
EHRA/HRS/APHRS/SOLAECE expert consensus on atrial 
cardiomyopathies: Definition, characterization, and clinical 
implication

Andreas Goette1 [EHRA chair], Jonathan M. Kalman2 [APHRS co-chair], Luis Aguinaga3 

[SOLAECE co-chair], Joseph Akar4, Jose Angel Cabrera5, Shih Ann Chen6, Sumeet S. 
Chugh7, Domenico Corradi8, Andre D’Avila9, Dobromir Dobrev10, Guilherme Fenelon11, 
Mario Gonzalez12, Stephane N. Hatem13, Robert Helm14, Gerhard Hindricks15, Siew Yen 
Ho16, Brian Hoit17, Jose Jalife18, Young-Hoon Kim19, Gregory Y.H. Lip20, Chang-Sheng 
Ma21, Gregory M. Marcus22, Katherine Murray23, Akihiko Nogami24, Prashanthan 
Sanders25, William Uribe26, David R. Van Wagoner27, and Stanley Nattel28,29 [HRS co-chair]
1Departement of Cardiology and Intensive Care Medicine, St. Vincenz-Hospital Paderborn, 
Working Group: Molecular Electrophysiology, University Hospital Magdeburg, Germany

2University of Melbourne, Royal Melbourne Hospital, Melbourne, VIC, Australia

3Centro Privado de Cardiología, Tucumán, Argentina

4Yale University, New Haven, CT, USA

5European University Quiron-Madrid, Madrid, Spain

6Veterans General Hospital, Taipei, Taiwan

7The Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA

8University of Parma, Parma, Italy

9Mount Sinai School of Medicine, New York, NY, USA

10Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-
Essen, Essen, Germany

Address reprint requests and correspondence: Professor Andreas Goette, Chefarzt Medizinische Klinik II, St. Vincenz-Krankenhaus, 
Paderborn, Am Busdorf 2, 33098 Paderborn. Tel: 05251/861651. Fax: 05251/861652. andreas.goette@vincenz.de. Professor Jonathan 
M. Kalman, University of Melbourne, Royal Melbourne Hospital, Melbourne, VIC 3050, Australia. Tel: +61 3 9349 5400 (PA - Sally 
Diamond). Fax: +61 3 9349 5411. jon.kalman@mh.org.au. Doctor Luis Aguinaga, Presidente Sociedad de Cardiología de Tucumán, 
Ex-PRESIDENTE DE SOLAECE, Sociedad Latinoamericana de Estimulación Cardíacay Electrofisiología, Tel: 54-381-4217676. 
lsaguinaga@gmail.com. Professor Stanley Nattel, University of Montreal, Montreal Heart Institute Research Center, 5000 Belanger St. 
E., Montreal, QC, Canada H1T 1C8. Tel: +1 514 376 3330 ext 3990. Fax: +1 514 593 2493. stanley.nattel@icm-mhi.org. 

Endorsed by EHRA, APHRS, SOLAECE in May 2016, by HRS, AHA, ACC in June 2016. Developed in partnership with the 
European Heart Rhythm Association (EHRA) [a registered branch of the European Society of Cardiology (ESC)], the Heart Rhythm 
Society (HRS), the Asia Pacific Heart Rhythm Society (APHRS), the Sociedad Latino Americana de Estimulación Cardíacay 
Electrofisiología (SOLAECE), and in collaboration with the American College of Cardiology (ACC), the American Heart Association 
(AHA).

Document Reviewers: Osmar A. Centurion (Paraguay), Karl-Heinz Kuck (Germany), Kristen K. Patton (USA), John L. Sapp 
(Canada), Martin Stiles (New Zealand), Jesper Hastrup Svendsen (Denmark), and Gaurav A. Upadhyay (USA)

Review coordinator: Alena Shantsila (UK)

Conflict of interest
A detailed list of disclosures of financial relations is provided as Supplementary material online.

HHS Public Access
Author manuscript
Heart Rhythm. Author manuscript; available in PMC 2018 January 01.

Published in final edited form as:
Heart Rhythm. 2017 January ; 14(1): e3–e40. doi:10.1016/j.hrthm.2016.05.028.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



11Federal University of Sao Paulo, San Paulo, Brazil

12Penn State Heart and Vascular Institute, Penn State University, Hershey, PA, USA

13Department of Cardiology, Assistance Publique–Hôpitaux de Paris, Pitié-Salpětrière Hospital; 
Sorbonne University; INSERM UMR_S1166; Institute of Cardiometabolism and Nutrition-ICAN, 
Paris, France

14Boston University School of Medicine, Boston Medical Center, Boston, MA, USA

15University of Leipzig Heart Center, Leipzig, Germany

16Royal Brompton Hospital and Imperial College London, London, UK

17UH Case Medical Center, Cleveland, OH, USA

18University of Michigan, Ann Arbor, MI, USA

19Korea University Medical Center, Seoul, South Korea

20University of Birmingham, Birmingham, UK

21Anzhen Hospital, Beijing, China

22University of California, San Francisco, CA, USA

23Vanderbilt University, Nashville, TN, USA

24University of Tsukuba, Ibaraki, Japan

25Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, 
University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia

26Electrophysiology Deparment at Centros Especializados de San Vicente Fundación and Clínica 
CES. Universidad CES, Universidad Pontificia Bolivariana (UPB), Medellin, Colombia

27Department of Molecular Cardiology, Cleveland Clinic, Cleveland, OH, USA

28Université de Montréal, Montreal Heart Institute Research Center and McGill University, 
Montreal, Quebec, Canada

29Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, 
University Duisburg-Essen, Essen, Germany

Introduction and definition of atrial cardiomyopathy

The atria provide an important contribution to cardiac function.1,2 Besides their impact on 

ventricular filling, they serve as a volume reservoir, host pacemaker cells and important parts 

of the cardiac conduction system (e.g. sinus node, AV node), and secrete natriuretic peptides 

like atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) that regulate fluid 

homeostasis. Atrial myocardium is affected by many cardiac and non-cardiac conditions3 

and is, in some respects, more sensitive than ventricular.4 The atria are activated, besides the 

three specialized intermodal tracts,5,6 through working cardiomyocytes, so that any 

architectural or structural change in the atrial myocardium may cause significant 

electrophysiological disturbances. In addition, atrial cells (both cardiomyocytes and non-
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cardiomyocyte elements like fibroblasts, endothelial cells, and neurons) react briskly and 

extensively to pathological stimuli3 and are susceptible to a range of genetic influences.7 

Responses include atrial cardiomyocyte hypertrophy and contractile dysfunction, 

arrhythmogenic changes in cardiomyocyte ion-channel and transporter function, atrial 

fibroblast proliferation, hyperinnervation, and thrombogenic changes.2 Thus, atrial 

pathologies have a substantial impact on cardiac performance, arrhythmia occurrence, and 

stroke risk.1,8

Ventricular cardiomyopathies have been well classified; however, a definition and detailed 

analysis of ‘atrial cardiomyopathy’ is lacking from the literature. The purpose of the present 

consensus report, prepared by a working group with representation from the European Heart 

Rhythm Association (EHRA), the Heart Rhythm Society (HRS), the Asian Pacific Heart 

Rhythm Society (APHRS), and Sociedad Latino Americana de Estimulacion Cardiaca y 

Electrofisiologia (SOLAECE), was to define atrial cardiomyopathy, to review the relevant 

literature, and to consider the impact of atrial cardiomyopathies on arrhythmia management 

and stroke.

Definition of atrial cardiomyopathy

The working group proposes the following working definition of atrial cardiomyopathy: 

‘Any complex of structural, architectural, contractile or electrophysiological changes 

affecting the atria with the potential to produce clinically-relevant manifestations’ (Table 1).

Many diseases (like hypertension, heart failure, diabetes, and myocarditis) or conditions 

(like ageing and endocrine abnormalities) are known to induce or contribute to an atrial 

cardiomyopathy. However, the induced changes are not necessarily disease-specific and 

pathological changes often share many similarities.9,10 The extent of pathological changes 

may vary over time and atrial location, causing substantial intra-individual and 

interindividual differences. In addition, while some pathological processes may affect the 

atria very selectively (e.g. atrial fibrillation-induced remodelling), most cardiomyopathies 

that affect the atria also involve the ventricles to a greater or lesser extent. There is no 

presently accepted histopathological classification of atrial pathologies. Therefore, we have 

proposed here a working histological/pathopysiological classification scheme for atrial 

cardiomyopathies (Table 1; Figure 1). We use the acronym EHRAS (for EHRA/HRS/

APHRS/SOLAECE), defining four classes: (I) principal cardiomyocyte changes;11–15 (II) 

principally fibrotic changes;10,14,16 (III) combined cardiomyocyte-pathology/fibrosis;9,11,12 

(IV) primarily non-collagen infiltration (with or without cardiomyocyte changes).17–19 This 

simple classification may help to convey the primary underlying pathology in various 

clinical conditions. The EHRAS class may vary over time and may differ at atrial sites in 

certain patients. Thus, this classification is purely descriptive and in contrast to other 

classifications (NYHA class, CCS class etc.), there is no progression in severity from 

EHRAS class I to EHRAS IV (Table 2). The classification may be useful to describe 

pathological changes in biopsies and to correlate pathologies with results obtained from 

imaging technologies etc. In the future, this may help to define a tailored therapeutic 

approach in atrial fibrillation (AF) (Figures 1–3).

Goette et al. Page 3

Heart Rhythm. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Anatomical considerations and atrial muscular architecture

Normal atrial structures

Gross morphology—Each atrium has a morphologically characteristic atrial body and 

appendage (Figure 4). In the body, there is a venous component with the orifices of the 

systemic or pulmonary veins (PVs) and a vestibular component that surrounds the atrial 

outlet.20 The interatrial septum (IAS) separates the atrial bodies. The venous component of 

the left atrium (LA) is located posterosuperiorly and receives the PVs at the four corners, 

forming a prominent atrial dome. The LA is situated more posteriorly and superiorly than 

the right atrium separated by the obliquity of the plane of the IAS.21

The LA appendage (LAA) is smaller than the right atrium appendage (RAA). Narrower and 

with different shapes has a distinct opening to the atrial body and overlies the left circum-

flex coronary artery. Its endocardial aspect is lined by a complex network of muscular ridges 

and membranes.22,23 Different LAA morphologies have been described, and it appears that 

LAA morphology correlates with the risk of thrombogenesis.24

Bachmann’s bundle is a broad epicardial muscular band running along the anterior wall of 

both atria (Figure 4). The rightward arms extend superiorly towards the sinus node and 

inferiorly towards the right atrioventricular groove, while the leftward arms blend with 

deeper myofibres to pass around the neck of the LAA and reunite posteriorly to join the 

circumferential vestibule of the LA. The walls of LA are non-uniform in thickness (1 – 15 

mm) and thicker than the right atrium.25

Normal atrial myocardium

Atrial cardiomyocytes—Atrial cardiomyocytes are geometrically complex cylinders that 

sometimes bifurcate at their ends where they connect with adjacent fibres via band-like 

‘intercalated discs’. This contractile syncytium is organized in well-defined bands that 

establish non-uniform anisotropic propagation of the atrial impulse.9,11,26 The only clear 

light-microscopic morphological difference between atrial and ventricular cardiomyocytes is 

in size.27 In paraffin-embedded human specimens, the cardiomyocyte transverse diameter is 

×12 mm in the LAs vs. 20 – 22 mm in the ventricles.11,28 Atrial cardiomyocytes are mainly 

mononucleated; a minor fraction possess two or more nuclei. The nucleus is usually 

centrally located, with granular and/or condensed chromatin. The nuclear shape is 

influenced by fibre contraction, becoming more fusiform with longitudinal cell stretch.29 

Biochemically, atrial cardiomyocytes have greater lipid content than ventricular muscle 

cells.30

Atrial cardiomyocytes share many characteristics with ventricular in terms of nucleus, 

contractile apparatus, cytos-keleton, and organelles.27,29,31,32 Unlike ventricular 

cardiomyocytes, atrial cardiomyocytes do not possess an extensive T-tubule network but they 

do have prominent sarcoplasmic reticulum (SR) elements known as Z-tubules.33 Therefore, 

the atrial sarcolemma does not protrude into the cell, and voltage-operated Ca2+ channels 

mainly function at the cell periphery.34 Atrial cardiomyocytes display specific granules (100 

– 400 nm) situated mainly in the paranuclear area adjacent to the Golgi apparatus, which 

contain ANP, the BNP, and related peptides.23,24
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Atrial interstitium—Atrial interstitium consists of cellular and extracellular components 

(see Figures 2–5). The cellular elements include fibroblast/myofibroblasts, adipocytes, 

undifferentiated mes-enchymal cells, and isolated inflammatory cells. The atrial wall has a 

significant number of medium-sized blood vessels, especially in the sub-epicardium. Mature 

adipose tissue is frequently found in atrial myocardium, especially the epicardium, and often 

permeates the layers around intramural coronary branches. The number of adipocytes is 

highly variable and increases with age.27 The extracellular components consist of collagen 

fibres, which form most of the myocardial skeleton, proteoglycan particles, lipidic debris, 

spherical micro-particles, and matrix vesicles.27

Collagen fibers, mainly type I, are both normal and essential components (Figures 1–5). 

Atrial fibrous tissue may be sub-divided into pure interstitial and perivascular (or 

adventitial). Interstitial collagen fibres represent ×5% of the atrial wall volume. The atrial 

myocardium is also the site of sparse postganglionic nerve endings (from the ‘intrinsic 

cardiac nervous system’), mostly within discrete fat pads but also among cardiomyocytes.35

Atrial-specific physiological and functional considerations

Atrial-selective electrophysiological properties

The atria have a number of electrophysiological features that distinguish them from the 

ventricles and govern their arrhythmia susceptibility.

Action potential/ion-channel properties

Atrial cardiomyocytes have distinct action potential (AP) properties from ventricular 

cardiomyocytes, resulting in a large part from distinct ion-channel properties and 

distribution (Figure 6A).36,37 Atrial background inward-rectifier K+ current (IK1) is smaller 

than that of ventricular K+ current, resulting in a less negative resting potential and more 

gradual slope of phase-3 repolarization. Atrial cells also have two K+-currents that are 

absent in ventricle cells: the ultrarapid delayed rectifier current (IKur) and the acetylcholine-

regulated K+-current (IKACh). In addition, there is evidence that atrial Na+-current has 

different properties compared with ventricular current.38 As well as distinctions between 

atrial and ventricular APs, different atrial regions may have discrete AP and ion-channel 

properties.37,39 These cellular electrophysiological characteristics have implications for 

antiarrhythmic drug action and design, and may also affect the responses to atrial 

arrhythmias and disease.36,37

Intercellular coupling properties

The atria have a different pattern of cell-to-cell coupling protein (connexin) distribution 

compared with ventricular myocardium.36 Whereas working ventricular cardiomyocytes 

express connexin-43 exclusively, atrial cardiomyocytes have significant expression of 

connexin-40 (Figure 6B).36 Heterogeneities in connexin-40 distribution are common in 

paroxysmal AF and may play a pathophysiological role,40 and gene variants affecting 

connexin-40 sequence and/or transcription predispose to AF occurrence.41
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Atrial structural properties

The atria have a very complex 3D structure (Figure 6C) not found in the ventricles. These 

include interatrial connections limited to Bachmann’s bundle, the septum, and the CS; 

pectinate muscles, the crista terminalis, and fibres surrounding the coronary sinus in the 

right atrium; and the PVs with complex fibre orientation around them in the LA. These 

structural complexities have important potential implications for atrial pathophysiology and 

management of atrial arrhythmias.42 Extensive recent work has gone into the realistic 

mathematical reconstruction of such geometric complexities,43 and they have been 

incorporated into analytical approaches designed to implement patient-specific arrhythmia 

therapies.44 Cable-like strands of atrial tissue like the pectinate muscles and crista terminalis 

are organized such that conduction within them is primarily longitudinal, with an 

‘anisotropy ratio’ (longitudinal/transverse conduction velocities) as great as 10, whereas in 

working ventricular muscle the ratio is typically more between 2 and 4.45

Autonomic ganglia

There are autonomic ganglia on the surface of the heart that are important way-stations for 

cardiac autonomic control.46 Moreover, alterations in local cardiac innervation and intra-

cardiac autonomic reflexes play an important role in physiology and arrhythmia control. 

Most of the cardiac autonomic ganglia are located on the atria, and in particular in the region 

of the PV ostia. Thus, they are well positioned to affect atrial electrical activity in regions 

particularly important in AF, and their alteration by therapeutic man-oeuvers like PV 

ablation may contribute to antiarrhythmic efficacy.42,46,47

Left atrium mechanics

The left atrial contribution to overall cardiovascular performance is determined by unique 

factors. First, left atrial function critically determines left ventricular (LV) filling. Second, 

chamber-specific structural, electrical and ion remodelling alter left atrial function and 

arrhythmia susceptibility. Third, atrial function is highly relevant for the therapeutic 

responses of AF. Fourth, LA volume is an important biomarker that integrates the magnitude 

and duration of LV diastolic dysfunction. The development of sophisticated, non-invasive 

indices of LA size, and function might help to clinically exploit the importance of LA 

function in prognosis and risk stratification.1,48

Fibre orientation of the two thin muscular layers (the fascicles of which both originate and 

terminate at the atrioventricular ring) introduce a complexity that challenges functional 

analysis. Ultrastructurally, atrial cardiomyocytes are smaller in diameter, have fewer T-

tubules, and more abundant Golgi apparatus than ventricular. In addition, rates of contraction 

and relaxation, conduction velocity, and anisotropy differ, as does the myosin isoform 

composition and the expression of ion transporters, channels, and gap junctional proteins 

(see relevant sections).

Functions of the left atrium

The principal role of the LA is to modulate LV filling and cardiovascular performance by 

operating as a reservoir for PV return during LV systole, a conduit for PV return during early 

LV diastole, and as a booster pump that augments LV filling during LV diastole. There is a 
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critical interplay between these atrial functions and ventricular systolic and diastolic 

performance. Thus, while LA compliance (or its inverse, stiffness), and, to a lesser extent, 

LA contractility and relaxation are the major determinants of reservoir function during LV 

systole, LV end-systolic volume and descent of the LV base during systole are important 

contributors. Conduit function is also governed by LA compliance and is reciprocally related 

to reservoir function, but because the mitral valve is open in diastole, conduit function is also 

closely related to LV compliance (of which relaxation is a major determinant). Atrial 

booster-pump function reflects the magnitude and timing of atrial contractility, but also 

depends on venous return (atrial preload), LV end-diastolic pressures (atrial afterload), and 

LV systolic reserve.

Left atrium booster-pump function—Left atrium booster-pump function represents the 

augmented LV-filling resulting from active atrial contraction (minus retrograde blood-

ejection into the PVs) and has been estimated by measurements of (i) cardiac output with 

and without effective atrial systole, (ii) relative LV-filling using spectral Doppler of 

transmitral, PV, and LA-appendage flow, (iii) LA-shortening and volumetric analysis, and 

(iv) tissue Doppler and deformation analysis (strain and strain-rate imaging) of the LA-

body.1 Booster-pump function can also be evaluated echocardiographically by estimating the 

kinetic energy and force generated by LA contraction. The relative importance of the LA 

contribution to LV filling and cardiac output remain controversial. A load-independent index 

of LA contraction based on the analysis of instantaneous relation between LA pressure and 

volume, analogous to LV end-systolic elastance measurements, has been used as a load-

independent measure of LA pump function, validated ex vivo and in the intact dog (Figure 

7).49 While LA pressure – volume loops can be generated with invasive and semi-invasive 

means in humans,50 these methods are cumbersome, time-consuming, and difficult to apply. 

Measurement of myocardial strain and strain rate, which represent the magnitude and rate of 

myocardial deformation, assessed using either tissue Doppler velocities (tissue Doppler 

imaging, TDI) or by 2D echocardiographic (2D speckle-tracking or STE) techniques (Figure 

8) provide objective, non-invasive measurements of LA myocardial performance and 

contractility that overcome these limitations.1,51

Left atrium reservoir function—Nearly half of the LV stroke volume and its associated 

energy are stored in the LA during LV systole. This energy is subsequently expended during 

the LV diastole. Reservoir function is governed largely by atrial compliance during 

ventricular systole, which is measured most rigorously by fitting atrial pressures and 

dimensions, taken either at the time of mitral valve opening/closure over a range of atrial 

pressures and volumes or during ventricular diastole, to an exponential equation.52 Although 

this method requires atrial dimensions and pressures, the relative reservoir function can be 

estimated simply with PV Doppler: the proportion of LA inflow during ventricular systole 

provides an index of the reservoir capacity of the atrium. Reservoir function can also be 

estimated from LA time – volume relations as either the total ejection fraction or 

distensibility fraction, calculated as the maximum minus minimum LA volume, normalized 

to maximal or minimal LA volume, respectively.
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Although largely neglected, the LA–appendage is more compliant than the LA–body,52 so 

the contribution of the appendage to overall LA compliance is substantial with potential 

negative implications for routine atrial appendectomy/ligation during mitral valve surgery.

Left atrium strain and strain rates during LV systole predict successful sinus rhythm 

restoration following DC cardioversion or AF ablation, and are surrogates of atrial fibrosis 

and structural remodelling; coupled with an estimate of atrial pressure (e.g. transmitral E/E

′), strain has the potential to estimate atrial distensibility non-invasively.1,53

Left atrium conduit function—Left atrium conduit function occurs primarily during 

ventricular diastole and represents the trasport of blood volume that cannot be attributed to 

either reservoir or booster-pump functions, accounting for approximately one-third of atrial 

flow.54 A reciprocal relation exists between LA conduit and reservoir functions; a 

redistribution between these functions is an important compensatory mechanism that 

facilitates LV filling with myocardial ischaemia, hypertensive heart disease, and mitral 

stenosis (MS). Conduit function is estimated by the early diastolic transmitral flow, diastolic 

PV-flow, and LA strain and strain rate during early diastole.

Atrial-selective Ca21 handling

There are major differences in the expression and function of Ca2+-handling proteins 

between atria and ventricles (Figure 9).55 The atria have reduced cardiomyocyte contraction 

and relaxation times and shorter Ca2+-transient duration.56–58 In atria, protein levels57,59 and 

activity57,59 of the SR Ca2+-ATPase2a (Serca2a) are two-fold higher, whereas the Serca2a-

inhibitor phospholamban (PLB) is less abundant, vs. ventricles.57,59 Atrial, but not 

ventricular, Serca2a is also regulated by sarcolipin (SLN) and SLN ablation increases atrial 

SR Ca2+-uptake and contractility.60 L-type Ca2+ current61 is similar in both chambers, 

whereas protein levels of ryanodine receptor type-2, calsequestrin, triadin, junction and Na2+ 

–Ca2+ exchanger are lower in atria than in ventricles.59,62,63 In contrast to ventricular 

myocardium, T-tubules are less abundant in atrial cardiomyocytes.64 In addition, atrial 

cardiomyocytes possess much more Ca2+-buffering mitochondria than ventricular 

cardiomyocytes.56 As a consequence, the atrial Ca2+ wave starts in the myocyte periphery 

and then propagates to the centre of the myocyte, activating additional Ca2+-releasing sites 

in the SR.55

Pathology of atrial cardiomyopathies

Lone atrial fibrillation (atrial fibrillation without concomitant conditions)

‘Lone’ atrial fibrillation (LAF) is diagnosed when no apparent explanation or underlying 

comorbidity can be identified.65,66 Over the last few years, new epidemiological associations 

with AF have emerged and the number of true LAF cases has progressively decreased.67 

Like AF associated with comorbidities, LAF occurs more frequently in males than in 

females with a ratio of 3 to 4:1.68 Recent studies have shown that true cases of LAF can be 

diagnosed even in subjects older than 60 years, so that this age limit seems inappropriately 

conservative.69 At the same time, it is unclear whether cases with left atrial enlargement 
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should be excluded from the LAF category. In fact, LA enlargement might even be the 

consequence of the arrhythmia.70

‘Lone’ atrial fibrillation is at the lower end of the thromboembolic risk spectrum, with only a 

1 – 2% cumulative 15-year risk of stroke.66 However, with ageing and/or the occurrence of 

cardiovascular comorbidities, the risk of AF-related complications (including 

thromboembolic events) increases.71 Patients originally diagnosed with LAF may follow 

different clinical courses based on their left atrial volume: individuals who retain normal LA 

size throughout long-term follow-up show a relatively benign course, while those with LA 

enlargement experience adverse events like stroke, myocardial infarction, and heart failure.72 

The majority of LAF patients first present with paroxysmal episodes and show low 

progression rates into permanent AF.71,73

Atrial fibrillation has clear genetic determinants.7 These include common gene variants with 

low predictive strength and rare gene mutationsthat have much greater penetrance.7

Frustaci et al.14 explored the histological morphology of right atrial septal biopsies from 

patients with lone paroxysmal AF, finding chronic inflammatory infiltrates, foci of myocyte 

necrosis, focal replacement fibrosis, and myocyte cytoplasmic vacuoles consistent with 

myolysis. Of their 12 patients, 10 showed EHRAS class III changes and 2 showed EHRAS 

class II. Stiles et al.74 found bi-atrial structural change, conduction abnormalities, and sinus 

node dysfunction in paroxysmal LAF patients. Skalidis et al.75 demonstrated atrial perfusion 

abnormalities and coronary flow reserve impairment. Much more recently, morphometric 

assessment of atrial biopsies from the LA posterior wall of persistent or long-lasting 

persistent LAF patients demonstrated cardiomyocyte hypertrophy, myolytic damage, 

interstitial fibrosis, and reduced connexin-43 expression vs. controls.76

Isolated atrial amyloidosis

The accumulation of insoluble, misfolded proteins is linked to an increasing number of age-

related degenerative diseases.77 Amyloidosis represent the deposition of insoluble, fibrillar 

proteins in a cross b-sheet structure that characteristically binds dyes such as Congo red. The 

most common form of age-related or senile amyloidosis is limited to the atrium, a condition 

known as isolated atrial amyloidosis (IAA).17,78 The incidence of atrial amyloidosis 

increases with age, exceeding 90% in the ninth decade.79 Isolated atrial amyloidosis is also 

linked to structural heart disease. In atrial biopsies from 167 patients undergoing cardiac 

surgery, 23 of 26 amyloid-positive specimens were from patients with rheumatic heart 

disease (RHD), while the remaining 3 came from patients with atrial septal defects.80 The 

overall incidence of 16% was greater than that was seen in control atrial autopsy specimens 

from trauma victims (3%). Histologically, IAA is classified as EHRAS IVa (Figure 3; Table 

2). Atrial natriuretic peptide is a fibrillogenic protein that forms IAA.81 Amyloid deposits 

are immunoreactive for ANP in most patients,17 while transthyretin, a transport protein 

implicated in systemic senile amyloidosis, was also identified in 10%4 (NT-pro-ANP has 

been identified in other studies82). As with fibrosis, amyloidosis can cause local conduction 

block and P-wave duration is increased in IAA. Atrial amyloid is found more commonly in 

patients with AF vs. sinus rhythm (Figure 3). Both AF and IAA increased with advancing 

age and female sex, but the relationship between the two is independent of age and 
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gender.83,84 Isolated atrial amyloidosis is detected in 80% of PV sleeves of elderly 

patients.84 For organ-specific amyloidosis such as Alzheimer’s disease, there is no 

detectable correlation between quantity of fibrillar deposits and disease advancement.85 

Rather, disease phenotype correlates most closely with accumulation of soluble, prefibrillar 

protein aggregates.86 Preamyloid oligomers (PAOs) are cytotoxic to cardiomyocytes.87 They 

do not bind Congo red and thus are not visible by standard amyloid staining methods. Using 

a conformation-specific antibody, PAOs often co-localizing with ANP were detected in atrial 

samples of 74 of 92 patients without AF undergoing cardiac surgery.88 The preamyloid 

oligomer content was independently associated with hypertension. Additional studies are 

needed to further confirm this association and whether PAOs are increased in AF.

NPPA mutations

Atrial natriuretic peptide is released from the atria in response to atrial stretch or volume 

expansion, and produces natriuresis, diuresis, and vasodilation.89 It also interacts with other 

endogenous systems, inhibiting the renin – angiotensin-II – aldosterone and sympathetic 

nervous systems, and regulates ion currents.90,91 Atrial natriuretic peptide-knockout mice 

develop cardiac hypertrophy and exaggerated responses to hypertrophic stress.92 The gene 

encoding the precursor protein for ANP, NPPA, encodes prepro-ANP, a 151 amino acid 

protein that includes a signal peptide cleaved off to form pro-ANP,93 which is stored in 

dense granules in the atria. Released pro-ANP undergoes proteolytic processing to generate 

N-terminal pro-ANP and ANP, 98 and 28 amino acids in length, respectively. N-terminal 

pro-ANP is cleaved into three hormones with biological activity similar to ANP: long-acting 

natriuretic hormone (LANH), vessel dilator peptide, and kaliuretic hormone.

Genetic studies have linked abnormal ANP production to familial atrial tachyrrhythmias and 

atrial cardiomyopathy. In a large family with Holt – Oram syndrome, a missense mutation in 

T-box transcription factor 5 (TBx5) resulted in an atypical phenotype with early-onset AF 

and the overexpression of multiple genes, including NPPA.94 In a large family with multiple 

members having early-onset LAF, a 2-bp deletion was identified that abolishes the ANP stop 

codon, producing a mature protein containing the usual 28 amino acids plus an anomalous 

C-terminus of 12 additional residues.95 The mutant ANP peptide is present in affected 

family members at plasma concentrations 5 – 10 times higher than wild-type ANP. Studies 

of the electrophysiological effects of ANP have been inconsistent.96

Additional NPPA variants (S64R and A117V) have also been linked to AF.97,98 The S64R 

variant occurs in vessel dilator peptide rather than ANP. A truncated peptide containing this 

mutation increased IKs several fold, an effect predicted to shorten action potential duration 

(APD),97 but the variant has also been identified in unaffected elderly individuals without 

AF,96 and its functional pathological significance remains uncertain.

More recently, an autosomal-recessive atrial cardiomyopathy was described in patients 

harbouring an NPPA mutation (Arg150Gln) predicted to be damaging to protein structure.99 

The phenotype is characterized by biatrial enlargement, initially associated with atrial 

tachyarrhythmias such as AF and atrial flutter.100 Biatrial enlargement progresses to partial 

and ultimately severe atrial standstill, associated with progressive decreases in atrial voltage 

and extensive atrial scarring. Whether atrial structural changes are primary, or secondary to 
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atrial enlargement, is unknown. Loss of the antihypertrophic effects of ANP may cause the 

massive atrial enlargement seen in these patients.

Hereditary muscular dystrophies

A common finding in many inherited muscular dystrophies is cardiac involvement, related to 

myocyte degeneration with fatty or fibrotic replacement (Table 3).101–103 In some cases, this 

can be the presenting or predominant clinical manifestation. Multiple complexes and 

pathways are involved in the maintenance of myocyte integrity, and a defective or absent 

protein component can lead to progressive cell death. The large dystrophin – glycoprotein 

complex links the myocyte cytoskeleton to the extracellular basement membrane. For 

diseases of dystrophin, sarcoglycans, and other complex-related proteins, the most 

prominent manifestation is a dilated cardiomyopathy due to diffuse myocyte involvement, 

with arrhythmias and conduction abnormalities secondary to LV dysfunction.101–105 

Specific atrial involvement can lead to sinus node disease and/or atrial arrhythmias with 

associated thromboembolic events.106,107 Myotonic dystrophy type I is the most common 

muscular dystrophy presenting in adults.108 Up to 15% develop atrial arrhythmias during a 

10-year follow-up.109 The presence of conduction defects and atrial arrhythmias are 

independent risk factors for sudden death.103,110 In Emery-Dreifuss and Limb-Girdle type 

IB disease, widespread atrial fibrosis can lead to atrial standstill.101 In Emery-Dreifuss, AF 

and atrial flutter with slow ventricular responses and asystolic pauses can be observed, 

coupled with the occurrence of thromboembolism and stroke.111 In facioscapulohumeral 

muscular dystrophy, arrhythmias are rare, with the most common being supraventricular 

tachycardia.112 Histologically, the tissue composition may vary substantially, including all 

EHRAS classes (see Table 2).

Atrial cardiomyopathy due to congestive heart failure

Congestive heart failure (CHF) is a common cause (contributing condition) of AF.3 The 

CHF-induced atrial phenotype is complex. A particularly important component is atrial 

fibrosis, which in experimental models occurs earlier in the course of CHF, and to a much 

greater extent, than in the ventricles, at least in part because of atrial-ventricular fibroblast – 

phenotype differences.4 Congestive heart failure-related fibrosis slowly, if at all, and the AF-

promoting substrate predominantly tracks fibrosis rather than other components of atrial 

remodelling like ion-current or connexin changes. Unlike the case for AF-induced 

remodelling, the atrial ion-current changes in CHF do not abbreviate APD or cause overall 

conduction slowing,113,114 so they do not contribute directly to arrhythmogenesis. On the 

other hand, CHF atria are prone to triggered activity due to abnormal Ca2+ handling.115 The 

principle underlying abnormality appears to be increased cellular Ca2+ load. While the 

underlying mechanisms are not completely clear, they likely include phospholamban 

hyperphosphorylation (which increases SR Ca2+ uptake) and AP prolongation (which 

increases Ca2+ loading by enhancing the period during which L-type Ca2+ channels are 

open). The final phenotypic product of the CHF-induced Ca2+-handling abnormalities is 

focal ectopic activity due to aberrant diastolic Ca2+-release events from the SR, similar to 

abnormalities seen with paroxysmal and long-standing persistent AF.116
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Congestive heart failure also causes atrial hypocontractility, despite increased cytosolic Ca2+ 

transient, indicating reduced contractile sensitivity to intracellular Ca2+, possibly because of 

reduced expression of total and phosphorylated myosin-binding protein C.115 This 

hypocontractility may be important in contributing to the increased likelihood of 

thromboembolic events in AF patients who also have CHF. Of the atrial changes that occur 

in CHF, many are also seen in the ventricle. However, the highly atrial-selective fibrosis may 

contribute to atrial cardiomyopathy in the absence of clear signs of disturbed ventricular 

function, particularly in patients with prior CHF events who later become well-compensated 

under therapy or after resolution of the underlying cause. Collagen depositions are 

prominent in CHF, leading most commonly to EHRAS Class II and III properties. However, 

EHRAS Class IVi and IVf may also be found in certain areas of the atria (see Table 2).

Obstructive sleep apnoea

Obstructive sleep apnoea (OSA) is known to impair cardiac function and predispose to 

AF.117–119 Obstructive sleep apnoea prolongs atrial conduction times, slows atrial 

conduction, reduces atrial-electrogram voltages and increases electrogram complexity.117,118 

Signal-averaged P-wave duration is increased by OSA, and decreases significantly with 

continuous positive airway pressure treatment.120 In a rat model, repeated obstructive 

apnoea over a 4-week period increases AF vulnerability and slows atrial conduction by 

altering connexin-43 expression and inducing atrial fibrosis.121

Atrial fibrillation-induced atrial remodelling

Atrial fibrillation itself induces atrial remodelling that contributes to the maintenance, 

progression, and stabilization of AF.41,116 The high atrial rate causes cellular Ca2+ loading. 

This induces a decrease in ICa,L due to down-regulation of the underlying Cav1.2 subunits, 

and an increase in constitutively active I41,116,122,123 MiR-328 up-regulation with 

consequent repression of Cav1.2-translation and Ca2+ dependent calpain activation, causing 

proteolytic breakdown of L-type Ca2+ channels.41,116 The rate-dependent up-regulation of 

IK1 results from a Ca2+/calcineurin/NFAT-mediated down-regulation of the inhibitory 

miR-26, removing translational – inhibition of Kir2.1.41,116 Increased IK1 stabilizes AF by 

abbreviating and hyperpolarizing atrial cardiomyocyte Aps.41 Small-conductance Ca2+-

activated K+ (SK) currents (ISK) also play a role in AF.41,116 Computational modelling 

shows that increased total inwar-drectifier K+ current in chronic atrial fibrillation (cAF) is 

the major contributor to the stabilization of re-entrant circuits by shortening APD and 

hyperpolarizing the resting membrane potential.41,116

Atrial tachycardia remodelling reduces Ca2+ transient amplitude by a variety of 

mechanisms, contributing to atrial contractile dysfunction.41,116,124 Reduced atrial 

contractility causes atrial ‘stunning’ that may be involved in thromboembolic complications.

Long-term atrial tachycardia remodelling causes conduction slowing in several animal 

models, at least partly due to INa down-regulaton.122 Heterogeneously distributed gap-

junction uncoupling due to connexin remodelling likely contributes to atrial conduction 

slowing.41,116 Heterogeneity in connexin-40 distribution correlates with AF stability in goats 

with repetitive burst-pacing-induced AF.125 Connexin-40 expression decreases in the PVs of 
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dogs with AF-related remodelling, possibly due to tachycardia-induced connexin-

degradation by calpains.41,116

Long-term atrial tachycardia/AF may itself cause atrial fibrosis that contributes to long-term 

persistence.126 Rapid atrial firing promotes fibroblast differentiation to collagen-secreting 

myofibroblasts through autocrine and paracrine mechanisms.32 Atrial tachycardia-induced 

NFAT- mediated decreases in fibroblast miR-26 may also contribute to structural 

remodelling. Atrial fibroblasts have non-selective cation channels of the transient receptor 

potential (TRP) family that carry Ca2+ into the cell; the increased cell-Ca2+ then triggers 

increased collagen production. Since miR-26 represses TRPC3 gene expression, miR-26 

reductions increase TRPC3 expression, promoting fibroblast Ca2+ entry that causes 

proliferation/myofibroblast differentiation.127 TRPM7 may similarly contribute to fibrotic 

changes in AF.128

APD shortening in cAF patients also results from increased inward-rectifier K+ currents,129 

both IK1 and a constitutive form of IK,Ach
41,116. Agonist-activated IK,ACh is decreased in 

right atrium of AF patients because of a reduction in underlying Kir3.1 and Kir3.4 

subunits,129 whereas agonist-independent current is increased.41,116

Atrial cardiomyocytes from patients with long-standing persistent AF show spontaneous 

diastolic SR Ca2+ release events (SCaEs) and delayed after depolarizations (DADs).130 

CaMKII-dependent RyR2 hyperphosphorylation underlies the SR Ca2+ leak and 

SCaEs.32,106,130 Protein kinase A-dependent RyR2 hyperphosphorylation also occurs,130 

likely promoting the dissociation of the inhibitory FKBP12.6 subunit from the RyR2 

channel. Larger inward NCX current may also contribute to the stronger propensity for 

DADs.130

Although initial work pointed to unchanged INa or mRNA expression of the Nav1.5 a-

subunit in AF patients, recent studies reported reduced peak INa.41,116 There is also evidence 

for increased INa,late, although its functional consequences are less clear. Altered mRNA and 

protein levels of connexin-40/-43 may also contribute to re-entry-promoting conduction 

abnormalities in cAF patients. Reduced connexin-40 expression together with lateralization 

to the transverse cell membrane may cause heterogeneous conduction.41,116

Overall, ion-channel changes contribute to AF stabilization and early recurrence after 

cardioversion. Ca2+ handling abnormalities are involved in atrial ectopy, and atrial fibrosis is 

important in the progression of long-term persistent AF to resistant forms. Atrial fibrillation-

induced atrial myopathy has changes that depend on AF duration. Very short-term AF 

produces no ultrastructural alterations, while AF lasting several weeks causes EHRAS I 

alterations.13 Long-term persistent AF produces EHRA III changes.126

Drug-related atrial fibrillation

A large number of drug classes have been associated with the induction of AF either in 

patients without heart disease or in individuals with pre-existing cardiac disorders (Table 

4),131 but drug-induced AF (DIAF) has received less attention than that it might deserve. 

The overall incidence of DIAF is still unknown for several reasons: (a) the evidence 

Goette et al. Page 13

Heart Rhythm. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



associating specific drugs with AF has largely been based on anecdotal reports, with very 

few controlled prospective clinical trials, (b) DIAF is often paroxysmal and documentation 

may be difficult/poor, (c) while DIAF is easily recognized if it occurs just after i.v. drug 

administrations (e.g. adenosine or dobutamine), AF episodes can be missed if they appear 

after multiple exposures (e.g. chemotherapy), (d) patients often receive multiple drugs, 

making the specific culprit agent difficult to identify, (e) with non-cardiovascular drugs, 

DIAF is often diagnosed by non-cardiologists, often with an imprecise description of the 

arrhythmic event and clinical history.132 Multiple mechanisms have been suggested to 

explain the pathogenesis of DIAF: (a) direct atrial electrophysiological effects like 

abbreviated refractoriness, slowed conduction, or triggered activity due to Ca2+ loading, (b) 

changes in autonomic tone, (c) myocardial ischaemia, (d) direct myocardial damage and 

other mechanisms such as release of pro-inflammatory cytokines, oxidative stress, 

hypotension, and electrolyte disturbances.131,132

In the majority of cases, DIAF is a benign self-limited disorder. However, DIAF may be 

clinically serious in polymedicated patients with underlying comorbidities.132 

Discontinuation of the causative drug(s) usually leads to cardioversion in few minutes or 

hours. When AF persists, treatment is similar to that of non-DIAF patients.133,134 Because 

of the wide range of mechanisms by which drugs cause AF, the histological changes 

associated with DIAF may vary substantially from EHRAS class I–IV (see Table 2 for 

reference). Future studies are warranted to assess specific effects of various drugs on atrial 

tissue.

Myocarditis

Myocarditis refers to an inflammatory disease of the heart, which occurs as a result of 

exposure to external triggers (e.g. infectious agents, toxins, or drugs) or internal ones like 

autoimmune disorders.135,136

The incidence is difficult to ascertain since it depends on the diagnostic criteria. A likely 

estimate is 8 to 10 per 100 000 population, representing the third leading cause of sudden 

death after hypertrophic cardiomyopathy and coronary artery disease.137 In autopsy series, 

the prevalence of myocarditis varies from 2% to 42% in young adults with sudden 

death.138,139 Biopsy demonstrates an inflammatory infiltrate in 9 – 16% of patients with 

unexplained non-ischaemic dilated cardiomyopathy.140,141

Myocarditis is defined by the ‘Dallas criteria’ as the presence of a myocardial inflammatory 

infiltrate with necrosis and/or degeneration of adjacent cardiomyocytes of non-ischaemic 

nature.142 According to the type of inflammatory cell, myocarditis may be subdivided into 

lymphocytic, eosinophilic, polymorphic, giant-cell myocarditis, and cardiac sarcoidosis.136

Atrial fibrillation is frequently part of the clinical presentation of myocarditis. In 245 

patients with clinically suspected myocarditis, AF occurred in about 30%.143 Myocarditis 

with lone atrial involvement is rarly diagnosed.144–146 This may reflect the fact that atrial 

myocardium is not methodically sampled either at autopsy or in routine endomyocardial 

biopsy. In most such cases, AF dominated the clinical picture, suggesting a role for 

architectural remodelling that interferes with atrial conduction.9,147 Giant-cell myocarditis is 
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a distinct —and probably autoimmune— myocarditis characterized by diffuse infiltration by 

lymphocytes and numerous multi-nucleated giant-cells, frequent eosinophils, cardiomyocyte 

necrosis and, ultimately, fibrosis. The natural course is often fulminant and mortality is high 

if untreated. An isolated atrial variant of giant-cell myocarditis was first reported in 1964.148 

Since then, only a few cases have been described in the English language literature. The 

atrial variant appears to have a more favourable course compared with the classical form.149 

The atrial giant-cell myocarditis may represent a distinct entity, potentially attributable to 

atrium-specific auto-antigens.150 EHRAS Class IVi is observed in patients with atrial 

myocarditis. As myocarditis persists and enters a chronic phase, characteristics may change 

to EHRAS Class III (see Table 2).

Atrial cardiomyopathy associated with genetic repolarization disturbances

Atrial standstill, a severe form of atrial cardiomyopathy, is associated with combined 

heterozygous mutations of SCN5A and Connexin-40 genes.151 Gain-of-function mutations 

in K+-channel subunits (e.g. KCNQ1, KCNH2, KCND3, and KCNE5) or loss-of-function 

mutations in KCN5A have been identified in AF patients.152 Thus, either gain or loss of K+-

channel function can cause AF, indicating that repolarization requires optimal tuning and 

deficits in either direction can be arrhythmogenic. Recently, early repolarization or J-wave 

syndrome has been associated with AF although, in middle-aged subjects, early 

repolarization in inferior leads did not predict AF.153 A gain-of-function mutation in 

KCNJ8, encoding the cardiac Kir 6.1 (KATP) channel, is associated with both increased AF 

susceptibility and early repolarization.154 There is an established association between atrial 

arrhythmias and primary ventricular arrhythmia syndromes, which was first reported among 

conditions that manifest with obvious structural abnormalities.155 Atrial fibrillation is 

relatively common in hypertrophic cardiomyopathy (prevalence ×20%).156 In 

arrhythmogenic right ventricular cardiomyopathy, an even higher proportion (up to 40%) of 

patients may manifest AF.157 The association with AF also extends to primary arrhythmia 

syndromes without obvious structural heart disease. Supraventricular tachycardias, primarily 

AF/AFl, have been reported in Brugada syndrome.158,159 Among long QT syndrome 

(LQTS) patients, prolongation of action potentials leading to atrial fibrillation has been 

suggested to be an atrial form of ‘torsades de pointes’.152 A subtle form of 

‘cardiomyopathy’ that includes increased left atrial volumes occurs in ×12% of LQTS 

patients.160 The reports available mostly implicate genetic variants in Na+-channel genes.161 

Patients with early-onset lone AF have a high prevalence of LQTS-associated SCN5A 

variants.162 A mouse model of LQT3 is prone to atrial arrhythmias due to EADs.163 There 

are sporadic reports of atrial arrhythmias in patients with CPVT.164 Taken together, the 

associations between AF and sudden death syndromes likely reflect common mechanisms 

between atrial and ventricular arrhythmogenesis.

Ageing

In elderly dogs, premature impulses show markedly slowed conduction, associated with a 

doubling of fibrous-tissue content APD prolongation and spatial heterogeneity in 

repolarization.165,166 Clinical mapping studies have also demonstrated similar findings of 

conduction abnormalities, prolonged refractoriness, reduced myocardial voltage, and a 

greater number of double potentials and fractionated electrograms.167,168 Perhaps as a result 
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of these atrial changes, alteration of wavefront propagation velocities has been described 

with an inverse correlation to age.169 Histologically, fibrotic changes are the most obvious 

alteration (EHRAS Class II; see Table 2).

Hypertension

Hypertension accounts for at least one in five incident AF cases.170 In hypertensive subjects, 

both left atrial enlargement and P-wave changes are predictive of AF occurrence.171,172

In small animal models, mimicking hypertension by partial aortic clamping induces LA 

hypertrophy, fibrosis, connexin-43 down-regulation and slow/inhomogeneous conduction.173 

Prenatal corticosteroid exposure-induced hypertension in sheep causes atrial conduction 

abnormalities, wavelength shortening, and increased AF.174 Lau et al. utilized a one-kidney 

one-clip model to investigate the impact of short- and long-term hypertension on the 

evolution of an atrial cardiomyopathy.175,176 Utilization of this model intrinsically is more 

reflective of a disordered renin – angiotensin axis. Short-term hypertension progressively 

enlarged the LA, reduced LA emptying fraction, prolonged atrial refractoriness, slowed 

conduction, and caused LA interstitial fibrosis and inflammatory cell infiltration.175,176 In 

patients with established hypertension and LV hypertrophy, there is global and regional 

conduction slowing associated with fractionated electrograms and double potentials along 

the crista terminalis, along with an increase in low-voltage areas.177

Importantly, population studies show increased AF risk even with ‘pre-hypertension’ 

(systolic blood pressure 130–139 mmHg).178 The abnormal atrial substrate is reversible, 

with studies demonstrating improved electrical and structural parameters and reduced AF 

burden following treatment with renin – angiotensin – aldosterone system blockers.179–181 

In patients with resistant hypertension and improved blood pressure following renal 

denervation, there was a global improvement in atrial conduction and reduced complex 

fractionated activity. Histologically, pressure overload induces hypertrophy of atrial 

myocytes (EHRAS Class I). Collagen deposition may also occur (EHRAS II – III) with 

more severe hypertension causing LV hypertrophy and diastolic dysfunction (see Table 2).

Obesity

Several population-based studies have demonstrated a robust relationship between obesity 

and AF.182–184 A recent meta-analysis estimates a – 5.3% excess risk of AF for every one 

unit of body mass index increase.185

Left atrium dilation and dysfunction are known consequences of the cardiomyopathy due to 

obesity.186 In a sheep model of obesity, progressive weight gain over 8 months was 

associated with increased atrial volume, pressure, and pericardial fat volume along with 

atrial interstitial fibrosis, inflammation, and myocardial lipidosis.187 This was associated 

with decreased conduction velocity, increased heterogeneity of conduction and a greater 

inducibility of atrial fibrillation. With more sustained obesity, animals not only demonstrate 

progressive atrial changes but also in areas adjacent to pericardial fat there is infiltration of 

the atrial myocardium by fat cells.188
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Obese patients have higher left atrial volume and pressure with lower left atrial strain 

associated with shorter refractoriness in the LA and the PVs.189 A detailed evaluation of 

atrial changes associated with human obesity showed an increase in the left atrial epicardial 

fat, a global reduction in atrial conduction velocity, increased fractionation, and preserved 

overall voltage but greater low-voltage areas.190 The low-voltage areas were observed in 

regions adjacent to epicardial fat depots.

Pericardial fat volume has been shown to be associated with AF incidence, severity, and 

adversely effects ablation outcome.191,192 Epicardial adiposity is associated with altered 3D 

atrial architecture, adipocyte infiltration into the myocardium, and atrial fibrosis that may 

contribute to conduction heterogeneity that promotes AF.193–195

In the ovine model of chronic obesity, weight reduction is associated with reduction in total 

body fat, atrial dilatation, and interstitial fibrosis together with improved hemodynamics, 

atrial connexin-43 expression and conduction properties that result in reduced vulnerability 

to AF.196 In humans, aggressive management of weight and associated risk factors is 

associated with favourable changes in pericardial fat volume, atrial size, myocardial mass as 

well as electrophysiological and electroanatomical changes along with reduced AF 

inducibility and burden.197 Furthermore, weight loss in morbidly obese subjects is 

associated with reduced epicardial fat.198 Weight reduction in obese individuals can result in 

regression of LV hypertrophy, reduction in left atrial size and reduction in AF burden/

severity.199–201 Histologically, fatty infiltrates (EHRAS Class IVf) as well as collagen 

depositions are present (EHRAS III; see Table 2).

Diabetes mellitus

Diabetes is an independent risk factor for development and progression of AF.202 In a rat 

model of diabetes mellitus, atrial tissue fibrosis deposit is associated with decreased 

conduction velocity and greater AF inducibility.203 Patients with abnormal glucose 

metabolism have larger left atrial size, lower left atrial voltage, and longer left atrial 

activation time compared with controls.204 Insulin resistance is associated with increased left 

atrial size and structural heterogeneity.205,206

Mitochondrial function is impaired, leading to oxidative stress, in diabetic atria.207 

Oxidative stress and activation of the advanced glycation end-product (AGE)-AGE-receptor 

(RAGE) system mediates atrial interstitial fibrosis up-regulation of circulating tissue growth 

factors and pro-inflammatory responses.207,208 In addition, prolonged hyperglycaemic stress 

leads to accumulation of AGE-RAGE and nitric oxide inactivation, leading to endothelial 

dysfunction and myocardial inflammation.209

Hyperglycaemia and AGE – RAGE ligand interactions lead to decreased phosphorylation of 

connexin-43, potentially impairing intercellular coupling.210 Advanced glycation is also 

related to alterations in myocardial calcium handling and hence contractility.211 These 

findings could explain the electrophysiological alterations that serve as a central mechanism 

of the vulnerability to AF in diabetes.212
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Aggressive treatment of diabetes and adequate glycemic control may prevent or delay the 

occurrence of AF, despite little direct evidence of the effects of anti-diabetic drugs on AF. 

Peroxisome proliferator-activated gamma receptor agonists may offer protection against AF 

beyond glycemic control, due to their anti-inflammatory, antioxidant, and anti-fibrotic 

effects.213 However, caution should be taken in extrapolating these experimental findings to 

patients with diabetic cardiomyopathy. Histologically, changes in the atrial myocytes are the 

initial findings without significant fibrosis (EHRAS I). Later on the disease tissue 

appearance may change to EHRAS Class III and EHRAS Class IV (see Table 2).

Atrial cardiomyopathy due to valvular heart disease

Mitral valve disease (MVD) and aortic stenosis (AS) have been associated with atrial 

structural remodelling and a propensity for AF. Although secondary atrial cardiomyopathy is 

most often associated with age, hypertension, and heart failure in developed countries, RHD 

is responsible for over 40% of AF in the developing world.214

Mitral stenosis—In atria from 24 patients with isolated MS and normal sinus rhythm 

undergoing mitral valvuloplasty, John et al.215 reported unchanged or an increased effective 

refractory period (ERP), widespread and site-specific conduction delay, myocyte loss and 

patchy electrical scar, suggesting that structural changes and their electrophysiological 

consequences precede the development of AF. Factors associated with these structural 

changes include direct myocardial effects (pathognomonic inflammatory Ashoff bodies), 

ultrastructural changes, atrial fibrosis, immunoactive cytokines, and matrix 

metalloproteinase remodelling (decreased MMP-1 and MMP-3).215–217 Reverse atrial 

remodelling (an immediate reduction in LA pressure and volume and an improvement in 

biatrial voltage; and further increases in RA voltage 6 months later) was demonstrated in 21 

patients with isolated MS undergoing commissurotomy.218 In contrast, atrial remodelling 

did not reverse in patients with lone AF undergoing successful AF ablation; indeed, 

substrate abnormalities progressed (decreased voltage and increased regional refractoriness) 

over the subsequent 6 – 14 months.219

Atrial enlargement and fibrosis are important determinants for the development and 

maintenance of AF. Increases in collagen I and collagen III (the latter which increase in 

cultured fibroblasts exposed to mechanical stretch)220 were seen in patients with AF and 

MVD, but only type I was seen in patients with lone AF.221 Cellular decoupling and 

myocyte isolation, tissue anisotropy, and conduction inhomogeneities were considered the 

substrate for local re-entry and arrhythmia.

Mitral regurgitation—Verheule et al.222 found changes in atrial tissue structure and 

ultrastructure 1 month after creating severe mitral regurgitation (MR) by partial mitral valve 

avulsion. Effective refractory periods were increased homogeneously and sustained AF (.1 

h) was inducible in 10 of 19 MR dogs; in this model, there were no differences in either 

atrial conduction pattern or velocities. Interstitial fibrosis, chronic inflammation, and cellular 

glycogen accumulation were noted in the dilated left atria, but myocyte hypertrophy, 

myolysis, and necrosis were absent. In contrast, myocyte hypertrophy, dedifferentiation, and 
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degeneration and fibrosis are described in pigs with surgically created chronic MR223 and 

patients with MR.12,224

High-density oligonucleotide microarrays, enrichment analysis, and a differential proteomics 

approach were used to characterize the molecular regulatory mechanisms and biological 

processes involved in the atrial myopathy that is seen in pigs with moderate to severe 

chronic (6 and 12 months) MR.225 Renin-angiotensin-system and peroxisome proliferator-

activated receptor signalling pathways and genes involved in the regulation of apoptosis, 

autophagy, oxidative stress, cell growth, and carbohydrate metabolism were differentially 

regulated.225 MLC2V (a marker of cardiac hypertrophy and important in the regulation of 

myocyte contractility) had the highest fold change in the MR pigs. Increased activity of a 

membrane-bound containing NADPH oxidase in atrial myocytes, which correlated with the 

degree of cellular hypertrophy and myolysis, was demonstrated in patients with isolated 

severe MR. The authors suggest that atrial stretch-induced NADPH oxidase activation and 

intracellular oxidative stress contributes to apoptosis, atrial contractile dysfunction, and 

atrial dilatation.226

Correction of MR reverses many features of atrial remodelling and corrects functional 

abnormalities. Early LA reverse remodelling (45% reduction of mean LA maximal volume) 

and increased active atrial emptying was found in the early (30 day) postoperative period in 

43 patients undergoing mitral valve surgery (successful repair or replacement) for chronic 

organic MR227 and a similar improvement at 6 months was reported by Dardas et al.228 

Histologically, EHRAS Class III is the most prominent finding in MVD, although the 

histological appearance of the tissue may vary substantially over time and interindividually 

and, therefore, all EHRAS classes may be found in the tissue (see Figure 1; Table 2).

Aortic stenosis—Although AS is associated with chronic AF,229 animal models of AS 

and atrial remodelling are lacking. Kim et al.173 studied atrial electrical remodelling in 

excised perfused hearts in a rat model of increased afterload simulating AS (ascending aortic 

banding), which produced LVH without systemic hypertension, heart failure, or neuro-

hormonal activation. Banded hearts showed marked LA hypertrophy and fibrosis at 14 and 

20 weeks post-operatively. The incidence and duration of pacing-induced AF was increased 

at 20 weeks and was associated with decreased mean vectorial conduction velocity and 

inhomogeneity of conduction, decreased expression of connexin-43, but without changes in 

ERP. Importantly, atrial remodelling was not present at 8 weeks, when the greatest degree of 

LVH was present.173

Left atrium volumes are higher in patients with AS compared with controls and decrease 

significantly after valvuloplasty.230 Plasma natriuretic peptide (ANP) levels are higher in 

symptomatic than asymptomatic patients with AS231 and N-ANP levels predict atrial 

remodelling and late (2 month) post-operative AF after surgery for AS.232

Taken together, these data support the notion that substrate-based AF is a consequence of the 

abnormal haemodynamics and atrial remodelling that accompany valvular heart disease. In 

this instance, atrial remodelling is the consequence of multiple biological processes that 

create structural and ultrastructural abnormalities and a change in conduction (as opposed to 
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refractoriness) that favours the development and maintenance of AF. Histologically, EHRAS 

Class III is the most prominent finding, although the histological appearance of the tissue 

may vary substantially over time and interindividually (see Figures 1 – 3; Table 2). Atrial 

pathology often also affects specialized conduction system tissues like the sinus and AV 

nodes. However, these changes are beyond the scope of the present consensus report, which 

focuses on atrial cardiomyocytes and tissue.

Impact of atrial cardiomyopathies on occurrence of atrial fibrillation and 

atrial arrhythmia

Controversy about the mechanism of AF has been alive for over 100 years, yet given the 

continued increase in worldwide burden of AF,233 ongoing investigation will drive improved 

treatment and prevention. Currently, there are two opposing sides in the debate about re-

entrant mechanisms in AF. On one side are those who promote variants of the original idea 

of Gordon Moe that fibrillation, whether atrial or ventricular, results from the continued 

random propagation of multiple independent electric waves that move independently 

throughout the atria.234,235 On the other side are those who adhere to the theory that 

fibrillation is a consequence of the continued activity of a few vortices (rotors) that spin at 

high frequencies, generating ‘fibrillatory conduction’.236,237 In either case, arrhythmia 

maintenance is favoured by abbreviated APD/refractory period.13,238,239 Another pre-

requisite of the multiple wavelet hypothesis is that there should be slow conduction, which is 

not the case for rotors. According to rotor theory, slowing of conduction is established 

dynamically by the curvature of the rotating wave front, which is steepest near the rotation 

centre, at which refractory period is briefest and conduction velocity is slowest.240 Which of 

the above two mechanisms prevails in human AF has not been fully established, yet.241

Regardless of the mechanism that maintains it, AF leads to high-frequency atrial excitation, 

which if sustained, results in ion-channel remodelling that further abbreviates the APD and 

refractory period to boost its stabilization. Such AF-induced electrical remodelling is 

reversible in the short term (minutes, hours, or days), but less so when lasting months or 

years. For a detailed discussion of AF-induced remodelling, see chapter 3. How these 

changes contribute to AF perpetuation in the long term has not been fully determined.

In a recent study using a sheep model of persistent AF induced by intermittent atrial 

tachypacing there was a progressive spontaneous increase in the dominant frequency (DF) of 

AF activation after the first detected AF episode.240,242 The results suggested that, unlike the 

tachypacing induced electrical remodelling that can occur over minutes or hours, there 

existed a protracted, slowly progressing electrical and structural remodelling secondary to 

AF that sustains for days or weeks.240,242 In addition, a consistent left-vs.-right atrial DF 

difference correlated with the presence of rotors, DF gradients, and outward propagation 

from the posterior LA during sustained AF in the explanted, Langendorff-perfused sheep 

hearts,242 and an underlying basis is seen in humans.243 The DF of non-sustained AF 

increases progressively at a rate (dDF/dt) that accurately predicts the transition from 

episodic, non-sustained AF to persistent, long-lasting AF.126 Although fibrosis developed 

progressively,126 it is unknown what role if any fibrosis played in rotor acceleration or 
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stabilization. Other studies using different animal models have also demonstrated that long-

term atrial tachypacing results in atrial fibrosis,244 with concomitant release of cytokines 

that are known to modify atrial electrical function.245 In the sheep model, atrial structural 

changes leading to PLA enlargement likely made rotors less likely to collide with anatomic 

boundaries, thus contributing to their stabilization and AF persistence.242,246

Distinct stresses of the atrial myocardium could contribute to the transformation of atrial 

cardiomyopathy into an arrhythmogenic substrate for AF. For instance, mechanical stress is 

a major regulator of cardiac electrical properties. The two atria are particularly sensitive to 

changes in mechanical coupling due to their ‘reservoir’ position and their function of 

‘pressure sensor’ with a specific endocrine role, i.e. the secretion of natriuretic peptides. 

Many mechanosensors are expressed in the atrial myocardium and contribute to the interplay 

between membrane electrical properties, mechanical stresses, and myocardial wall 

deformation.247 Recently, it has been reported that shear stress of atrial cardiomyocytes 

regulates the surface expression of voltage-gated potassium channels via the stimulation of 

the integrins that link myocytes to the extracellular matrix.248,249 During atrial 

haemodynamic overload, the mechano-sensor signalling pathways, are constitutively 

activated, such that myocytes are no longer able to respond to shear stress. This process 

results in the acceleration of atrial repolarization and could contribute to AF vulnerability.249

Oxidative stress is also thought to be important in AF-induced atrial remodelling leading to 

cardiomyopathy and AF perpetuation.250 However, the manner in which reactive oxygen 

species (ROS) mediate atrial ionic remodelling is inadequately understood. NOX2/4 activity 

increases in fibrillating atria and is a potential source of ROS in AF. Mitochondrial ROS is 

potentially another important source of oxidative stress; mitochondrial dysfunction has been 

demonstrated in AF. It remains to be determined whether atrial oxidative stress directly 

affects atrial APD and refractoriness and thus contributes to rotor acceleration and stability 

in AF. Several sarcolemmal ionic currents are directly or indirectly modulated by ROS,251 

but the relevance of these mechanisms to human AF has not been demonstrated.

Sustained AF activates the release of pro-inflammatory cytokines and hormones related to 

cardiovascular disease and tissue injury, including angiotensin-II (Ang-II), tumour necrosis 

factor (TNF)-a, interleukin (IL)-6, and IL-8.252 Pro-inflammatory stimuli such as NOX-

derived ROS, growth factors, and other hormones has been demonstrated to have a role in 

Ang-II function.253 However, the precise molecular modifications of the putative signalling 

targets of ROS after Ang-II stimulation are yet to be identified. Knowing which NOXs are 

activated by Ang-II in the normal atria may help generate better interventions aimed at 

preventing AF associated with Ang-II activation. Ang-II is a well-known trigger of fibroblast 

activation and differentiation into myofibroblasts, which are key factors in the generation of 

fibrosis. Pro-inflammatory cytokines also promote ion-channel dysfunction, which together 

with myocyte apoptosis and extracellular matrix remodelling predisposes patients to AF.

Recently, atrial adipose tissue has emerged as a potential player in the pathophysiology of 

AF.3,254 In addition to its paracrine effects,192 adipose tissue can infiltrate the sub-

epicardium of the atrial myocardium and become fibrotic255 contributing to the functional 

dissociation of electrical activity between epicardial layer and the endocardial bundle 
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network, favouring wavebreak, and rotor formation. Lone AF or rapid atrial pacing promotes 

adipogenesis through the regulation of genes specific to metabolic adaptation. Therefore, it 

is possible that the accumulation and infiltration of adipose tissue reflects metabolic stress 

secondary to excessive work of the atrial myocardium.191 Furthermore, adipose tissue can 

induce fibrosis and alter gene-expression patterns.195,256

Atrial cardiomyopathies, systemic biomarkers, and atrial thrombogenesis

Atrial cardiomyopathies and systemic biomarkers

Atrial inflammation and inflammatory biomarkers—Infiltration of neutrophils, 

macrophages, and lymphocytes accompanies surgical injury or pericarditis, promoting the 

development of atrial fibrosis, resulting in heterogeneous and slowed conduction, a risk 

factor for re-entrant arrhythmia.257–261 This provides a mechanistic link between 

inflammatory activation and atrial arrhythmogenesis. Anti-inflammatory interventions such 

as prednisone are effective in preventing neutrophil infiltration in sterile pericarditis and in 

suppressing pacing-inducible atrial flutter,262 and steroid pre-treatment has been found to 

reduce the incidence of postoperative AF in an appropriately powered randomized, clinical 

trial.263 An ongoing trial studies the effect of colchicine (NCT 001128427).

In a mouse model of persistent hypertension, Ang-II infusion promotes increased atrial 

abundance of myeloperoxidase (MPO, a neutrophil and macrophage oxidant-generating 

enzyme) and promotes atrial fibrosis.261 In MPO knockout mice, the profibrotic response to 

A-II infusion was eliminated. Angiotensin II and endothelin-1 are linked to inflammatory 

and proarrhythmogenic atrial remodelling.2,264–266 This evidence suggests that 

inflammatory cell infiltration has an important role in promoting the creation of a substrate 

for AF, as a result of conduction heterogeneity and slowing, both in the setting of cardiac 

surgery and beyond.

Systemic inflammatory activation in atrial fibrillation—In addition to 

haemodynamic stress-induced cellular inflammation of the atria, a cross-sectional study 

demonstrated that AF was associated with higher plasma levels of C-reactive protein (CRP), 

a sensitive but non-specific biomarker of systemic inflammation produced by the liver.267 A 

follow-up secondary analysis of the participants Cardiovascular Health Study participants 

further revealed that elevated CRP predicted incident AF.268

Subsequent studies have demonstrated relationships between several different serologic 

markers of inflammation and AF, including IL-6,269 TNF-a,270 aldosterone271 and simple 

white blood cell counts.272 Analyses of multiple inflammatory biomarkers within the same 

study have suggested that IL-6 and osteoprotegerin273 may be especially important. The 

relationship between IL-6 and AF may be mediated by left atrial enlargement.269

While evidence that inflammatory markers presage the development of AF has been 

replicated,268,274 there are also multiple studies to demonstrate that atrial arrhythmias likely 

contribute to inflammation: specifically, cardioversion of AF275 as well as ablation of either 

AF276 or atrial flutter277 has resulted in a decrease in inflammation. Indeed, Marcus et al. 

demonstrated that the rhythm at the time of the blood draw (AF vs. sinus) was an important 
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determinant in detecting an elevated CRP or IL-6 level.278 Taken together, these data suggest 

that the relationship between inflammation and AF may be bidirectional and progressive.

Intra-atrial sampling studies—As the enhanced risk of stroke in the setting of AF has 

been attributed to status of blood flow and in particular thromboemboli originating in the left 

atrial appendage, there has been an interest in determining whether peripheral blood can 

adequately reflect the hypercoagulability that may be present locally within the atria (see 

Figure 10).279 The first intra-atrial sampling study failed to identify evidence of statistically 

significant differences between several markers of hypercoagulability in right and left atrial 

vs. femoral vein and arterial samples among persistent AF patients with MS;280 of note, the 

same markers revealed statistically significant differences when compared with normal 

controls without AF.279 In contrast, a subsequent study demonstrated that platelet activation 

acutely increased in coronary sinus blood in AF, while systemic platelet activation (obtained 

from the femoral vein) revealed no such change.281

A similar approach to multi-site sampling has also been applied to better understand the 

relationship between inflammation and AF. Liuba et al. found higher levels of IL-8 in the 

femoral vein, right atrium, and coronary sinus than the left and right upper PVs among eight 

permanent AF patients (without any such differences 10 paroxysmal AF patients or 10 

controls).280

Practical implications and use of systemic biomarkers—Systemic biomarkers 

have been used to predict development of AF and/or its complications (Table 5). Various 

studies have examined the role of inflammatory indices, natriuretic peptides, injury markers, 

etc. in predicting incident AF, especially in the post-surgery setting. Many of these 

biomarkers are non-specific, and high levels may reflect infection or sepsis, an acute phase 

reaction, etc.282,283,284

Adding BNP and CRP to a prediction score derived from CHARGE-AF (which included 

data from the Atherosclereosis Risk in Communities Study (ARIC), Cardiovascular Health 

Study (CHS), the Framingham Heart Study, the Age, Gene/Environment Susceptibility 

Reykjavik Study (AGES), and the Rotterdam Study) and utilizing age, race, height, weight, 

systolic and diastolic blood pressure, current smoking, use of antihypertensive medication, 

diabetes, history of myocardial infarction and history of heart failure285 improved the 

statistical model.286 Once again, the addition of CRP did not meaningfully improve the 

model.

In another study evaluating the relationship of extracellular matrix modulators (matrix 

metalloproteinases, MMPs, and their tissue inhibitors, TIMPs) and AF risk, only elevated 

MMP9 levels were significantly associated with AF risk.287 Proteases having desintegrin 

and metalloprotease activities (ADAM) are related to atrial dilatation and thereby influence 

mechanical performance of the atria.288

The clinical benefit of considering biomarkers associated with AF is questionable unless 

there is clear evidence of a direct benefit in AF risk prediction and management this has not 

been achieved to date.
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Prothrombotic indices: coagulation, platelets

Over 150 years ago, Virchow proposed a triad of abnormalities that contributed to thrombus 

formation (thrombogenesis), that is, abnormalities of vessel wall, abnormal blood flow and 

abnormal blood constituents (Figure 10). In the setting of AF, abnormalities of vessel walls 

are evident by the association of thromboembolism with structural heart disease (eg. mitral 

valve stenosis) and complex aortic plaque, as well as endothelial damage/dysfunction, 

whether recognized by biomarkers (eg. von Willebrand factor (vWF), tissue plasminogen 

activator, tPA), immunohistochemistry studies of the left atrial wall, electron microscopy, or 

by functional studies (eg. flow mediated dilatation).289 Abnormal blood flow in AF can be 

visualized by spontaneous echocontrast in the LA, as well as low left atrial appendage 

Doppler velocities. Abnormal blood constituents in AF are evident from abnormalities of 

coagulation, platelets, fibrinolysis, inflammation, extracellular matrix turnover, etc. that are 

all directly or indirectly associated with thrombogenesis, or a predisposition to the latter. 

While abnormalities of platelets are often evident in AF, they may be more reflective of 

associated vascular disease or comorbidities than of AF per se.290,291 Indeed, thrombus 

obtained in AF is largely fibrin-rich (‘red clot’) compared with arterial thrombus, which is 

largely platelet-rich (‘white clot’), providing a mechanistic explanation for the role of 

anticoagulation therapy, rather than antiplatelet therapy for AF-related 

thromboembolism.291,292

The concept of AF being a prothrombotic or hyper-coagulable state was first proposed in 

1995.293 Many prothrombotic indices in AF have been related to subsequent stroke and 

thromboembolism, whether in non-anticoagulated or anticoagulated subjects (Figure 10). 

Initial studies showed that coagulation-related factors, such as fibrin D-dimer (an index of 

fibrin turnover and thrombogenesis) were related to stroke risk strata as well as an adverse 

prognosis from thromboembolism, whether or not patients were anticoagulated.294 – 297 In 

contrast, there was no prognostic advantage of platelet indices.295,298,299

Prediction of thrombogenesis—Addition of vWf refines clinical risk stratification in 

AF, first shown in the non-anticoagulated or suboptimally anticoagulated patients from the 

SPAF study.300 More recently, vWf has been related to thromboembolism as well as 

bleeding risks in anticoagulated AF patients.301 Ancillary studies from large Phase 3 

anticoagulation trials have reported prognostic implications for increased levels of D-dimer, 

troponin, natriuretic peptides, and novel biomarkers (e.g. GDF15).302–304 Many of these 

studies have been performed in selected clinical trial cohorts, and the prognostic role in risk 

stratification requires prospective testing in unselected large ‘real-world’ cohorts with a 

broad range of stroke risk and renal function. As in the case of AF prediction, evidence for 

the additive value of biomarkers for stroke risk prediction from large prospective 

nonanticoagulated ‘real-world’ cohorts is limited.305 Endocardial thrombogenic alterations 

in diseased atria, which appear to be related to oxidative stress, appear to contribute to clot 

formation, particularly in the left atrial appendage.306–310 Thus, the impact and the relation 

between EHRAS Classses and the extend of endocardial thrombogenic alterations have to be 

assessed in future studies. Interestingly, duration of AF does not correlate with the extent of 

abserved endocardial changes.309
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Imaging techniques to detect atrial cardiomyopathies mapping and ablation 

in atrial cardiomyopathies

It is well established that an enlarged LA is associated with adverse cardiovascular 

outcomes.311–316 In the absence of MVD, an increase in LA size most commonly reflects 

increased wall tension as a result of increased LA pressure,317–320 as well as impairment in 

LA function secondary to atrial myopathy.321,322 A clear relationship exists between an 

enlarged LA and the incidence of atrial fibrillation and stroke,323–332 risk for overall 

mortality after myocardial infarction,321,322,333,334 risk for death and hospitalization in 

patients with dilated cardiomyopathy,335–344 and major cardiac events or death in patients 

with diabetes mellitus.345 left atrium enlargement is a marker of both the severity and 

chronicity of diastolic dysfunction and magnitude of LA pressure elevation.317–320 A recent 

consensus report on multi-modality imaging for AF patients summarizes the current status 

of atrial imaging in more detail.346

Echocardiography

Echocardiography is the imaging modality of choice for screening and serially following 

patients with diseases involving the LA morphology and function.347

For assessment of atrial size, most widely reported is the linear dimension in the parasternal 

long-axis view using M-mode or 2 delayed enhancement (DE).324–339,345,347–349 However, 

due to the complex 3D nature of the atrium and the non-uniform nature of atrial 

remodelling, this measurement frequently does not provide an accurate picture of LA 

size.350 – 354 Thus, when assessing LA size and remodelling, the measurement of LA 

volume is a more powerful prognostic indicator in a variety of cardiac disease 

states.329,331,333–339,345,347–360 Two-dimensional echocardiographic LA volumes are 

typically smaller than those reported from computed tomography or cardiac magnetic 

resonance imaging (CMR).361–365 Left atrium volume from 2D images is best measured 

using the disk summation algorithm because it includes fewer geometric assumptions.366,367 

The advent of 3-D ECHO has improved the accuracy of ECHO volume measurements which 

correlate well with cardiac computed tomography368,369 and magnetic resonance 

imaging.370,371 Compared with 2D assessment of LA volume, 3DE also has superior 

prognostic prediction.372,373

The recommended upper normal indexed LA volume is 34 mL/m2 for both genders which 

fits well with a risk-based approach for determination of cut-off between a normal and an 

enlarged LA.323,357–359

Left atrial function by Doppler echocardiography

Left atrium function can be assessed by pulsed-wave Doppler measurements of late (mitral 

A) diastolic filling. Multiple studies have used this parameter as an index of LA function 

assessment, but it is affected by age and loading conditions.317,374–382 The PV atrial reversal 

velocity has also been used as a measurement of LA function.317,377,379–382 In the presence 

of reduced LV compliance and elevated filling pressures, atrial contraction results in 
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significant flow reversal into the PVs.80,81 Studies have also demonstrated that Doppler 

tissue imaging can be used as an accurate marker of atrial function.383,384

New echocardiographic techniques—Two-dimensional speckle-tracking echo has 

been used as a more sensitive marker to detect early functional remodelling before 

anatomical alterations occur.385–400

Strain (S) and strain rate (SR) imaging provide data on myocardial deformation by 

estimating spatial gradients in myocardial velocities.385,388,392,393,401–405 This technique has 

been used as a surrogate of LA structural remodelling and fibrosis.388–393 Interestingly, LA 

dysfunction with changes in strain and strain rate has been observed in patients with 

amyloidosis in the absence of other echocardiographic features of cardiac involvement.402 

Abnormalities in atrial strain have been observed in diverse conditions, including AF, 

valvular pathology, heart failure, hypertension, diabetes, and 

cardiomyopathies.388,389,396–400 Population-based studies have demonstrated the prognostic 

value of LA strain analysis for long-term outcome.388,394

Less research and fewer clinical outcomes data are available on the quantification of RA 

size. Right atrial volumes are also underestimated with 2D echocardiographic techniques 

compared with 3DE.343,406,407

Cardiac computed tomography

Cardiac CT may be used for accurate assessment of atrial volumes. Volumetric data from 

cardiac computed tomography (CCT) are comparable to data generated by CMR and 3D 

echocardiographic imaging and is superior to 2D echocardiography.371 The LA volume prior 

to catheter ablation and the presence of asymmetry of chamber geometry predicts the 

likelihood of maintaining sinus rhythm post-procedure.408 As the LA enlarges, the shape of 

the LA roof initially becomes flat and then becomes coved, and this progression may 

correlate with development of non-PV substrate in patients undergoing AF ablation.409

CCT may also be used to screen for thrombus prior to AF ablation. The diagnostic accuracy 

of CT has been studied by multiple groups, with a systematic review of 19 studies and 2955 

patients reporting a sensitivity and specificity of 96 and 92%, respectively, translating to a 

positive predictive value of 41% and a negative predictive value of 99%.410 Diagnostic 

accuracy increased to 99%, with 100% specificity, when delayed imaging was performed. 

An advantage of using CT imaging to exclude thrombus is that CCT is frequently performed 

prior to AF ablation for integration into the electroanatomic mapping systems routinely used 

during AF ablation procedures. CCT can also provide accurate information about PV 

anatomy and variants and correlates well with CMR in that regard.411

Magnetic resonance imaging of the atrium

Over recent years CMR has been used in clinical and research settings to provide gold 

standard volumetric assessments of chamber structure and function. Drawbacks are that 

CMR is expensive and has more limited availability than echocardiography. Recently, 

contrast-enhanced CMR with gadolinium has been used as a technique to detect atrial 

fibrosis.412 Although these methods are still in relatively early stages and have not been 
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extensively reproduced, the ability to identify early degrees of atrial structural change would 

no doubt enhance our ability to detect varying degrees of remodelling that may not be as 

clear from volumetric or functional assessment. In addition to late-gadolinium-enhanced 

(LGE) CMR to detect replacement fibrosis, post-contrast T1 mapping413,414 has been used 

to quantify diffuse interstitial fibrosis. Both techniques have been correlated with bipolar 

voltage measured during invasive mapping.412 However, these techniques require 

specialized post-imaging processing. While they are commonly used for ventricular 

imaging, they have not been widely employed for atrial imaging because of the technical 

challenges in achieving adequate image resolution in the thin-walled atrium.415

Using a systematic scoring system for the extent of delayed enhancement, a recently-

published multicentre study has related the extent of LGE CMR detected fibrosis to the 

outcome of AF ablation.416 The risk of recurrent AF increased from 15% for stage I fibrosis 

(,10% of the atrial wall) to 69% for stage IV fibrosis (≥30% of the atrial wall). The authors 

suggested that CMR quantification of fibrosis may play a role in the appropriate selection of 

patients most likely to benefit from AF ablation. Late-gadolinium-enhanced CMR has also 

been used to predict development of sinus node dysfunction,417 stroke risk,418 and 

progression of atrial fibrillation from paroxysmal to persistent.419 However, various studies 

have highlighted the need to further improve the methods of accurately identifying 

replacement fibrosis and to improve reproducibility of data analysis before LGE CMR can 

be considered a routine clinical tool.420,421

Recently, a number of studies have used CMR DE late gadolinium enhancement (LGE) in 

order to non-invasively characterize the extent and distribution of scarring present following 

AF ablation.422–424 Several studies observed that patients with more extensive scar at 3 

months (or greater percentage scar around the PV circumference) had a lower AF recurrence 

rate.423,425 Another study showed a correlation between measured contact force at the time 

of ablation, and the extent of CMR determined scar development.426 Other studies have 

shown a concordance between scar around the PVs and low-voltage regions on invasive 

electroanatomic mapping (EAM).427,428 Isolation of PVs at repeat procedures could be 

achieved guided by the imported MR image to identify the gaps.427,428 However, other 

studies found no association between CMR scar gaps and mapped PV reconnection sites. A 

study in 50 paroxysmal AF patients undergoing either wide area or ostial ablation found that 

the proportion of patients in whom CMR could correctly identify the distribution of ablation 

lesions varied from as low as 28% to 54% depending on the technique used.429 These 

authors concluded that LGE imaging of atrial scar was not yet sufficiently accurate to 

reliably identify ablation lesions or to determine their distribution. Whether CMR will have 

the resolution to detect such focal regions where scar is incomplete remains uncertain. Of 

note, Harrison et al. used an animal model to correlate lesion size on CMR with lesion 

volume at pathology. The correlation depended critically on the definition of pixel intensity 

used to define scar with small changes in definition leading to large changes in estimated 

scar volume.415
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Imaging with electroanatomic mapping

Electroanatomic mapping systems have become the standard for invasive substrate 

characterization of atrial cardiomyopathies. Using various technologies, these systems allow 

for rapid characterization and reproduction of atrial anatomy with 3-D display rendering. 

Anatomic variations in PV anatomy, including common ostium or additional veins, may be 

identified. Visualization software allows for accurate measurements of atrial distances430 

and gross volumetric data but assessment of venous diameter may be suboptimal owning to 

venous susceptibility to distortion. Anatomic imaging of the atria may be enhanced with the 

co-registration of DICOM images from previously acquired cardiac MRI or CT or with the 

use of real-time contrast angiography or intracardiac echocardiogram.

While EAM allows for anatomic reproduction of the atria, it also enables the assessment of 

the atrial substrate through the geographic display of unipolar and bipolar signal amplitude 

data, as well as other signal characteristics, on rendered atrial surfaces. Regions of low-

voltage, electrical silence, fractionation, or double potentials are reputed to correlate with 

underlying atrial fibrosis, surgical patches, or scar. In the same way, electrical activation of 

the atrium may be imaged allowing for assessment of regional changes in conduction 

velocity431 that may be proarrhythmic and support the perpetuation of atrial fibrillation. The 

use of EAM for activation mapping of atrial arrhythmia will be discussed in the subsequent 

section on ablation techniques.

Electroanatomic mapping has been used to image the electroanatomic substrate of atrial 

cardiomyopathy associated with sinus node disease,432 rheumatic MS,215 atrial septal 

defect,218,431 CHF,433 obstructive sleep apnoea,117 and ageing.167 It has been a powerful 

research tool that has enhanced our understanding of the atrial substrate in patients with 

paroxysmal and persistent atrial fibrillation and74,434 those who have failed initial PV 

antrum isolation.435

Unlike cardiac MR, CT, or echocardiography, EAM requires invasive catheterization and 

mapping. However, despite recent advances in MRI techniques that allow for imaging atrial 

scar, EAM imaging arguably has a great clinical feasibility and superior ability to image and 

to define the atrial substrate that leads to the development of atrial fibrillation. A recent 

consensus report on multimodality imaging for AF patients is a useful detailed reference.346

Ablation of atrial tachyarrhythmia

Numerous single-centre, randomized studies and larger multicentre observational registries 

have demonstrated the superiority of AF ablation over drug therapy for maintenance of sinus 

rhythm. However, late recurrences are common and associated with more advanced atrial 

substrate associated with structural heart disease.436–446

It is in this context that it is important to consider the various types of underlying atrial 

cardiomyopathy and how they may affect ablation outcomes. This is timely, as it has 

recently been observed that lone AF is a rapidly disappearing entity as we recognize 

conditions such as sleep apnoea, obesity, endurance exercise etc. previously not suspected of 

being causally associated with atrial fibrillation.447 In addition, emerging data suggest that 

treating these underlying causes may be central to improving long-term ablation 
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outcomes.199,200,448,449 In addition, LA ablation procedures may alter atrial size, structure, 

and mechanical atrial function. Catheter ablation may thus influence ongoing pathologies 

and atrial thrombogenesis.450,451

Mapping studies have demonstrated a common electrophysiological endpoint for a range of 

such conditions affecting the atrium either primarily or secondarily, many of which have 

been shown to be associated with atrial remodelling characterized by conduction slowing 

and myocardial voltage reduction suggesting fibrosis.117,167,177,433,452,453 Magnetic 

resonance imaging techniques attempting to characterize the extent of myocardial fibrosis 

have demonstrated that this appears to be the strongest independent predictor of AF 

recurrence after ablation.416,454 Whether the EHRAS classification has value for informing 

catheter ablation in human atria remains to be determined.

Age and atrial fibrillation ablation

Increasing age has been shown to be associated with increasing atrial fibrosis in both basic 

and clinical studies.167,455 Numerous studies have evaluated ablation outcomes in ageing 

patients (variously defined as .65 through to .80).444,445,456–462 Observational studies have 

consistently reported high multiple procedure success rates at 12 months of up to 80% in 

older patients. Conflicting data exist regarding outcomes in comparative studies with one 

study demonstrating a reduced success rate in patients over 65 years while another study 

showed similar efficacy in patients over the age of 80 years to the younger cohort.461,463

Hypertension

Hypertension is another well-recognized risk factor for development of atrial fibrillation. 

Mapping studies have demonstrated the presence of a more advanced atrial substrate in 

hypertensive patients compared with controls.177,464 Hypertension has been shown to be a 

risk factor for recurrence of AF after AF ablation in numerous studies on univariate analysis, 

but it is less clear whether this is independent of factors such as atrial size. Recent 

preliminary studies have suggested that aggressive treatment of hypertension improves post-

ablation outcomes.200,464,465

Heart failure and atrial fibrillation ablation

Contractile dysfunction has similarly been associated with advanced atrial remodelling and 

predisposition to atrial fibrillation both in basic and in clinical studies.113,433 Numerous 

studies have evaluated the efficacy of catheter ablation of both paroxysmal and persistent 

atrial fibrillation with significant impairment of systolic function.437,466–473 The weight of 

evidence is that sinus rhythm can be successfully achieved in 50 – 80% of patients although 

repeat procedures are common and follow-up periods are usually not more than 12 months. 

Successful ablation has been associated with significant improvements in ejection fraction 

and reduction in atrial size in the majority of studies.470,474

Metabolic syndrome and obesity

A number of studies have evaluated the impact of the metabolic syndrome on catheter 

ablation outcomes in atrial fibrillation patients.475–480 Although the data are mixed, the 

weight of studies and a systematic review477 suggest a higher risk of AF recurrence. In the 
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ARREST AF study, patients with BMI over 27 undergoing AF ablation had a much lower 

risk of recurrence if weight loss was achieved and maintained.200 Observational studies have 

demonstrated a significantly lower risk of recurrent AF in patients with treated compared 

with untreated OSA.481

Impact of diabetes on ablation outcomes

Several studies have documented an increased recurrence rate of atrial fibrillation after an 

ablation procedure in patients with diabetes mellitus.204,475,482 An abnormal atrial substrate 

and non-PV triggers have been shown to underlie this worse outcome.

Role of myocarditis

Markers of inflammation such as CRP and IL-6 have been linked to risk of AF.267,483–485 

Recently, giant-cell myocarditis involving only the atria has been shown to result in atrial 

fibrillation with enlarged atria.149 Patients with apparently lone atrial fibrillation frequently 

demonstrate histological findings consistent with an atrial myocarditis;486 and those with 

past myocarditis may have atrial electrical scar, conduction abnormalities, or atrial 

standstill.146,487–489 Baseline CRP levels have been associated with the risk of recurrent AF 

after catheter ablation.278 Recently, colchicine has been used to prevent atrial fibrillation 

recurrence after PV isolation.490 It is also possible that AF in itself can result in 

inflammation and the development of an ‘atrial myocarditis’.491

Impact of atrial fibrillation duration on atrial myopathy and atrial fibrillation ablation 
outcomes

Longitudinal studies in AF patients have demonstrated clinical progression of AF over time 

in a significant proportion with risk strongly associated with drivers such as increasing age, 

structural heart disease, and hypertension.492 Chronic AF results in structural change with a 

recent study showing that in proportion to AF burden, atrial remodelling may progress 

significantly even over a time period as short as 1 year.

Numerous studies have demonstrated that atrial size and occasionally mechanical function 

may improve following ablation,493 but at least one invasive study showed no improvement 

in atrial electrophysiology 6 months after successful ablation.219 Overwhelmingly, studies 

evaluating long-term outcomes after ablation of persistent atrial fibrillation have 

demonstrated lower rates of procedural reversion to sinus rhythm and higher late recurrence 

rates reflecting more advanced atrial substrate.

Impact of ongoing atrial fibrillation on electrical and structural remodelling

It is now well known that in the presence of an appropriate heterogenous AF substrate, a 

focal trigger can result in sustained high-frequency re-entrant AF drivers, named rotors. The 

waves that emerge from these rotors undergo spatially distributed fragmentation and so give 

rise to fibrillatory conduction. When high-frequency atrial activation is maintained for at 

least 24 h, ion-channel remodelling changes the electrophysiologic substrate, promoting 

perpetuation of re-entry and increasing the activity of triggers, further contributing to AF 

permanence.494 Atrial fibrillation itself leads to remodelling, causing electrophysiological 

(electrical), contractile, and structural changes.495,496 Although AF can typically be reversed 
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in its early stages, it becomes more difficult to eliminate over time due to such 

remodelling.238,497 Dominant-frequency analysis points to an evolution of mechanisms in 

AF patients, with PV sources becoming less predominant as AF becomes more persistent 

and atrial remodelling progresses.498 The data suggest that in patients with long-standing 

persistent AF, atrial remodelling augments the number of AF drivers and shifts their location 

away from the PV/ostial region.

Impact of catheter ablation on atrial pathology

Several studies have examined LA size before and after catheter ablation and have 

demonstrated a 10 – 20% decrease in the dimensions of the LA after catheter ablation of 

AF.499,500 Although the precise mechanism of this decrease in size is not known, it appears 

consistent with reverse remodelling. It has been suggested that earlier aggressive 

intervention to maintain sinus rhythm, including AF ablation if needed, may aid to prevent 

‘chronicization’ of AF and improve long-term outcomes.501 A large-scale multicentre trial is 

presently testing this idea.502

The true impact of atrial cardiomyopathies on the success of catheter ablation has not been 

elucidated. Nevertheless, it is very likely that atrial pathology affects energy delivery to 

tissue and specific forms of cardiomyopathy may differentially affect ablation procedures. 

However, the true impact and interaction of various energy sources with different atrial 

pathologies need to be studied.

Conclusion

Atrial cardiomyopathies as defined in this consensus paper have a significant impact on 

atrial function and arrhythmogenesis. The EHRAS classification (EHRAS Class I – IV) is a 

first attempt to characterize atrial pathologies into discrete cohorts. Because disease-related 

histological changes in atrial tissue are often poorly characterized, not necessarily specific 

and vary considerably over time their classification is challenging. Further studies are 

needed to implement and validate the EHRAS classification and to assess its value in 

guiding clinical understanding and management of AF. Nevertheless, a more precise, defined 

classification of atrial pathologies may contribute to establishing an individualized approach 

to AF therapy, which might improve therapeutic outcomes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Supplementary data associated with this article can be found in the online version at http://
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Figure 1. 
Histological and pathopysiological classification of atrial cardiomyopathies (EHRA/HRS/

APHRS/SOLAECE): EHRAS classification. The EHRAS class may vary over time in the 

cause of the disease and may differ at various atrial sites. Of note, the nature of the 

classification is purely descriptive. EHRAS I–IV is not intended to describe disease 

progression from EHRAS I to EHRAS IV.
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Figure 2. 
(A) EHRAS Class I (biopsy): there are severe changes affecting ‘primarily’ the 

cardiomyocytes in terms of cell hypertrophy and myocytolysis; fibrosis is much less evident 

than myocyte modifications. (B) EHRAS Class II (biopsy): cardiomyocyte alterations are 

relatively modest compared with severe fibrotic changes; in this case, interstitial changes are 

much more prevalent than myocyte ones. (C ) EHRAS Class III (biopsy): this is a 

combination of cardiomyocyte changes and collagen fibre deposition. (D) EHRAS Class IV 

(autopsy heart): primarily neutrophilic myocarditis.
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Figure 3. 
EHRAS Class IV (autopsy heart): this image shows a myocardial interstitial with some 

fibrosis but prominent amyloid (AL type) deposition (left-hand side, congo red staining 

under regular light microscope; right-hand side, congo red staining under polarized light 

microscope).
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Figure 4. 
Schematic representations and heart dissections to show the arrangement of the myocardial 

strands in the superficial parts of the walls. (A) The dissection viewed from the anterior 

aspect display the interatrial muscle Bachmann bundle and its bifurcating branches leftward 

and rightward. (B) A view of the roof and posterior wall of the left and right atriums. The 

right pulmonary veins (PVs) passes behind the intercaval area. The subepicardial dissection 

shows the abrupt changes in fibre orientation and the myocardial strands (septopulmonary 

bundle) in the region between the left and right PVs. The red arrows show multiple muscle 

bridges connecting the two atria. ICV, inferior caval vein; LAA, left atrial appendage; LSPV, 

left superior pulmonary vein; MV, mitral valve; RAA, right atrial appendage; RIPV, right 

inferior pulmonary vein; RSPV, right superior pulmonary vein; SCV, superior caval vein; 

TV, tricuspid valve (see text for details).
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Figure 5. 
Normal histology of the left atrium and relevant pathological changes in mitral valve 

disease-associated atrial fibrillation. (A) Medium-power view of a normal left atrial 

myocardium which is composed of large bands of homogeneous cardiomyocytes. (B) In the 

same atrium as in (A), the Van Gieson staining show that collagen fibres (red colour) are 

primarily seen in the adventitial spaces of blood vessels (arrow). (C) Low-power view of a 

left atrium from a patient with mitral valve disease-associated atrial fibrillation. Large bands 

of cardiomyocytes are separated by significant amounts of pathologic fibrous tissue 

(arrows). (D) In the same atrium as in (C), the Van Gieson staining shows that the pathologic 

fibrous significantly thickens the perivascular spaces (perivascular fibrosis, arrow) and 

separates single or small groups of cardiomyocytes (interstitial fibrosis, arrowhead). (E) In 

atrial fibrillation, a variable number of cardiomyocytes undergo loss of contractile elements 

starting from the perinuclear area and resulting in so-called myocytolysis. These spaces may 

be empty (arrow) or filled with glycogen (arrowhead). (F) A higher-power view of 

myocytolysis with both glycogen rich (arrow) and optically empty (arrowhead) 

cardiomyocytes. (G) Ultrastructural view of a myolytic cardiomyocyte with significant loss 

of contractile elements around the nucleus (asterisk). In this empty area, there is very often 

accumulation of mitochondria (arrowhead) while the adjacent myofibrils display signs of 
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abnormal contraction (arrow). (H) An LA from a patient with atrial fibrillation where the 

myocardial microcirculation (arrow) is slightly reduced and irregularly distributed. 

Stainings. (A and C) haematoxylin – eosin staining; (B and D) Van Gieson staining for 

collagen; (E and F) Periodic acid Schiff staining; (G) ultrastructural image; (H) 

immunohistochemical analysis with an anti-CD31 antibody. Original magnifications. (A, B, 

E, and H) ×20; (C and D) ×4; (F) ×40; (G) ×2800.
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Figure 6. 
(A) Comparison of atrial and ventricular action potential properties and underlying ionic 

currents. Resting potentials (2mV) are more negative (averaging 280 to 285 mV) in 

ventricular vs. atrial (270 to 275 mV) myocytes. (B) Connexin distribution differs between 

atria and ventricles, with connexin-43 only expressed in ventricular cardiomyocytes (CMs) 

but atrial CMs having both connexin-40 and connexin-43. (C) Ralistic reconstruction of the 

structure of sheep atria. The right atrium (RA), left atrium (LA), pectinate muscles (PM), 

Bachmann’s bundle (BB) and pulmonary veins (PV) are colour coded. From ref. 43 with 

permission.
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Figure 7. 
Left atrial pressure – volume loop. (A) Analogue recordings of left atrial pressure and 

dimensions in the time domain. Vertical lines indicate time of mitral valve opening (A), end 

of passive atrial emptying and onset of atrial diastasis (B), atrial end-diastole (C), and atrial 

end-systole (D). a and v represent respective venous pressure waves. (B) Left atrial pressure 

– volume loop from a single beat illustrating characteristic figure-of-eight configuration. 

Arrows indicate the direction of loop as a function of time. A loop represents active atrial 

contraction. V loop represents passive filling and emptying of the LA. MVO, time of mitral 

valve opening; MVC, approximate time of mitral valve closure; LA, left atrial end-systole; 

and LAd, left atrial end-diastole. Reproduced from ref. 49 with permission.
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Figure 8. 
LA functions colour-coded displays of atrial functions (red, reservoir; blue, conduit; yellow, 

booster pump) related to events in the cardiac cycle. Displayed are pulmonary venous (PV) 

velocity, LA strain, LA strain rate, LA volume and pressure, and mitral spectral and tissue 

Doppler. Reproduced from ref.1 with permission.
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Figure 9. 
Excitation – contraction coupling in atria vs. ventricles. Schematic representation of the cell 

structure and major Ca2+ handling proteins, along with related currents and ion transporters 

(A). Illustration of action potential (top), Ca2+ transient (middle) and confocal linescan 

image of intracellular Ca2+ wave propagation towards cell centre (bottom) in a ventricular 

(left) vs. atrial (right) cardiomyocyte (B). Arrows indicate differences in expression and/or 

function of Ca2+ handling proteins in atrial vs. ventricular cardiomyocytes. INa, Na+ current; 

FKPB12.6, FK506-binding protein 12.6; JPH2, Junctophilin-2; MyBP-CMyosin bindig 

protein C; TnI, Troponin-I; for further abbreviations, see text.
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Figure 10. 
Concept of ‘endocardial remodelling’ in fibrillating atria. In accordance to Virchow’s triad 

hypercoagulability, flow abnormalities, and endothelial changes must co-exist to induce 

thrombogenesis at the atrial endocardium. Molecular studies have revealed substantial 

endocardial changes in left atrial tissue samples. Prothrombogenic factors (vWF, adhesion 

molecules like VCAM-1, P-selectin etc; green) are expressed at the surface of endothelial 

cells causing an increased adhesiveness of platelets and leucocytes to the atrial endocardium. 

This initiates atrial thrombogenesis at the atrial endocardium. Several clinical factors like 

diabetes mellitus, heart failure ageing etc. (CHA2DS2VASc Parameters) increase molecular 

alterations (oxidative stress pathways etc.) within myocytes and endothelial cells, and 

thereby, increase the expression of prothrombogenic factors. These alterations are not 

directly related to the presence of absensce of atrial fibrillation in the surface ECG, and 

therefore, help to explain, why thrombogenesis is increased even during episodes of sinus 

rhythm.
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Table 1

Definition of atrial cardiomyopathy

‘Any complex of structural, architectural, contractile or electrophysiological changes affecting the atria with the potential to produce clinically-
relevant manifestations’.
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Table 2

EHRAS classification of atrial cardiomyopathy

EHRAS Histological characterization class

I11–15,503 Morphological or molecular changes affecting ‘primarily’ the cardiomyocytes in terms of cell hypertrophy and myocytolysis; 
no significant pathological tissue fibrosis or other interstitial changes

II8,12,14,504–506 Predominantly fibrotic changes; cardiomyocytes show normal appearance

III9,11,12,217,266 Combination of cardiomyocyte changes (e.g. cell hypertrophy, myocytolysis) and fibrotic changes

IV17–19 Alteration of interstitial matrix without prominent collagen fibre accumulation

IVa Accumulation of amyloid

IVf Fatty infiltration

IVi Inflammatory cells

IVo Other interstitial alterations
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Table 3

Hereditary muscular dystrophies with cardiac involvement

Muscular dystrophy Protein/gene Primary cardiac disease

Duchenne Dystrophin DCM

Becker Dystrophin DCM

Myotonic dystrophy, type 1 DMPK CSD

Emery-Dreifuss Emerin CSD

Lamin A/C (DCM)

Limb-Girdle Lamin A/C CSD

Sarcoglycans others CM

Facioscapulohumeral Dux 4 CSD (rare)

DCM, dilated cardiomyopathy; CSD, conduction system disease; DMPK, myotonic dystrophy protein kinase.
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Table 4

Drugs reported to induce atrial fibrillation

Drug group Drugs Mechanism

Bisphosphonates Alendronate, zoledronic acid

Cardiovascular

Inotropics Dopamine, dobutamine, dopexamine, arbutamine, 
enoximone, milrinone, levosimendan

Adrenergic stimulation

Vasodilators Isosorbide, losartan, flosequinan Hypotension with probable adrenergic 
reflex

Cholinergics Acetylcholine Vagal stimulation

Diuretics Thiazides Hypokaliemia

Respiratory System

Sympathicomimetics Pseudoephedrine, albuterol, oriciprenaline, salbutamol, 
salmetrol

Adrenergic stimulation

Xanthines Aminophylline, teophylline Adrenergic stimulation

Central Nervous System

Anticholinergics Atropine Adrenergic stimulation

Anticonvulsants Lacosamide, paliperidone

Antidepressants Fluoexetine, tranylcypromine, trazodone Direct cardiodepressant effect, 
sympathetic tone coronary spasm

Antimigraine Ondasetron, sumatriptan

Antipsychotics Clozapine, loxapine, olanzapine Direct cardiodepressant effect, 
sympathetic tone

Cholinergics Physostigmine, donepezil Vagal stimulation

Dopamine agonists Apomorphine Vagal activity

Chemotherapeutics Cardiac injury, coronary vasospasm, 
hypertension, reactive oxygen species, 
changes in mitochondrial calcium 
transport, electrolyte disturbances, 
inflammation

Alylating agents Cisplatin, cyclophosphamide, ifosfamide, melphalan

Anthracyclines Doxorubicin, mitoxantrone

Anti-metabolites Capecitabine, 5-fluorouracil, gemcitabine

Antimicrotubule agents Docetaxel, paclitaxel

Tyrosine kinase inhibitors Cetuximab, soratenib, sunitinib

Topoisomerase inhibitors Amsacrine, etoposide

Monoclonal antibodies Alemtuzumab, bevacizumab, rituximab, trastuzumab

Cytokines and immunomodulators Azathioprine, interferon-gamma, interleukin-2, 
lenalidomide

Genitourinary System

Drugs for erectile Sildenafil, tadalafil, vardenafil Hypotension with adrenergic reflex 
dysfunction

Tocolytic drugs β2-adrenoceptor agonists (hexoprenalin, terbutaline), 
magnesium sulphate

Hormones

Anabolic-androgenic steroids Structural changes, changes in autonomic 
activity steroids
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Table 5

Coagulations markers in atrial fibrillation

Study AF group(s) Control group(s)
Significant abnormalities found in AF (increase in 
coagulation markers)*

Gustafsson (1990)507 20 (with stroke) 40 (normal without stroke) D-dimers, vWF irrespectively of history of stroke

20 (without stroke) 20 (with stroke)

Kumagai (1990)508 73 73 D-dimers

Asakura (1992)509 83 (normal) PF1+2, TATIII complex

Sohara (1994)510 13 (paroxysmal) (normal) TATIII complex (no difference in D-dimers)

Lip (1995)511 87 158 D-dimers, vWF

Lip (1996)512 51 26 (healthy) D-dimers

Kahn (1997)513 50 (without prior stroke) 31(without prior stroke) Fibrinogen in AF without stroke vs. controls without 
stroke (no difference was seen between groups with 
prior stroke)25 (with prior stroke) 11 (with prior stroke)

Heppell (1997)514 19 with thrombus in LA Not applicable D-dimers, vWF, TATIII complex if LA thrombus

90 without thrombus in 
LA

Shinohara (1998)515 45 (non-valvular) Not applicable D-dimers, TATIII complex in patients with low vs. high 
LAA velocity

Feinberg (SPAF III) 
(1999)516

1531 Not applicable No association of PF1+2 with thromboembolism

Mondillo (2000)517 45 35 (healthy) D-dimers, vWF, s-thrombomodulin

Fukuchi (2001)518 16 27 (cardiac without AF) vWF in LA appendage tissue

Conway (2002)296 1321 vWF in high-risk group for stroke

Kamath (2002)519 93 50 (normal) D-dimers

Vene (2003)520 113 D-dimers in patients having cardiovascular events vs. no 
event

Nakamura (2003)521 LA appendage tissue of 
7 non-valvular

4 non-cardiac death vWF, TF

Conway (2003)297 994 Not applicable vWF not associated of with risk of stroke, vWF 
independently associated with vascular events

Kamath (2003)522 31 (acute onset) 31 (healthy) Haematocrit raised in acute AF

93 (permanent) D-dimers in permanent AF (but not in acute AF)

Sakurai (2004)523 28 (AFL) 27 D-dimers if impaired LAA function

Inoue (2004)524 246 (non-valvular) 111 D-dimers in patients having risk factors, PF1+2 (NS)

Kumagai (2004)525 16 (post mortem) vWF and protein in patients with enlarged atrium

Marin (2004)526 24 (acute onset) 24 (CAD patients in sinus 
rhythm)

D-dimers, vWF, s-thrombomodulin (no longer different 
after cardioversion)

24 (chronic) 24 (healthy)

Nozawa (2004)527 509 111 (healthy) D-dimers, PF1+2 (NS)

Freestone (2005)528 59 40 (healthy) vWF

Nozawa (2006)295 509 (non-valvular) D-dimers (but not PF1+2) predictive for 
thromboembolic events

Ohara (2007)294 591 (non-valvular) 129 D-dimers, PF1+2, platelet factor 4, b-thromboglobulin

D-dimers, PF1+2 (correlated with presence of risk 
factors for stroke)
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AF, atrial fibrillation; AFL, atrial flutter; CAD, coronary artery disease; LA, left atrial; LAA, left atrial appendage; NS, non-significant; vWf, von 
Willebrand factor; PF1+2, prothrombin fragment 1 + 2; TATIII, thrombin-antithrombin III; TF, tissue factor; s-thrombomodulin, soluble-
thrombomodulin

*
Significantly different in AF group, unless otherwise indicated.
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