD frequently have a high prevalence of comorbidities, 

short life expectancy, and poor reported quality of life that is associated with lack of AVF 

maturation and diminished primary and cumulative AVF patency [28]; in these patients AVG 

placement might be more beneficial [27, 28, 30].

3. Lack of well-established clinical criteria to define AVF maturation or failure

AVF maturation is considered clinically successful if 6 weeks after surgery the fistula 

supports a flow of 600 mL/min, is located at a maximum of 6 mm from the skin surface and 

has a diameter of >6 mm [12], but this definition is difficult for clinical use. The North 

American Vascular Access Consortium definition may be more useful: a fistula is mature if 

it can be successfully used for dialysis with two-needle cannulation for two-thirds or more of 

all dialysis runs for 1 month and if it delivers the prescribed dialysis within the prescribed 

time frame [31].

Although there are some clinical criteria to define successful AVF maturation, the clinical 

definition of AVF failure is less clear, with frequent confusion between various types and 

stages of failure. Based on previous criteria and recent multicenter research [12, 26, 31], we 

have defined the 3 types of AVF failure as: early thrombosis, failure to mature, and late 

failure (Table 1).

Many variables contribute to successful AVF maturation or AVF failure: patient age, sex, 

presence of diabetes, obesity, vessel characteristics, surgical technique and surgeon 

experience, preoperative planning and mapping [32–34]. Successful access surgeons 

frequently adhere to the dictum that a successful AVF should be performed in the right 

patient at the right time in the right circumstances based upon comprehensive understanding 

of the mechanisms contributing to AVF maturation and AVF failure. The goal of this review 

paper is to give a basic understanding of the adaptive changes of AVF maturation as a 

framework to understand the mechanisms of AVF failure as well as subsequent treatments.
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Mechanisms contributing to AVF maturation and failure

Mechanisms of AVF maturation

1. AVF maturation integrates outward remodeling and wall thickening—After 

AVF creation, the vein is exposed to a high flow, high shear stress, high pressure, and 

oxygen-rich arterial environment, leading to “maturation” of both the arterial inflow limb as 

well as venous outflow limb. Adaptation of the vein to the increased flow and shear stress of 

the arterial environment requires dilation by outward remodeling of the venous wall, 

(Poiseuille’s law), whereas increases in pressure and tensile stress result in wall thickening, 

(Laplace’s law). During this adaptive remodeling, hemodynamic changes are translated into 

endothelial and adventitial signaling, inducing structural changes in cells and the 

extracellular matrix (ECM); inflammation, growth factors and cell adhesion molecules in all 

three layers of the venous wall are involved with the process inducing remodeling (Figure 1).

1.1 Hemodynamic flow: Blood flow in the cephalic vein is normally approximately 28 ± 14 

ml/min [35]. Successful radial-cephalic AVF have flow rates averaging between 600–1000 

ml/min with higher peak flows in the larger diameter brachial-cephalic AVF. Dixon et al. 

reported that 90% of forearm AVF have flows between 500–2000 ml/min, whereas 90% of 

upper arm AVF have flows between 500–3000 ml/min [36]. Shear stress in the cephalic limb 

of a brachial-cephalic fistula increases from preoperative venous magnitudes of 5–10 

dyne/cm2 to 24.5 dyne/cm2 after one week, which then normalizes to 10.4 dyne/cm2 over 3 

months [37]. With these high magnitudes of flow in the AVF, the character of the flow may 

be disturbed, e.g. non-laminar and disordered, possibly even turbulent [38–41].

1.2 Outward remodeling and wall thickening: AVF maturation is the product of both 

vessel wall outward remodeling and thickening and is thought to be an adaptive process to 

the increased pressure, shear stress, and oxygen tension from the arterial inflow that is no 

longer attenuated by resistive forces of the arterioles and the capillary bed. Different from 

vein grafts, AVF adapt mainly via outward dilation and wall thickening with less intimal 

thickening [42]. Schwartz et al. confirmed this behavior using a rabbit model, showing that 

AVF are exposed to higher flow than vein grafts (AVF: 82 ± 17 ml/min; vein grafts: 16 ± 4 

ml/min) as well as increased shear stress (AVF: 71 ± 50 dyne/cm2; VG: 0.96 ± 0.38 dyne/

cm2). AVF showed increased dilation (AVF: 194%; VG: no change), whereas vein grafts 

were exposed to higher pressure (VG: 62 ± 3 mmHg; AVF: 6 ± 2 mmHg) and had increased 

myointimal area (VG: 4.72 ± 0.83 mm2; AVF: 1.9 ± 0.55 mm2)[43].

Outward remodeling is thought to be mediated by the venous endothelium and adventitia 

that sense hemodynamic forces and integrates these forces to allow successful adaption 

without loss of luminal area and vessel patency [21, 24, 44, 45]. Venous diameter expansion 

is a critical element of outward remodeling and predicts clinical success for both AVF and 

vein grafts [46–48]. Several studies examining venous dilation in AVF reported mean 

diameter increases from 2.3–3.2 to 5.8–6.6 mm by 3 months after fistula creation. These 

values reflect a 45%–86% increase within the first month and an increase of up to 179% 

after 3 months, corresponding to an average cross-sectional area of approximately 10–12 

mm2, to normalize the shear stress [49, 50].
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Wall thickening is the adaptation of the vessel wall to increased pressure. This process 

involves expansion of all the vessel layers via both ECM deposition and cell proliferation 

and migration [44, 45, 51]. Several types of cells are involved in wall thickening, including 

smooth muscle cells, adventitial fibroblasts, and bone marrow derived progenitor cells [45, 

52–54]. The adventitial myofibroblast is critical during venous adaptation to arterial flow 

and helps maintain venous wall integrity and hemostasis after surgical creation of the AVF 

[45]. Myofibroblast precursors residing in the venous adventitia sense the abrupt mechanical 

forces produced by arterial flow to rapidly adjust their genomic expression program to help 

increase vascular resistance. This adaptive response includes the formation of bundles of 

contractile microfilaments and extensive cell-to-matrix attachment sites as well as the 

secretion of MMPs, collagen, and ECM proteins that strengthen the fistula wall [45, 55]. 

Targeting the adventitia to treat NIH is a newer strategy to prevent AVF venous stenosis 

[56].

1.3 Endothelial Signaling: Molecular signaling within the maturing AVF is of vital 

importance to understand and control the normal adaptive response of fistula maturation and 

the abnormal maladaptive response of fistula failure. The release of chemotactic and 

inflammatory mediators from the endothelium during surgical manipulation and 

hemodynamic variation are important during the initial phase of adaptation. Directly after 

AVF creation, high magnitudes of arterial flow result both in passive vascular distention and 

nitric oxide (NO) synthesis by endothelial cells with subsequent vascular smooth muscle cell 

(VSMC) relaxation, resulting in acute vasodilation [57–59]. NO is produced by endothelial 

nitric oxide synthase (eNOS), and is a potent vasodilator and signaling molecule with anti-

inflammatory and anti-platelet properties [51, 59, 60]. eNOS may contribute to adaptive vein 

wall remodeling both through its anti-inflammatory and anti-thrombotic properties as well as 

through its anti-proliferative properties. Both eNOS and inducible nitric oxide synthase 

(iNOS) are upregulated in the AVF and may mediate adaptation; inhibition of eNOS results 

in increased MCP-1 and IL-8, leading to NIH [54, 61]. Endothelin-1 (ET-1) is an 

inflammatory mediator of vasoconstriction and endothelial proliferation. ET-1 expression is 

upregulated in the venous wall and within areas of NIH in AVF as well as in the plasma of 

patients with chronic renal failure and hemodialysis; ET-1 may mediate wall thickening in 

response to localized hemodynamic forces [62–64].

1.4 Matrix remodeling: Venous adaptation of AVF also depends on coordinated synthesis, 

secretion, and degradation of ECM [42]. The matrix metalloproteinase (MMP) family 

regulates ECM remodeling and allows cell migration through degradation of collagen and 

elastin. MMP activity is stimulated by a variety of factors present during vein graft 

adaptation including flow, stretch, mechanical injury, inflammation, and oxidative stress 

[65–69]. In AVF, MMP-2 and MMP-9 expression are upregulated, and a high serum ratio of 

MMP-2 to TIMP predicts AVF maturation [61, 65, 66, 68].

During AVF venous limb maturation, the process of ECM expression, synthesis, secretion, 

and deposition occurs in distinct temporal phases (Figure 2) [70]. Initial ECM degradation 

occurs early after AVF creation, coincident with early increased expression of MMP and 

tissue inhibitor of metalloproteinase 1 (TIMP-1). By day 7 there is increased expression of 
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many collagen subunits as well as changing patterns of MMP expression. By day 21, a later 

phase is characterized by reduced MMP expression and increased expression of larger 

structural and non-collagenous matrix proteins.

Matrix degradation is regulated by MMP whereas matrix deposition is regulated by 

transforming growth factor-β (TGF-β); TGF-β is produced by a variety of cell types present 

in the venous wall, including endothelial, smooth muscle, and inflammatory cells, 

potentially contributing significantly to intimal and medial thickening [63, 71, 72]. TGF-β is 

upregulated at both early and later time points after AVF formation, depending on the model, 

and this expression correlates with ECM accumulation [61, 71, 73, 74].

1.5 Adventitia and perivascular cells: With growing recognition of the importance of the 

adventitia and perivascular cells to vascular remodeling, the role of adventitial fibroblasts 

has gained attention. Recent data suggests that NIH consists of smooth muscle alpha-actin-

positive, vimentin-positive and desmin-negative myofibroblasts that have probably migrated 

from the adventitial layer [52, 75]. AVF failure is associated with an increased adventitial 

fibrosis, myofibroblast activation and capillary rarefaction [76].

Molecular signals originating from the adventitia and perivascular cells play essential roles 

in regulation of vascular development, physiology, vascular wall remodeling, immune 

surveillance, and vascular disease. The adventitia contains many different interacting cell 

types including fibroblasts, microvascular endothelium, nerves, resident macrophages, T 

cells, B cells, mast cells, and dendritic cells; the adventitia is also the home to resident 

vascular progenitor cells [77]. Perivascular adipose tissue (PVAT) plays multiple roles in 

vascular physiology and remodeling including production of vasorelaxing and anticontractile 

factors [78, 79]. One important component of this adipose tissue–derived anticontractile 

activity is adiponectin. Adiponectin is an adipocyte-derived 244 amino acid long peptide 

hormone that regulates metabolic processes such as fatty acid oxidation, and also mediates 

vasorelaxation. Adiponectin receptors on VSMC activate calcium-sensitive potassium 

channels (BKca) leading to stimulation of eNOS activity and production of NO [80]. A 

similar pathway exists in endothelial cells. Together, the production of NO from endothelial 

cells and SMC mediates the anticontractile effects of PVAT-derived adiponectin [79].

Mechanisms of AVF failure

1. Early thrombosis—Blood, flow and the vessel wall, components of Virchow’s triad, 

are traditionally considered to be the three critical components of thrombosis [81]. Patients 

with ESRD show both a bleeding risk and an increased risk of thrombosis. The bleeding 

episodes involve platelet dysfunction, impaired platelet–vessel wall interactions and anemia 

[82–84], in addition to the use of anticoagulants during hemodialysis. Several clinical trials 

have also shown increased risk of both spontaneous venous and arterial thrombosis along the 

entire spectrum of CKD, beginning from CKD stage 2 to stage 5 patients [85–87].

ESRD is characterized by a number of metabolic abnormalities that alter the balance of pro- 

and anti-thrombotic factors that affect both thrombosis and hemostasis [88]. This is likely to 

be an important contributor to the increased risk of thrombosis in patients with ESRD. 

Several pro-thrombotic hemostatic mediators are elevated in CKD patients, including 
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fibrinogen, which directly contributes to a hypercoagulable state [89], soluble 

thrombomodulin [90], soluble tissue factor (TF), thrombin-anti-thrombin (TAT) [91], von 

Willebrand factor (vWF) [91], factor VIII and C-reactive protein (CRP) [91, 92]. The 

generalized inflammatory state, endothelial dysfunction and possibly poor clearance of some 

of the thrombotic mediators may account for this metabolic derangement [89]. CKD and 

ESRD patients have a disrupted endothelial glycocalyx, which also contributes to the 

increased risk of thrombosis [93, 94]. The endothelial cells of uremic patients express 

elevated levels of tissue factor, a crucial procoagulant activating the extrinsic coagulation 

cascade [95, 96]. Uremic endothelial cells also release small extracellular vesicles, called 

microparticles, loaded with TF to augment thrombosis.[96–98].

In addition, hypercoagulable states also predispose to an increased risk of early thrombosis. 

Factor V Leiden polymorphism has been inconsistently implicated [99, 100]. High levels of 

phospholipid antibodies, probably due to the uremic state and high levels of low density 

lipoprotein have similarly shown an association [101, 102].

In the setting of the pro-thrombotic state of ESRD, lack of surgical experience and 

insufficient preoperative vessel mapping can result in early thrombosis. A study from the 

Hemodialysis Fistula Maturation Study group showed that factors that contribute to early 

thrombosis include: female sex, use of forearm AVF, smaller arterial size, draining vein 

diameter of 2 to 3 mm, and protamine use [26]. Patient selection, sufficient preoperative 

mapping and an appropriately experienced surgical team are important to prevent early 

thrombosis.

2. AVF failure to mature

Effects of Hemodynamic Flow and Shear Stress: In response to the hemodynamic 

changes after AVF creation, an AVF will undergo adaptive remodeling with outward 

remodeling and increased wall thickness. But in the setting of pre-existent vasculopathy and 

systemic abnormalities, an AVF will fail to mature either because of aggressive NIH or 

impaired outward remodeling, or both. Although most research on the pathophysiology of 

AVF maturation failure focuses on NIH, the role of vascular outward remodeling should be 

also highlighted [103].

The increased hemodynamics of arterial flow that increases vessel wall shear stress (WSS) is 

likely to be a critical event after AVF creation that promotes AVF adaptation [104–106]. In a 

patient-specific side-to-end fistula, image-based computational fluid dynamics studies 

showed laminar flow within the arterial limbs and a complex multidirectional and 

reciprocating flow field on the inner side of the swing segment in the proximal venous limb 

[106]. NIH is predisposed to occur in the inner wall of the venous segment near the 

anastomosis, and has a strong inverse correlation with magnitudes of shear stress, but is also 

related to flow patterns [107].

In contrast, disturbed flow, with low and reciprocating WSS, induces selective expression of 

atherogenic and thrombogenic genes (pro-oxidant, proinflammatory, procoagulant, and 

proapoptotic) in endothelial cells [108]. Dai et al. compared the effects of two different 

atheroprone and atheroprotective shear stress patterns in vitro and demonstrated an 
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important effect of low and oscillating WSS on the EC cytoskeleton, interleukin production, 

and nuclear translocation of transcription factor NF-κB to enhance expression of adhesion 

molecules [109]. Disturbed flow promotes an inflammatory and thrombotic phenotype in 

arterial ECs, increasing binding of monocyte chemotactic protein-1 (MCP-1) to the cysteine-

cysteine receptor and stimulating SMC migration and proliferation, all of which may 

enhance NIH [110, 111].

Using pulsatile computational fluid dynamics simulation with idealized models of AVF, 

Ene-Iordache et al found that despite the high flow rate after AVF creation, WSS in the areas 

of the juxta-anastomotic vein was low and oscillating, both in end-to-side and end-to-end 

anastomosis configurations [39]. Due to the pulsatility of flow during the cardiac cycle, 

recirculation and reattachment flow with low velocity develops near the wall, inducing 

disturbed flow with low and reciprocating WSS on the inner surface of the juxta-anastomotic 

segment and on the distal artery. In a parametric idealized model of end-to-side AVF, Ene-

Iordache et al further studied whether the anastomosis angle influences the pattern of 

disturbed flow. Quantification of these areas showed that the smaller the angle, the smaller 

the area of low and oscillating WSS, as quantified by the relative residence time. These 

results suggest that an acute anastomosis angle (30°) should be preferred to minimize the 

risk of NIH in the juxta-anastomotic vein [112]. They also demonstrated that in 

hemodialysis patients, the peak shear stress rather than the average shear stress, is the key 

factor in driving vessel dilatation to increase blood volume flow [113].

Bharat et al. performed a clinical study in patients undergoing radiocephalic AVF comparing 

three different anastomotic techniques. A novel technique of vascular anastomosis, the 

piggyback straight-line onlay technique, was characterized by a very small anastomosis 

angle and resulted in very few juxta-anastomotic stenoses compared to the traditional end-

to-side and side-to-side techniques [114]. By using the piggyback straight-line onlay 

technique, disturbed flow is reduced due to the acute angle and the venous wall injury 

produced by the traditional torsion of the juxta-anastomotic vein is minimized [114]. 

Recently, Sadaghianloo et al reported that radial-cephalic fistulae with angles <30° have 

reduced primary and secondary patency and increased numbers of interventions, suggesting 

that, if possible, surgeons should avoid an anastomotic angle of <30° when creating radial-

cephalic fistulae [115]. Chemla et al reported that AVF created with the VasQ™, an external 

support device, showed a high unassisted maturation and patency rate, possibly by 

minimizing flow disturbance around the area of anastomosis [116]. All of these data suggest 

that research based on anastomotic geometry may optimize the flow state and potentially be 

used for preoperative surgical planning.

Responses to injury: Endothelial and vascular injury results in the activation, proliferation 

and migration of fibroblasts, smooth muscle cells, and myofibroblasts from the media and/or 

adventitia to the intima; complex interactions of adhesion molecules, inflammatory 

mediators and chemokines results in venous NIH [117]. During this process, inflammation, 

oxidative stress, cellular phenotype change and migration of vascular cells and ECM 

remodeling play important roles.
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Inflammation: In the inflammatory state of the uremic environment, the injury of AVF 

creation and local hypoxia is characterized by the presence of CD68-positive macrophages 

and CD3-positive lymphocytes. This infiltration is more significant in the setting of CKD 

[118]. Some inflammatory cytokines are upregulated such as IL-6, IL-8, MCP-1, and PAI-1 

[61, 63, 119], and these mediators are associated with fistula failure [120]. IL-6 and TNF-α 
are more highly expressed in thrombosed AVF, and both CRP and fibrinogen are associated 

with AVF failure [121, 122].

CD68- and CD3- positive cells have been found in increased numbers in stenotic vessels. 

Macrophage migration inhibitory factor (MMIF) is hypothesized to play an important role in 

this local inflammatory response, potentiating neointimal thickening by driving 

inflammatory cells toward the neointima and leading to the proliferation of medial and 

intimal cells [123, 124]. MMIF has been identified in clinical and experimental models of 

vascular access. MMIF acts through the CD74 receptor, chemokine receptor 2, and 

chemokine receptor 4 [123]. These in turn act through extracellular signal-regulated and p38 

mitogen-activated protein kinase pathways that up-regulate vascular endothelial growth 

factor (VEGF)-A, interleukin (IL)-8, and monocyte chemotactic protein-1 (MCP-1) [124].

MCP-1 is a potent chemokine that plays an important role in atherosclerosis and other 

vascular diseases through promoting chemotaxis of monocytes and macrophages, activation 

and migration of endothelial cells, proliferation and migration of smooth muscle cells, and 

induction of procoagulant mediators [125–128]. Expression of MCP-1 increased 1 week 

after AVF creation in mice, and was localized within the endothelium, smooth muscle cells, 

and leukocytes in a rodent AVF model. The MCP-1 knockout mouse model showed reduced 

NIH [129]. Moreover, in the murine model of CKD with AVF, there is an increase in gene 

expression of arginase-1, a marker for proinflammatory macrophages, followed by an 

increase in inducible nitric oxide, a marker for reparative macrophages [130]. Thus, MCP-1 

appears to be upregulated very early after AVF creation and serves as a mediator for AVF 

dysfunction and failure.

Oxidative stress: Patients with ESRD have systemic inflammation and oxidative stress; the 

hemodynamic changes and local injury of the AVF procedure may further increase oxidative 

stress in the AVF wall. Oxidative stress and injury stimulates synthesis and secretion of ROS 

that in turn stimulate numerous signaling pathways, regulating diverse processes such as 

smooth muscle cell migration and proliferation as well as activating latent MMP, potentially 

mediating many aspects of venous remodeling [64, 131]. For example, superoxide can 

deplete NO, resulting in disruption of numerous pathways with resultant endothelial cell and 

general vascular dysfunction.

Recent investigations have shown that heme oxygenase (HO) production is related to AVF 

function [132–136]. HO is a cytoprotective and rate-limiting enzyme responsible for heme 

degradation, generating free iron, biliverdin, and carbon monoxide; biliverdin is 

subsequently converted to bilirubin by biliverdin reductase, and free iron is rapidly 

sequestered by ferritin [134]. Bilirubin is a free radical scavenger that blocks lipid 

peroxidation [137]. Carbon monoxide is a physiologically important vasodilator, acting via 

cyclic guanosine monophosphate (cGMP) [138]. HO exerts antioxidant, anti-inflammatory, 
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antiapoptotic, and angiogenic functions through its reactive products [134, 137, 138]. HO-1 

is the inducible isoform, whereas HO-2 is expressed constitutively. Patients with HO-1 gene 

polymorphisms characterized by long GT repeats, resulting in less HO-1 production, were 

more likely to have worse AVF patency [132, 133]. In murine AVF, HO-1 gene expression is 

markedly induced in the vascular smooth muscle cells; HO-1 knockout mice how reduced 

patency with thinner vein walls and increased luminal area, as well as increased expression 

of proinflammatory and pro-oxidant mediators such as MCP-1, MMP-2 and MMP-9 [139]. 

A functional AVF also requires HO-2 [135]. Shear stress can regulate HO-1 activity, with 

high flow inducing HO-1 to generate NO and mitochondria-derived hydrogen peroxide; low 

flow induces lower levels of HO-1 that lead to macrophage infiltration and superoxide 

production within the vessel wall, suggesting an important role for HO in promoting 

outward remodeling and preventing NIH [140].

Cellular phenotype change and migration of vascular cells: The development of NIH is a 

complex process that requires activation, phenotype change and migration of vascular cells; 

NIH that forms at the venous anastomosis of a dialysis access graft or fistula is comprised 

primarily of smooth muscle alpha-actin-positive, synthetic VSMC phenotype or vimentin-

positive and desmin-negative myofibroblasts that probably migrated from the media or 

adventitia layers in response to vascular injury [52, 75]. Other studies have suggested that 

bone marrow–derived cells are capable of differentiation into smooth muscle cells and may 

be another potential origin of neointimal cells [54, 141]. Interestingly, VSMC from the 

proximal artery may contribute substantially to venous intimal hyperplasia; in a murine AVF 

model increased Notch signaling can drive migration of these cells to the venous outflow 

tract [142].

In addition to increased cell numbers, there is synthesis of new ECM within the intima to 

form the lesion of NIH [21, 103, 117]. VSMC also become resistant to NO, decreasing SMC 

relaxation and preventing AVF maturation by reducing the ability to successfully outward 

remodel [143].

These data show that the entire vessel wall is involved in the processes that lead to access 

failure, and suggest additional targets for potential therapy; recent studies have demonstrated 

the potential to target and treat the adventitial space to prevent the adventitial response to 

injury and prevent AVF failure [56, 144, 145].

Growth Factors and Cell Adhesion Molecules: Numerous growth factors and cytokines 

play roles during AVF maturation, particularly by regulating pathways that control ECM 

synthesis, secretion, and degradation, as well as through control of cell proliferation and 

migration [42].

Local inflammation with monocyte infiltration into the AVF increases expression of TGF-β1 

and insulin-like growth factor-1 (IGF-1) [74]. TGF-β1, despite its classically having anti-

inflammatory properties, leads to ECM deposition, potentially causing thrombosis [74]. 

Differences in TGF-β1 polymorphisms, result in differing levels of TGF-β1 production, 

have been correlated with AVF patency [71]. TGF-β is expressed within stenotic AVF, and 

correlates with areas of ECM deposition; TGF-β1 also activates the fibroblast transition to 
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the myofibroblast phenotype [146]; myofibroblasts are the major cellular component found 

in AVF stenoses, producing ECM proteins and MMP [52]. Sustained TGF-β expression 

abolishes myofibroblast disappearance and leads to NIH [63]. In toto, increased expression 

of TGF-β is associated with decreased AVF patency, likely due to increased deposition of 

ECM [73, 74].

Other growth factors participate in AVF maturation. IGF-1 also induces ECM synthesis, 

smooth muscle proliferation and migration, and inhibits apoptosis [74]. Platelet-derived 

growth factor (PDGF) and basic fibroblast growth factor (bFGF) also play significant roles 

in stimulating cell proliferation and migration. Both PDGF-α/β and IGF-1 expression are 

upregulated in AVF [61, 64]. Vascular endothelial growth factor (VEGF) plays several roles 

in vascular remodeling, including stimulation of endothelial proliferation and differentiation, 

modulation of smooth muscle cell proliferation and migration, angiogenesis, ECM 

deposition, and modulation of the inflammatory response. VEGF may also play an 

inhibitory role in AVF adaptation, since overexpression of VEGF-A contributes to negative 

remodeling and NIH, whereas inhibition of VEGF-A is associated with increased lumen area 

and decreased inward remodeling [56].

Selectins facilitate leukocyte adhesion. P-selectin is present on endothelial cells and 

platelets, and E-selectin is present on endothelial cells; ICAM and VCAM facilitate 

additional binding and migration [147]. P-selectin and E-selectin expression are both 

upregulated early after AVF creation, followed by decreased P-selectin expression after 1 

month [61]. VCAM-1, but not ICAM-1, is highly expressed in thrombosed and stenotic AVF 

[121]. β-catenin and c-Myc expression are increased 1 week after AVF creation, correlating 

with decreased N-cadherin and associated with smooth muscle cell proliferation [148].

ECM remodeling: ECM remodeling involves coordinated synthesis, secretion, and 

degradation of ECM, which plays an important role both in normal AVF maturation as well 

as in the development of neointima and AVF failure [20, 21, 149]. ECM degradation occurs 

early after AVF creation, coincident with early increased expression of MMP and TIMP-1 

[70]. Outward remodeling in response to the increased arterial flow requires early expression 

of MMP-2 and MMP-9 to degrade cell basement membranes and the internal elastic lamina, 

allowing vessel enlargement [150]. A high serum ratio of MMP-2 to TIMP predicts AVF 

maturation [65, 66, 68]. Other elastases such as cathepsin S and cathepsin K are also 

upregulated in the AVF and may be associated with degradation of the internal elastic lamina 

[66]. Diminished elastin results in enhanced outward remodeling, suggesting that elastin 

degradation might be an option to improve AVF maturation [151].

However, the disruption of the elastic lamina and loss of integrity of this structural barrier 

may allow migration of medial VSMC or adventitial fibroblasts into the intima. Moreover, 

elastin degradation products can act as chemo-attractants for VSMC. MMP-2 and MMP-9 

are also elevated in AVF stenoses and may play a role in thrombosis. Decreased expression 

of MMP-1, MMP-3, and MMP-9 have been linked to increased AVF failure and stenosis 

secondary to accumulation of ECM and impaired wall remodeling [152]. Although the role 

of TIMP is not clear [65–67], an unbalance of MMP and TIMP may contribute to the failure 

of AVF maturation. ADAMTS-1 is a matrix metalloproteinase that is expressed during AVF 
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maturation and plays a role similar to MMP-2 and MMP-9; reducing ADAMTS1 expression 

leads to positive vascular remodeling [144].

3. Late failure in the mature AVF—Although a mature AVF can support HD, in the 

setting of uremia and other systemic abnormalities, compounded with local injury due to the 

anastomotic configuration as well as repeated needle puncture, even the mature AVF is 

predisposed to eventual failure. NIH worsens with time, typically leading to stenosis of the 

AVF venous limb. This later failure usually requires interventional treatment or surgical 

revision to maintain the access for functional HD.

3.1 Systemic abnormalities: ESRD patients have systemic abnormalities, such as uremia, 

systemic inflammation, endothelial dysfunction, lipid abnormalities, hyperparathyroidism, 

hyperphosphatemia and hypercalcemia [21, 153–155]. These abnormalities may predispose 

the vessel wall to inward remodeling and stenoses after AVF creation.

Uremia: The inherent uremia of ESRD increases inflammation and oxidative stress [154, 

155]. This oxidative stress is further increased by HD, which causes activation of 

phagocytes, release of oxygen radicals, peroxidation of lipids and ultimately depletion of the 

patient’s antioxidant protectants [154, 156]. Certain cytokines implicated in the formation of 

NIH, such as IL-6, TGF-β and TNF-α, are elevated in uremia [120]. Uremia adversely 

affects endothelial function resulting in a prothrombotic state, increasing the tendency for 

calcific uremic arteriopathy (CUA) [88, 157]. CUA is associated with multiple histologic 

abnormalities that collectively result in medial calcification, stenoses, fibrosis, 

proinflammatory and prothrombogenic arterioles that are compatible with a calcific 

obliterative vasculopathy. The mechanism is thought to be initiated by the interaction of 

uremic hyperphosphatemia, multiple uremic toxins, and reactive oxygen species (ROS) with 

decreased local vascular calcification inhibitory proteins such as Matrix Gla protein (MGP) 

and the systemic globulin: fetuin-A—(a2-Heremans-Schmid glycoprotein) AHSG [158].

Systemic inflammation: Inflammation is a typical prominent feature of ESRD and 

contributes to the uremic phenotype in advanced stages of CKD [155]. Systemic 

concentrations of both pro- and anti-inflammatory cytokines are often several fold higher 

than in healthy individuals.[159, 160]. Persistent inflammation is also a major cause of 

vascular aging and vascular calcification [159, 161].

Endothelial cell dysfunction: Due to the negative impacts of uremia and oxidative stress on 

the endothelial cells, flow-mediated, endothelium-dependent vasodilation is markedly 

reduced in uremic patients compared with normal control patients [162, 163]. The reasons 

for this endothelial dysfunction include increased oxidative stress, the presence of NO 

inhibitors such as asymmetric dimethylargine (AMDA) and a reduced number and function 

of endothelial progenitor cells [164]. AMDA accumulates with progressive CKD, and high 

levels are associated with aggressive restenosis after angioplasty [165]. AMDA and 

glycation end products (AGE) lead to decreased NO bioavailability, impairing arterial 

dilation as well as impairing NO-related signaling [166].
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Other abnormalities: Dyslipidemia is a well-established traditional risk factor for 

atherosclerosis in the general population in addition to patients with CKD and may actively 

participate in the increased cardiovascular morbidity [153]. Hyperphosphatemia and 

hypercalcemia, typical features of advanced CKD, are often accompanied by dysregulation 

of parathyroid hormone (PTH), contributing to the inflammatory state [167]. They also 

induce vascular calcification and stiffness [161].

3.2 Pre-existent vascular pathology: The role of pre-existent arterial and venous 

vasculopathy in uremic patients has been gathering increased attention. Vessel morphology 

and function seen with preoperative duplex ultrasound mapping correlate with AVF 

maturation and patency [168]. The systemic abnormalities in ESRD patients induce 

accelerated atherosclerosis, vessel thickening, vascular calcification and stiffness [166, 169]. 

Whereas atherosclerosis is associated with intimal calcification, calcification of the media 

occurs independently of atherosclerotic plaque formation and is commonly observed in all-

diameter arteries in CKD patients [170]. This arterial vasculopathy impairs the vessels 

ability to expand upon exposure to high-flow.

The detrimental effects of CKD on the arterial system may affect veins in a similar manner 

[171]. Marked pre-existing segmental venous disease is frequently present in patients with 

ESRD prior to vascular access surgery [172, 173]. Lee et al. reported extensive calcification 

in the intima and media of venous segments that were harvested at the time of vascular 

access surgery [173]. Venous calcification is likely to reduce venous compliance, as it does 

in arteries, potentially limiting the ability of the vein to dilate and outward remodel for 

successful AVF maturation.

Although minimum vein diameter (MVD) has been reported as a unique clinical factor 

associated with both AVF maturation and long-term patency [174], other studies suggest that 

forearm venous distensibility is a better predictor of successful AVF maturation [175], which 

is consistent with the increased outward remodeling of the venous AVF limb compared with 

the feeding artery [37]. Additional studies are needed to determine the impact of pre-existing 

venous calcification on AVF maturation failure and whether this is a potentially modifiable 

factor for clinical treatment [168].

Future Approaches to Treatment

With only 26–58% of arteriovenous fistulae functional at 1 year various therapies have been 

pursued to treat access failure and improve long-term patency. Many medical treatments 

using different drugs aimed at decreasing access failure and improving patency have been 

examined in patients using an AVF or AVG for HD. A recent systematic review and meta-

analysis reported the effects of aspirin, ticlopidine, dipyridamole, dipyridamole plus aspirin, 

warfarin, fish oil, clopidogrel, and sulfinpyrazone. The study showed that three trials 

compared the platelet aggregation inhibitor ticlopidine versus placebo and favored active 

treatment (OR 0.45, 95% CI 0.25 to 0.82; p = 0.009); three RCT assessed aspirin versus 

placebo and did not show a statistical benefit (OR 0.40, 95% CI 0.07–2.25; p = 0.30); two 

trials compared clopidogrel with placebo and did not favor treatment (OR 0.40, 95% CI 0.13 

to 1.19; p = 0.10); two RCT assessed fish oil and did not favor treatment (OR 0.24, 95% CI 
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0.03–1.95; p = 0.18); and single trials comparing dipyridamole alone, dipyridamole plus 

aspirin, and sulfinpyrazone against placebo favored active treatment but a meta-analysis 

could not be undertaken; a single trial of warfarin versus placebo found warfarin resulted in 

increased bleeding complications and worse patency rates [176]. Despite the overall quality 

of evidence being low with short follow-up, this systematic review showed that there 

currently is no adjuvant treatment showing increased AVF or graft long term patency [176].

Table 2 summarizes the most popular current approaches to treatment of the failing AVF, as 

well as some treatments that may become more popular in the future. Despite surgical 

revision having traditionally been the most effective treatment of local disease, the current 

standard treatment for arteriovenous stenosis is percutaneous transluminal angioplasty (PTA) 

[177] [12]. Although PTA can improve patency and function in some cases of thrombosis 

and stenosis, PTA is not the optimal treatment for many lesions including resistant or 

recurrent stenosis [178]. This section of the review focuses on treatment of AVF access 

failures, broadly dividing them into stimulatory and inhibitory treatments, with further 

division into endovascular approaches, perivascular approaches and internal/external support 

devices.

Stimulatory Treatments

Stimulatory treatments recapitulate AVF maturation by promoting dilation and/or wall 

thickening, encouraging the cells of the intima, media or adventitia to proliferate or 

differentiate into useful phenotypes that will allow the fistula to mature or become usable 

after stenosis or occlusion. The two commonly used stimulatory endovascular approaches 

are currently balloon-assisted maturation (BAM) and angioplasty with stent placement. 

Cutting balloon angioplasty remains popular as well.

Balloon Assisted Maturation

The BAM technique uses repeated balloon angioplasty to disrupt the venous wall and 

sequentially dilate the vein to a larger diameter useable fistula; with this technique, it is 

possible to use even smaller diameter veins for access [179, 180]. However, the concern with 

this technique lies in its very nature; angioplasty injures the intima and media to produce 

NIH [181]. Although balloon injury has been described most commonly in the context of 

arteries, it is likely that veins show a similar response to angioplasty, especially in the uremic 

environment of renal failure. Diabetes, the most common etiology for renal failure, is also 

implicated in endothelial dysfunction. The clinical question is how to modulate the NIH 

response to allow this technique to achieve long term durability and successful use of the 

access site.

Although there is a relative paucity of randomized data on this technique, there are several 

positive short term studies. One report of 53 patients showed 85% secondary patency at 1 

year; complications did include occlusion, conversion to a graft, and ligation due to steal 

[179]. Another report of 42 fistulae with maturation failure treated with 1.45 ± 0.57 balloon 

angioplasties showed a success rate of 46.2% at 1 year; however, there was no significant 

difference in AVF flow ratio between the successful and failure groups [182]. Miller et al 

matured 118 out of 122 fistulae requiring 1.5 interventions per access year with a secondary 
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patency of 75% at 1 year; however 14 patients with upper arm fistulae required stents in the 

cephalic arch to maintain patency [183]. Gallagher et al performed 185 BAM in 45 patients 

(mean 3.7 procedures per patient); all cases except one were successfully dilated but 7 

patients failed to mature due to cephalic arch and subclavian vein stenosis, with maturation 

after angioplasty of the venous outflow [184].

Interestingly, BAM is frequently complicated by vessel rupture but rupture does not 

necessarily cause fistula failure. Derderian et al performed 139 BAM in 30 patients with 74 

hematomas post procedure but still noted a statistically significant increase in flow [185]. 

Although BAM has appeal and early reports suggest that it might be a useful procedure, as 

yet no blinded randomized clinical trial exists to allow for conclusions on its clinical use.

Cutting Balloon Angioplasty

Cutting balloon angioplasty is used to dilate stenoses, and like BAM, creates trauma to the 

vessel wall, but attempts to limit the trauma; longitudinal incisions along the stenosis are 

made in a controlled fashion, at lower pressures than the conventional balloon, potentially 

also reducing risk of vessel rupture. 3 or 4 blades are mounted longitudinally on a non-

compliant balloon that after inflation create incisions and release hoop pressure; the lower 

pressure and decreased force is thought to reduce the risk of a neoproliferative response and 

restenosis [186], and may limit dissection [187]. Several studies have reported improved 

patency at up to 6 months [188–192]. Prospective randomized trials have had heterogeneous 

data but not conclusively shown long term durability [193–195].

Stenting

Angioplasty with stenting of failing fistulae is another tool to treat resistant stenoses; 

multiple studies have reported higher primary and secondary patency rates after stent 

placement, in both fistulae and grafts. One prospective multicenter randomized trial tested 

self-expanding nitinol stents covered with PTFE and showed a higher 6-month patency rate 

in the stent graft group compared to balloon angioplasty alone (51% vs. 23%, p<0.001); 

there was also greater freedom from subsequent interventions (32% vs. 16%, p=0.03) and 

less restenosis (28% vs. 78%, p<0.001) [196]. A meta-analysis of 10 studies suggested there 

was improved primary patency at 6 months in those treated with nitinol stents compared to 

angioplasty; however, bare metal stents showed no significant increase in patency [197]. 

Covered stents can also be used to treat pseudoaneurysms that develop within the access 

[198]. Other issues with stents include how to locate sites for needle cannulation of the 

access in relationship to the stent, as well as the potential for infection of the foreign body.

Elastase Therapy

Elastin within the vessel wall provides elastic recoil and resting vessel tone. In animal AVF 

models, delivery of recombinant human type 1 pancreatic elastase resulted in vessel dilation, 

inhibition of NIH and improved patency [199]. These findings suggest that use of elastase in 

humans could improve AVF dilation and maturation; elastase must be delivered topically 

over the fistula adventitia as elastase is inactivated in blood.

Hu et al. Page 15

Semin Vasc Surg. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A randomized, double blinded, placebo controlled dose escalation study suggested improved 

primary patency at low doses [200]. A second double-blinded, randomized, placebo 

controlled trial suggested improved unassisted maturation but without increased primary 

patency [201, 202]. Without meeting the primary efficacy end point, it is not clear whether 

additional trials will be performed.

Inhibitory Treatments

Inhibitory treatments seek to inhibit NIH. Treatments can be applied primarily to prevent 

initial access failure and possibly promote maturation, or treatments can be applied 

secondarily, to directly treat a failed AVF or to prevent secondary restenosis associated with 

a stimulatory treatment such as angioplasty. Several delivery strategies can be used including 

direct delivery to the endothelium, delivery to the adventitia, or delivery to the entire vessel 

wall; mechanical support devices have also been used.

Drug Eluting Angioplasty

Drug eluting angioplasty has shown encouraging results in the management of coronary 

artery in-stent restenosis and peripheral arterial stenosis; as such there has been recent 

interest to use this technique to treat failing AVF, with paclitaxel being the most commonly 

reported drug. Katsanos et al treated 20 patients with failing arteriovenous fistula with 

paclitaxel coated balloon angioplasty; there was an overall statistically significant 

improvement in primary patency at 6 months (70% vs 25%); however only 35% had 

autologous fistulae and in these cases there was a 45% device success rate with patients 

requiring high-pressure post procedure dilatation [203]. Lai et al treated radiocephalic 

fistulae with either plain balloon angioplasty or plain balloon angioplasty followed by 

paclitaxel-coated balloon; there was increased 6-month patency in the paclitaxel group, but 

not at 12 months [204]. Kitrou et al showed a numerical improvement with paclitaxel coated 

balloon angioplasty compared to plain angioplasty but there was no statistical significance in 

outcome; however, there were only 7 patients in each group [205]. A meta-analysis of 6 

studies, 2 RCT and 4 cohort studies, reported encouraging 6-month patency with drug 

eluting balloon angioplasty (70–97% vs. 0–26%), although in these studies the numbers of 

patients were small and heterogeneous [206]. Infection also remains a concern for paxlitaxel 

[207].

Dual antiplatelet therapy (DAPT) is beneficial and currently recommended for patients with 

coronary stenosis after placement of a DES [208], and also beneficial for patients with 

peripheral arterial diseases to reduce major adverse cardiovascular events and death [209], 

although a recent meta-analysis reported lack of evidence for DAPT after endovascular 

arterial procedures [210]. Although some studies used DAPT or clopidogrel after 

implantation a DES to treat AVF stenosis [203, 211], there is no study of DAPT on the 

outcome of AVF patency after DES treatment.

Cryoplasty

Cryoplasty uses liquid nitrous oxide to fill the balloon during inflation, cooling the vessel 

wall to −10 degrees Celsius, with the goal of inducing smooth muscle cell apoptosis. 

Subzero temperatures induce ice crystal nucleation in the vessel wall extracellular fluid to 
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produce a hypertonic environment, since ice does not incorporate solutes, resulting in 

osmotic dehydration; upon removal of the cold source, the extracellular fluid thaws and 

osmolality returns to normal resulting in rehydration of the smooth muscle cells and 

induction of apoptosis. Cell survival is dependent on the rate of freezing and thawing cycles, 

the lowest temperature reached and the length of time at subzero temperature.

In porcine PTFE grafts there was no significant difference in intimal hyperplasia but a 

significant difference in media to intima thickness ratio at 4 weeks [212]. Rifkin et al treated 

5 patients with perianastamotic PTFE graft-vein stenoses after 3 failed balloon angioplasty; 

3 patients had no recurrence of stenosis at 12 weeks [213]. Gray et al treated 20 patients 

(AVG 18 patients; AVF 2 patients), with 80% needing immediate post cryotherapy 

angioplasty to achieve anatomical success; 3-month patency rates were equivocal at 3 

months but only 16 and 25% at 6 months. Cryotherapy was also more painful than 

angioplasty [214].

Brachytherapy

Endovascular brachytherapy delivers beta radiation to the vessel wall, typically using either 

high doses over a short period of time or low doses over a long period using beta-particle 

emitting stents. Brachytherapy decreases vascular smooth muscle cell proliferation and 

migration [215].

In a canine PTFE graft model, brachytherapy was associated with reduced NIH at up to 9 

months [216]. An early study treating 5 patients with restenosis showed only 2 patients with 

a clinically patent fistula at 6 months [217]. Waksman et al treated 18 grafts with restenosis 

with 11 sites remaining patent at 44 weeks [218]. The BRAVO 2 trial aimed to randomize 

patients into brachytherapy or sham treatment after the promising results of the BRAVO 

pilot, but this trial was halted preliminarily [219, 220].

Adventitial Wraps

The role of adventitial wraps to deliver sirolimus or paclitaxel has been extensively 

investigated; rat, pig, dog and sheep models using paclitaxel wraps showed decreased NIH 

[207, 221–224]. A significant concern with perivascular delivery however, is leak of the 

impregnated drug to surrounding tissues; a clinical trial was stopped early due to a 25% 

increase in infections [207]. This trial, however, used mesh for delivery to PTFE grafts.

Sanders et al used a non-porous polymer barrier laminated with a drug loaded hydrogel to 

allow unidirectional release towards the target area. In a porcine model there was no 

detection of the drug within any surrounding tissues; addition of a polylactide-co-glycolide 

wrap showed acceptable degradation over time and was undetectable by day 35 [224].

An interesting study described a sirolimus-eluting collagen membrane (Coll-R). In a small 

clinical trial of 12 patients, there was minimal toxicity and primary patency rates were 76% 

and 38% at 12 and 24 months respectively [225]. A phase 3 trial is currently in progress.
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Mechanical Support Devices

Mechanical support devices can be used to optimize the geometry of the fistula anastomosis 

to prevent or delay NIH. The Optiflow™ device has been the most studied; in a human pilot 

study safety and technical success were achieved in 10 patients [226]. A follow up study of 

41 patients showed unassisted patency of 78% at 90 days with no device related adverse 

events [227]. Similarly, the VasQ™ device provides an external support to control the 

geometry and flow, with a small study reporting maturation rates of 74% at 6 months [116].

Gene Therapy

Gene therapy continues to be of interest, with research directed towards understanding what 

patient risk factors predispose to access failure and thus might be suitable for appropriate 

targeted gene therapy. Several polymorphisms have been associated with vascular access 

thrombosis including methylenetetrahydrofolate (MTHFR), HO-1, factor V, TGFβ-1 and 

klotho (KL) [71, 133, 177, 228–230]. Polymorphisms of NOS have also been implicated in 

arterial restenosis [231]. Single nucleotide polymorphisms in the gene for Factor V were 

significantly associated with increased risk of access failure despite treatment with 

antiplatelet agents [232].

Gene therapy can alter luminal area and stenosis in large animal PTFE graft models. 

Rotmans et al used C-Natriuretic Peptide to increase lumen area and the intima/media ratio 

[233]. Luo et al. showed reduced NIH with beta-adrenergic receptor kinase C-terminus 

[234].

Gene therapy targeting VEGF-A may be promising. VEGF-A is necessary at low 

concentrations to promote endothelial cell health, nitric oxide and prostacyclin production, 

vasodilatation, antithrombosis and suppression of smooth muscle cell proliferation; at high 

concentrations VEGF-A promotes angiogenesis and vasculogenesis. Systemic VEGF 

receptor gene transfer in rats decreased carotid artery restenosis, suggesting the utility of 

targeting this pathway [235]. Increased VEGF expression is associated with early AVF 

thrombosis in human patients [236], and patients with the VEGF-936C/C gene 

polymorphism have a 5.54 increased risk of fistula thrombosis [237]. Lentivirus inhibiting 

adventitial VEGF-A expression decreased cellular proliferation and constrictive remodeling 

and increased patency in a mouse model [56]. However, a human trial administering VEGF-

D was stopped early due to poor recruitment[238].

Future Directions

Successful hemodialysis requires a strong collagen tube that can be punctured repetitively to 

support the high flows necessary for efficient dialysis exchange. Veins are typically 

preferred, as arterial use can lead to ischemia and prosthetics have reduced patency and 

increased infection. However, the thin walled veins must successfully adapt to the arterial 

environment with a combination of diameter expansion and wall thickening. Failure to 

mature successfully is an important mechanism of access failure, just as NIH is an important 

mechanism of late failure. Accordingly, therapy to promote maturation, e.g. diameter 

expansion and wall thickening, is an important component of providing successful access; 
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however, promoting wall thickening for strength, without exuberant thickening and NIH, is a 

current challenge.

The role of hemodynamics such as shear stress in the development of NIH is recognized, 

especially in the pathogenesis of juxta-anastomotic stenosis that frequently develops along 

the inner wall of the swing segment. Both pharmacological as well as mechanical 

approaches may be applicable for therapy. The new RADAR technique to create AVF, e.g. 

minimizing venous handling and potential for wall ischemia, alters hemodynamics and may 

be a simple and low-cost method to improve access patency [239].

An interesting alternative that may obviate fistulae is the use of tissue engineered blood 

vessels. Although still in development and trials, tissue engineered grafts can resist high 

pressures, providing an endothelial-lined tube that supports dialysis [240, 241]. Continued 

advances in tissue engineering and 3D printing may show that tissue engineered vessels 

might replace the current gold standard fistula.
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Figure 1. 
Schematic representation of the venous wall structural changes that occur after AVF 

creation. AVF successful maturation integrates wall thickening and outward remodeling. A 

failed AVF can be due to early failure to mature, with failure to develop outward remodeling 

or wall thickening, or may be due to later development of neointimal hyperplasia and 

impaired outward remodeling in a previously functional conduit.

Hu et al. Page 34

Semin Vasc Surg. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Diagram depicting the 3 phases of ECM changes during the adaptive process of AVF 

maturation. There is an early phase of ECM breakdown from MMP degradation. A 

transition phase follows with collagen and elastin reorganization of the venous scaffold. A 

later rebuilding phase strengthens the matrix of the AVF with larger non-collagenous and 

glycoproteins. TIMP-1, osteopontin and thrombospondin-2 (TSP-2) are highly expressed 

throughout AVF maturation suggesting regulatory roles for these proteins.
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Table 1

Types of AVF failure.

AVF failure type Time Definition Pathophysiology

Early thrombosis < 3 weeks thrombosis of the access Hypercoaguability

Failure to mature < 6 months Patent access but not suitable for cannulation or high efficiency 
hemodialysis

Inability to remodel outwardly

Late failure > 3 months a mature AVF used for at least 3 months that subsequently develops a 
problem requiring intervention

Neointimal hyperplasia
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Table 2

Current and future approaches to treatment of the failing AVF.

Gold Standard: percutaneous transluminal angioplasty (PTA) or surgical revision

Stimulatory Approaches: promote dilation and/or wall thickening

Application Limitation

Balloon Assisted Maturation Promotes maturation in an AVF with limited 
outward remodeling

Injures intima and media, increasing likelihood of NIH 
and recurrent stenosis; vessel rupture

Cutting Balloon Angioplasty Dilate stenoses with reduced wall trauma Some wall trauma; long term durability

Angioplasty with Stent Dilate stenoses Optimal stent type and design not established; long term 
durability

Elastase Therapy Facilitate vessel dilation Dose and efficacy not established; requires topical 
delivery

Inhibitory Approaches: prevent or inhibit NIH

Drug Eluting Angioplasty Inhibit VSMC proliferation Optimal drug and dose not established; single treatment

Cryoplasty Induce VSMC apoptosis Variability in cell survival after freeze-thaw; more 
painful than angioplasty

Brachytherapy Inhibit VSMC proliferation and migration Dose and efficacy not established

Adventitial Wraps Inhibit VSMC proliferation Wrap design and toxicity; optimal drug and dose not 
established

Mechanical Support Devices Optimize AVF geometry Limited data

Gene Therapy Identifiable patient risk factors Optimal targets not established; ethical considerations 
for human trials

PTA, percutaneous transluminal angioplasty; AVF, arteriovenous fistula; BAM, balloon assisted maturation; NIH, neointimal hyperplasia; VSMC, 
vascular smooth muscle cell
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