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Abstract

In this paper, we propose a novel 3D segmentation method based on the effective combination of
the active appearance model (AAM), live wire (L), and graph cut (GC). The proposed method
consists of three main parts: model building, initialization, and segmentation. In the model
building part, we construct the AAM and train the LW cost function and GC parameters. In the
initialization part, a novel algorithm is proposed for improving the conventional AAM matching
method, which effectively combines the AAMand LW method, resulting in Oriented AAM
(OAAM). A multi-object strategy is utilized to help in object initialization. We employ a
pseudo-3D initialization strategy, and segment the organs slice by slice via multi-object CAAM
method. For the segmentation part, a 3D shape constrained GC method is proposed. The object
shape generated from the initialization step is integrated into the GC cost computation, and an
iterative GC-OAAM method is used for object delineation. The proposed method was tested in
segmenting the liver, kidneys, and spleen on a clinical C7 dataset and also tested on the MICCAI
2007 grand challenge for liver segmentation training dataset. The results show the following: (a)
An overall segmentation accuracy of true positive volume fraction ( 7TPVF) > 94.3%, false positive
volume fraction (FPVF) < 0.2% can be achieved. (b) The initialization performance can be
improved by combining AAMand LW. (c) The multi-object strategy greatly facilitates the
initialization. (d) Compared to the traditional 3D AAM method, the pseudo 3D OAAM method
achieves comparable performance while running 12 times faster. (e) The performance of proposed
method is comparable to the state of the art liver segmentation algorithm. The executable version
of 3D shape constrained GC with user interface can be downloaded from website http://
xinjianchen.wordpress.com/research/.
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l. INTRODUCTION

Image segmentation is a fundamental and challenging problem in computer vision and
medical image analysis. In spite of several decades of research and many key advances, a
few challenges still remain in this area. Efficient, robust, and automatic segmentation of
anatomy on radiological images is one of these challenges.

The image segmentation methods could be classified into several types: image based [1-12],
model based [13-30], and hybrid methods [31-39]. Purely image based methods perform
segmentation based only on image information; these include thresholding, region growing
[1], morphological operations [2], active contours [3, 4, 22], level sets [5], live wire (LW)
[6], watershed [7], fuzzy connectedness [8, 9] and graph cut (GC) [10, 11, 47]. These
methods perform well on high quality images. However, the results are not as good when the
image quality is inferior or boundary information is missing. In recent years, there has been
an increasing interest in model-based segmentation methods. One advantage of these
methods is that, even when some boundary information is missing, such gaps can be filled
due to the closure and connectedness properties of the model. The model-based methods
employ object population shape and appearance prior such as atlases [13-17, 23-25],
statistical active shape model [18-20, 26], and statistical active appearance models (AAMs)
[21, 27, 28]. MICCAI2007 “Grand Challenge” workshop [29] organized a competition for
liver segmentation which attracted a lot of attention. In that competition, the three best-rated
approaches [29, 30] were all based on statistical shape models with some form of additional
deformation. Such hybrid approaches are rightfully attracting a great deal of attention at
present. The relative merits of the synergy that exists between these two approaches — purely
image-based and model-based strategies — are clearly emerging in the segmentation field. As
such hybrid methods that form a combination of two or more approaches are emerging as
powerful segmentation tools [31-39] where their superior performance and robustness over
each of the component methods have been well demonstrated.

Many of the above mentioned image-based [1, 4], model-based [14-18, 20-25, 30], as well
as hybrid [39] techniques were tailored for specific body regions and image modalities.
However, it is desirable to have a general approach that is applicable to any (or most) body
regions and image modalities and protocols and not heavily dependent on the characteristics
of fixed shape families and image modalities. While perhaps some of the above techniques
can be generalized in this spirit, few methods have demonstrated to work in this general
setting.

In this paper, we propose a general method which can be used to segment most organs and
which effectively combines the AAM, LW, and GC methods, leading to the GC-OAAM
approach, and arrive at an automatic, efficient, and accurate segmentation method. LWis a
user-steered 2-dimensional segmentation method in which the user provides recognition help
and the algorithm does the delineation precisely. The major limitation of live wire is that the
recognition process (selecting anchor points on the boundary) is done by a human operator;
hence it is far less efficient. AAM methods use landmarks to represent shape and
appearance, and use principal component analysis to capture the major modes of variation in
shape and appearance observed in the training data sets. However, the specific shape and
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appearance information are also lost during the model building. GC methods have the ability
to compute globally optimal solutions and have proven to be a useful multidimensional
optimization tool which can enforce piecewise smoothness while preserving relevant sharp
discontinuities. However, some GC methods need human operator to label the source and
sink seeds. In this paper, our aim is to combine the complementary strengths of the
individual methods to arrive at a more powerful hybrid strategy that can overcome the
weakness of the component methods.

Several existing approaches embody hybrid integration in the above spirit. Besbes et al. [12]
proposed a discrete MRFbased segmentation method which combined shape priors and
regional statistics. However, this method did not perform segmentation at the pixel level.
Freedman and Zhang [34] incorporated a shape template into the graph-cut formulation as a
distance function. However, it relied crucially on user input. Based on the latter method,
Ayvaci and Freedman [35] proposed a joint registration-segmentation method which
removed the user interaction requirement and resolved the problem of template registration.
However, this method required proper registration of the shape template for an accurate
segmentation. Kumar et al. [36] used a MRF representation where the latent shape model
variables were integrated via expectation maximization. While shape information was
utilized in a principled Bayesian manner, this approach was computationally intensive where
a separate energy minimization was required. Malcolm et al. [37] imposed the shape prior
model on the terminal edges and performed graph cut optimization iteratively starting from
an initial contour. Their method constructed a statistical shape space using kernel principal
component analysis. This method also relied on user input. Vu and Manjunath [38] proposed
a shape prior integrated segmentation method using graph cuts suitable for multiple objects.
The shape prior energy was based on a shape distance popular in level set approaches.
However, the shape used was a simple fixed shape. Most of the above mentioned methods
operated on 2D images.

Compared to these methods, the strategy proposed in this paper is a 3D anatomy
segmentation method. More importantly, different from all the above shape prior-integrated
methods, our technique does not need shape registration. The proposed GC-OCAAM
effectively combines the rich statistical shape and appearance information embodied in
AAM, effective boundary oriented delineation in LW, with the globally optimal delineation
capability of the GC method.

The remaining part of this paper is organized as follows. In Section 2, we elaborate the
complete methodology of the delineation algorithm. In Section 3, we describe an evaluation
of this method in terms of its accuracy and efficiency. In Section 4, we summarize our
contribution.

Il. THE GC-OAAM APPROACH

2.1 Overview of the approach

The proposed method consists of two phases: training phase and segmentation phase. Fig. 1
shows the flowchart of the proposed method. In the training phase, an AAM is constructed
and the LIWboundary cost function and GC parameters are trained. The segmentation phase
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consists of two main steps: initialization and delineation. In the initialization step, we
employ a pseudo 3D initialization strategy in which the organs are initialized slice by slice
via a multi-object OAAM method, and a refinement method is applied to further adjust the
initialization results. The employment of pseudo 3D initialization strategy is motivated by
two reasons: (1) Compared to a full 3D initialization method, the proposed method is much
faster. (2) It is difficult to combine AAM with LWin 3D. The experimental results
demonstrate that the proposed method has performance comparable to the full 3D AAM
initialization method, which may be due to the effective combination of AAM with the LW
method. Finally, for the delineation part, the object shape information generated from the
initialization step is integrated into the GC cost computation. An iterative GC-OAAM
method is proposed for object delineation. The details of each step are given in the following
sub-sections.

2.2 Model Building and Parameter Training

Before building the model, the top and bottom slices of each organ are first manually
identified. Then linear interpolation is applied to generate the same number of slices for the
organ in every training image. 2D OAAM models are then constructed for each slice level
from the training images. The LW cost function and GC parameters are also estimated in this
stage.

2.2.1 Landmark Specification—Due to the nature of the proposed method (slice by
slice), we represent a 3D shape as a stack of 2D contours, and manually label the 3D shape
slice by slice, although semi-automatic or automatic methods are also available for this
purpose. For each slice, operators locate the shape visually, and then identify prominent
landmarks on that shape.

2.2.2 AAM Construction—The standard AAM method [27, 28] is used to construct the
model. The model includes both shape and texture information.

The generative model can be described by

x=Qb, (1)

where Qs a matrix of the selected eigenvectors of the covariance matrix over the training
samples for shape and texture, & is the model parameter vector and x is a sample generated
by the model.

Suppose M;represents the AAM for slice level jand the number of slice levels is 7, then the
overall model M can be represented as

]\/1:(]\4[17]»-{27""]\’171» (2)
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Although we employ the pseudo 3D initialization strategy, we also build the real 3D AAM
M3p using the method in [43]. However, this 3D model M3y is used only for providing the
delineation constraints as to be explained later.

2.2.3 LW Cost function and GC Parameter Training—Similar to the OASM method
[31], an oriented boundary cost function is devised for each organ in the model M as per live
wire method [6].

A boundary element, belfor short, of a given image slice /is an ordered pair (&, b) of 4-
adjacent pixels aand b. It represents the oriented edge between pixels aand b, (&, 6) and (6,
d) representing its two possible orientations. To every bel of /, we assign a set of features.
The features are intended to express the likelihood of the be/belonging to the boundary (of a
particular object) that we are seeking in /. The cost ¢(4) associated with each be/ bof /is a
linear combination of the costs assigned to its features

S wies (i)

)=
S
i 3)

where wj;is a positive constant indicating the emphasis given to feature function 7; and cris
the function to convert feature values f; () at bto cost values c¢(f; (0)). In live wire
technique [6], f;represents features such as intensity on the immediate interior of the
boundary, intensity on the immediate exterior of the boundary, and gradient magnitude at the
center of the bel. cris an inverted Gaussian function, and here, uniform weights w;are used
for all selected features.

For the purpose of OAAM, we shall utilize the feature of live wire to define the best oriented
path between any two points as a sequence of bek with minimum total cost. The only
deviation in this case is that the two points will be taken to be any two successive landmarks
employed in the AAM, and the landmarks are assumed to correspond to pixel vertices. With
this facility, we assign a cost to every pair of successive landmarks of any shape instance x
associated with M, which represents the total cost of the bek in the best

oriented path <by, b,...., by> from landmark x4 to landmark X.1. That is,

h
KXy Xkt 1 ):Zc(bi).
i=1 (4)

For any shape instance X = (Xy, Xp,..., X5) of M}, the cost structure K(x) associated with M;
may now be defined as
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K(X):Z’%(Xk‘" Xk+1),
k=1 (5)

where mis the number of landmarks for this slice and we assume that X;;+1 = X1. That is,
K(x) is the weighted sum of the costs associated with the best oriented paths between all m
pairs of successive landmarks of shape instance x. The parameters of GC are also trained
during the training stage; more details on this are given at section 2.4.1.

2.3 Initialization

The initialization step plays a key role in our method, which provides the shape constraints
to the later GC segmentation step and makes it fully automatic. The proposed initialization
method includes three main steps. First, a slice localization method is applied to detect the
top and bottom slices of the organ. Second, a linear interpolation is applied to generate the
same number of slices for the subject as in the model. And third, the organ is recognized
slice by slice via the OAAM method. A multi-object strategy [44] is utilized to help with
object initialization. We found from experiments that the initialization performance with
multiple organs in the model is much better than with a single organ due to the constraints
among multiple organs. It means that, even if just one organ is to be segmented, other organs
can be employed in the segmentation to provide context and constraints. Finally, a
refinement method is applied to the initialization result. These three steps are described
below.

2.3.1 Top and Bottom Slices Localization—There are several recent works related to
slice localization. Haas et al. [39] introduced an approach for creating a navigation table
using eight landmarks which were detected in various fashions. Seifert et al. [19] proposed a
method to detect invariant slices and single point landmarks in full body scans by using
probabilistic boosting tree (PBT7) and Haar features. Emrich et al. [40] proposed a CT slice
localization method via A-A/Ninstance based regression. The aim of slice localization in our
approach is to locate the top and bottom slices of the organ. Since we already trained the
model for each organ slice, we could use this model for slice localization. The proposed
method is based on the similarity to the OAAM model of the slice.

For top slice localization in a given image, the top slice model is applied to each slice in the
image using the recognition method detailed in 2.3.2 and evaluating the respective similarity
metric (Eqn. (6)). Then the slice corresponding to the maximal similarity (minimal distance)
is taken as the top slice of the organ. Fig. 2 shows the distance value computed from Eqn. (6)
for the top slice in a patient abdominal C7 image. The minimum corresponds to the top slice
of the left kidney. A similar method is used for the bottom slice detection.

2.3.2 Object Recognition—The proposed object recognition method is based on the
AAM. The conventional AAM matching method for object recognition is based on the root-
mean-square difference between the appearance model instance and the target image. Such a
strategy is better suited for matching appearances than for the detailed segmentation of target
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images (see Fig. 3(b)). This is because the AAM is optimized on global appearance, and is
thus, less sensitive to local structures and boundary information. Conversely, the LW/
delineates the boundary very well [6], however it needs good initialization of landmarks and
is an interactive method. Here, we integrate the AAM with the LW/ method (termed CAAM)
to combine their complementary strengths. That is, the AAM provides the landmarks to the
LW, and as a return, LW improves the shape model of the AAM. The LW is fully integrated
with AAM in two aspects: (1) LW is used to refine the shape model in AAM, (2) the LW
boundary cost is integrated into cost computation during the AAM optimization method.
Fig. 3(c) shows the proposed OAAM segmentation result; compared to conventional AAM
method (Fig. 3(b)), the boundary delineation is much improved.

2.3.2.1 Refinement of the Shape Model in AAM by LW: First, the conventional AAM
searching method is performed once to obtain a rough placement of the model. Then the
following method is applied to refine the shape model in AAM. The shape is extracted from
the shape model of the AAM, and then the landmarks are updated based on LW using only
the shape model and the pose parameters (translation, rotation and scale). Subsequently, the
refined shape model is transformed back into the AAM. At the same time, AAM refinement
is applied to the image yielding its own set of coefficients for shape and pose.

Suppose P1, P2 and P3 are three successive landmarks in shape instance x.

Algorithm: Refine AAM shape model based on LW: begin
1. Extract the shape instance x from the shape model.
2. Update the landmarks’ position in x based on LW/ as follows (see Fig. 4).
First, perform LW delineation from P1 to P2, and P2 to P3.

Next, find the middle point Q1 and Q2 in the LIW/segments generated from P1 to
P2, and from P2 to P3, respectively. Then perform LW delineation from Q1 to

Q2.

Finally, find the closest point P2” on the LW segment from Q1 to Q2. Update P2
to P2’.

Perform the above three steps on all landmarks in x, and produce the updated
shape model x”.

3. Transform x” into a new shape model instance x, * via an affine transformation
so as to align it with the mean shape .

4, Apply the model constraints to the new shape model x, ” so that the new shape is
within the allowed shape-space.

end

2.3.2.2 OAAM Optimization: In the conventional AAM matching method, the optimization
is based only on the difference between the appearance model instance and the target image.
The boundary cost is not taken into consideration. By combining the boundary cost, the
performance of AAM matching can be considerably improved. In the proposed method, the
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LWtechnique is integrated into the cost computation during the optimization process.
Combined with the above shape model refinement method, our optimization method is as

follows.

Algorithm OAAM Optimization: begin

Let the current estimate of the model parameter vector be b, the pose ¢, the texture
transformation 7, and the image sample (as a vector) at the current estimate be g,

1.

10.

11.

end

Extract the shape parameters b5 from the entire model parameter b, and refine b,
and pose zusing the shape refinement method described above. This results in a

new set of parameters b; and 7.

Resample the image intensity, resulting in the vector g;m, and project the texture

sample into the texture model frame using ¢.=7"(g;,.).

Evaluate the error vector, T(b):gls—g;m, and the current error, £z7, =|12.

Compute the live wire cost along the shape boundary, £y,, and compute the total
error as

Eta=al - Eggm~+a2 - Ey,. (6)

Compute the predicted displacements, &, =—Rn(b), where R:(é’(;;f&)fl orT,

b ob

Update the model parameters 616+ k&b, where initially A= 1.

Calculate the new shape points x, and refine the new shape using the shape
refinement method described above, and obtain the refined new shape point x”.

Calculate the model frame texture ¢ , and sample the image at the new points x”
to obtain g .

2

/

r

’ 1 " " ! o
Calculate a new error vector, 7 =7 ;" (9 )~ 9im, and the error Laam=

Compute the live wire cost along the predicted shape boundary, E;w. And

compute the total error, £, , ,=al - E,, +a2- B,

If E},,.,< E1o:a then accept the new estimate; otherwise, try at k= 0.5, k= 0.25,
etc, until no improvement can be made.

In our implementation, we set al = a2 = 0.5. During the initialization, we employ a multi-
resolution strategy, in which we start at a coarse resolution and iterate to convergence at each
level before starting the next level. This strategy is more efficient than searching at a single
resolution and can lead to a convergence to the correct solution even when the initial model
position is away from the real object(s).
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2.3.2.3 Refinement of the 3D Recognized Shapes: After objects are recognized in all
slices, the recognized shapes are stacked together to form 3D objects. We observed from
experiments that sometimes the initialization result for one slice is far away from the results
for its neighboring slices. This signals failure of recognition for this slice. We found that at
most two slices failed in recognition in this sense for each subject in all of our experiments
(in 80 cases, non-failed: 71; 1 slice failed: 7; 2 slices failed: 2). When failure occurs, we
interpolate the new shape from the shapes in neighboring slices. Fig. 5 shows an illustration
for the proposed method. The following method is applied to improve the recognized shape
results.

Algorithm: Refinement of the 3D recognized shape: begin

foreach slice level j, 1 < j< n,do

1. Suppose the error in recognition (Eqn. (6)) for the current slice is & and énax
represents maximum error. Compute the distance d~; and dj between the
centroids of the shapes in neighboring slices /~1 and /+1.

2. Compute the total reliability for slice jas
Cmax € (i1 —(dj 1)) (djjr1—m(dj 1))
rel;=nl- 12-exp( — . +n3-exp(— L .
= ( €max ) g p( 2. Var(dj,j,l) ) K p< 2. Var(dj’j+1)

U]

where 71, 72 and 73 are weights (in our implementation, 71=0.5, 2=0.25 and
73=0.25).
(A1), var(dj1), ((dp1) and var(aj) are the mean and variance of gj; and,

0+, respectively, which are estimated from training images during the model
building process. For the first and last slice, only one neighbor slice is used.

3. If rel;> threj, then the recognized result is considered reliable; otherwise the
recognized result is discarded and the new shape is interpolated from the
neighboring slices. t/re;is the threshold of reliability, which is also estimated
from the training images.

endfor

end

2.4 Segmentation/Delineation

The purpose of this step is to precisely delineate the shapes recognized in the previous step.
We propose an iterative GC-OAAM (named /GC-OAAM) method for the organ’s
delineation. The GC-OAAM algorithm effectively integrates the shape information with the
globally optimal 3D delineation capability of the GC method.
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2.4.1 Shape integrated GC—GC segmentation can be formulated as an energy
minimization problem such that for a set of pixels Pand a set of labels L, the goal is to find a
labeling £: #— L that minimizes the energy function £n(7).

E"(f):ZRp(fp)+ Z Bp.,q(fpafq)7

peEP pEP,qeEN, (8)

where N, is the set of pixels in the neighborhood of p, 7, () is the cost of assigning label 7,
€ Lto p,and By, 4(fy, 1) is the cost of assigning labels 7, f, € L to pand g. In two-class
labeling, L = {0, 1}, the problem can be solved efficiently with graph cuts in polynomial
time when Bj, 4is a submodular function, 7.e., By, 4(0,0) + By, ¢(1, 1)< By, 40, 1) + By, 4(1,

0)[11].

In our framework, the unary cost R, (/) is the sum of a data penalty D), (,) and a shape
penalty S, (7) term. The data term is defined based on the image intensity and can be
considered as a log likelihood of the image intensity for the target object. The shape prior
term is independent of image information, and the boundary term is based on the gradient of
the image intensity.

The proposed shape-integrated energy function is defined as follows:

E”(f):Z(a Dy (fp)+B - Sp(fp)+ Z v+ Bpqg(fps fq)s

peP pEP,gEN,, (9)

where a, B, y are the weights for the data term, shape term S, and boundary term,
respectively, satisfying a + 8+ y=1. These components are defined as follows:

D,(f,)= —InP(I,|0), if fy=objectlabel
PP —InP(1,|B), if fy=background label (10)

e
Bpa(fp, fo)=exp(=—5 5 )'d(p7q)'5(fp’fq)7 (11)
and
L iffp#f
5(fp’fq)_{ 0 otheprwz'sz, (12)
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where /, is the intensity of pixel p, object label is the label of the object (foreground). A/, |
0) and A/, | B) are the probability of intensity of pixel p belonging to object and
background, respectively, which are estimated from object and background intensity
histograms during the training phase (details given below). d(p, g)is the Euclidian distance
between pixels pand g, and o is the standard deviation of the intensity differences of
neighboring voxels along the boundary.

Sitp=t-eo(- 105

where d(p, X ) is the distance from pixel pto the set of pixels which constitute the interior
of the current shape X, of object O. (Note that if pis in the interior of x,, then d(p, Xxp)=0.)
rois the radius of a circle that just encloses x,. The linear time method in reference [42] was
used in this paper for computing this distance.

During the training stage, the histograms of intensity for each object are estimated from the
training images. Based on this, A/,| O) and A/, | B) can be computed. As for parameters
a,fand yin Eqgn. (9), since a+fB+y=1, we estimate only a and S by optimizing accuracy as
a function of a and Band set y = 1-a—p. We use the gradient descent method for the
optimization. Let Acci(a,p) represent the algorithm’s accuracy (here we use the true
positive volume fraction [45]), a and Sare initialized to 0.35 each, then Accifa,p) is
optimized over the training data set to determine the best a and g.

2.4.2 Minimizing En with Graph Cuts—Let G be a weighted graph (V; A), where Viis
a set of nodes, and A is a set of weighted arcs. Given a set 7C Vof kterminal nodes, a cut
is a subset of edges C C A such that no path exists between any two nodes of 7in the
residue graph (V;, A\C). In our implementation, we segment the object using the a.-
expansion method in [46].

The graph is designed as follows. We take V= PU L, /e, Vcontains all the pixel nodes and
terminals corresponding to the labels in L which represent objects of interest plus the
background. A= Ay U Az, where Ay is the r-links which connect pixels pand g (0 €PR, g€
Np) and with a weight of w,,. Aris the set of #links which connect pixel pand terminals 4
€ L and with a weight of w e The desired graph with cut cost | (] equaling £n(7) is
constructed using the following weight assignments:

Wpa=7 " Bpgi  (14)

woe=K— (a- Dy(0+5-S,(0): (1)

where K is a constant large enough to make the weights wpppositive.
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2.4.3 IGC-OAAM—We assume that the recognized shapes are sufficiently close to the
actual boundaries in the given image to be segmented. The /GC-OAAM algorithm then
determines what the new position of the landmarks of the objects represented in the
initialized shape x,, should be such that the minimum graph cut cost is achieved, as
presented below.

Algorithm | GC-OAAM: Input: Initialized shapes X .

Output: Resulting shapes Xq,: and the associated object boundaries.

begin
while number of iterations < nfteration do
1. Perform GC segmentation using Eqn. (9) based on the OAAM initialized shapes
Xim
2. Compute the new position of the landmarks by moving each landmark in x;, to
the point closest on the GC boundary; call the resulting shapes Xnew;

3. If no landmarks move, then, set Xpew @S Xqut 2nd stop;
Else, subject Xnew to the constraints of model Mz p, and call the result X,

endwhile

Perform one final GC segmentation based on x,,; and obtain the associated object
boundaries.

end

In our implementation, n/terationis set as 3. Also we limit the distance a landmark can move
within any iteration to 6 voxels.

[ll. EXPERIMENTAL RESULTS

The proposed methods were tested on a clinical C7 dataset. This dataset contained images
pertaining to 20 patients (10 male and 10 female, ages 32 to 68), acquired from pre-contrast
phase of two different type of CT scanner (GE Medical systems, LightSpeed Ultra, and
Philips, Mx8000 IDT 16). The pixel size varied from 0.55 to 1 /mm, and slice thickness from
1to 5 mm. Four experiments of liver, left kidney, right kidney and spleen segmentation were
done to evaluate the proposed method. All objects were manually segmented by two experts
to generate the reference segmentations (ground truth). The leave-one-out strategy was used
in the evaluation.

3.1 Evaluation of the Localization of the Top and Bottom Slice

The proposed slice localization method was used to detect the top and bottom slices of the
liver, left kidney, right kidney and spleen. These organs were manually checked to generate
the reference standard of the top and bottom position. Table 1 shows the experimental
results. We observe that the localization of the top slice of liver is most accurate which may
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be due to the high contrast in the lung region; while the localization of liver bottom has the
largest error which may be due to the lack of sufficient contrast in that region. The average
localization error is 7.3 mm. Compared to Emrich et al’s result [40] of 4.5 ¢m, the proposed
method seems superior.

3.2 Evaluation of Initialization

For helping with the initialization of liver, left and right kidneys, and spleen, the skin object
is included in the model in addition to the object of interest. Fig. 7 shows one slice example
and its corresponding mean shape and texture model for the four objects. We select only 8
landmarks for the skin object because LW/ works very well for this object even for such a
small number of landmarks. Table 2 summarizes the number of interpolated slices and the
number of landmarks used in our experiments.

In Figs. 8-11, the left column shows sample initialization results for the four objects. A
quantitative evaluation of the initialization approach is presented in Table 3. The accuracy in
terms of true positive and false positive volume fractions (TPVF and FPVF) [45] is shown.
TPVF indicates the fraction of the total amount of tissue in the true delineation; FPVF
denotes the amount of tissue falsely identified, which are defined as follows,

C

TPVF=-ZIZ

Cwu  (16)
FPVF= Cer

Ud (17)

Where, Ugis assumed to be a binary scene with all voxels in the scene domain C set to have
a value 1, as shown in Fig. 6, more details can seen in [45].

Experiments were done to compare the performance of pseudo-3D AAM (single object, here
pseudo-3D means slice-by-slice), pseudo-3D MAAM (multi-object), real 3D MAAM
(multi-object), and the proposed pseudo-3D multi-object OAAM using reference images
from expert #1 as ground truth. We note that the multi-object strategy improves the accuracy
considerably over single object AAM. The MOAAM method also improves the MAAM
initialization performance due to the effective combination of AAMand LW. The
pseudo-3D MOAAM and the real 3D MAAM methods [43] have comparable performance,
while the pseudo-3D MOAAM method is about 12 times faster (see Table 4). This is one of
the reasons that we used the pseudo-3D initialization method.

After object recognition for all the slices, all the recognized shapes are stacked together to
form a 3D shape. Then the refinement of shape method proposed in section 2.3.3 is applied
if the 3D shape is not transiting smoothly. We found actually our OAAM recognition method
works very well and the refinement only applied to very few cases. In total 80 (20x4) cases
of organ recognition, there are 7 cases with one slice of object recognition failed (liver:3, left
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kidney:1, right kidney:2 and spleen:1), 2 cases with two slices of object recognition failed
(liver:1 and right kidney 1).

3.3 Evaluation of the IGC-OAAM Delineation Method

The accuracy of delineation by /GC-OAAM expressed in TPVF, FPVF and average
symmetric surface distance [29] using reference images from expert #1 are summarized in
Table 3. And the evaluation of the reference image from expert 1 to the reference image
from expert 2 is also shown in Table 3 as the second rater. \We observe that the average
TPVFand FPVFis about 94.3% and 0.15%, respectively. In Figs. 8-11, the right column
shows the /GC-OAAM segmentation results for the liver, left kidney, right kidney, and
spleen, respectively. Additionally, Fig. 12 shows the 3D surface distance between the
segmentation result by /GC-OAAM and reference image (from expert 1) for the liver, left
kidney, right kidney, and spleen segmentation, respectively. The mean distance, over all
objects and the whole dataset, between the segmented 3D surface and the reference (true)
surface was found to be about 0.78 mm.

In terms of efficiency, Table 4 shows the computation time for the four objects on an Intel
Xeon E5440 workstation with 2.83GHz CPU, 8 GB of RAM. The average total time
(initialization + segmentation) for segmenting one liver is about 310 seconds. Segmentation
of kidney and spleen has similar computational time, about 270 seconds.

The proposed IGC-OAAM delineation method was also tested on the MICCAI 2007 grand
challenge training dataset using leave-one-out strategy. There are 20 CT volumes of
abdomen with contrast agent in the training datasets. All datasets have an in-plane matrix of
512 x 512 pixels and inter-slice spacing from 0.7 mm to 5.0 mm. Fig. 13 shows the
recognition and delineation results for three slice levels of one image on MICCAI grand
challenge dataset..

The proposed method was evaluated based on the MICCAI 2007 grand challenge for liver
segmentation evaluation criteria [29]: volumetric overlap error (Overlap Error), volume
difference, symmetric average surface distance, symmetric RMS surface distance, and
maximal surface distance. The results achieved by the proposed method and previous work
from literature are summarized in Table 5. Compare to the best performance (Kainmiiller et.
al [30]), we can see we have comparable performance, but much faster speed (6 min vs 15
min).

IV. CONCLUSIONS AND DISCUSSIONS

In this paper, we proposed a 3D automatic anatomy segmentation method. The method
effectively combines the AAM, LW, and GC methods to exploit their complementary
strengths. It consists of three main parts: model building, initialization, and segmentation.
For the initialization part, we employ a pseudo-3D strategy, and segment the organs slice by
slice via multi-object OAAM method which effectively combines the AAM and LW
methods. For the segmentation (delineation) part, an iterative GC-OAAM method is
proposed which integrates the shape information gathered from initialization with a GC
algorithm. The method was tested on a clinical CT dataset with 20 patients for segmenting
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the liver, kidneys, and spleen. The experimental results suggested that an overall
segmentation accuracy of TPVF > 94.3%, FPVF < 0.2% can be achieved.

As for the initialization, we employed a pseudo-3D strategy and combined AAMand LW
methods to improve the performance. The multi-object strategy also helped initialization due
to increased constraints. Compared to the real 3D AAM method, the pseudo 3D OAAM
approach has comparable accuracy while has roughly a 12-fold speed up. The purpose of
initialization is to provide a rough object localization and shape constraints for latter GC
method which will produce refined delineation. We think it is better to have a fast and robust
method than a slow and more accurate technique for initialization.

As for the delineation, shape constrained GC method is the core part of the whole system.
Several similar ideas were also proposed in the references [34-38]. However, they are
mostly tested in the 2D images, and it is difficult to compare with these methods because the
testing dataset is different.

From Figs. 8-11 and the testing result in table 5, it seems that the proposed method was a
little bit under-segmenting the organ. This may due to two reasons: (1) the shape term
designed in our cost function is not symmetric. We didn’t put the penalty for the pixel if it is
inside the shape. That is because we found there are usually some pixels which don’t belong
to the target organ inside the shape, such as urine in the kidney (Fig. 10). So our method can
separate this kind of pixels out. We think this is the beauty of our method. (2) according to
our experiences, the expert is easily tender to over-segmenting the organ during the process
of manually segmenting the boundaries.

Although localizing a CT slice within a human body can greatly facilitate the workflow of a
physician, so far, this area of research has not received much attention. The proposed slice
localization method aims to localize the top and bottom slices of organs, which is important
part of the whole system. The average localization error over the whole dataset and all
organs is only about 7.3 mm (much improved compared to the result of 4.5 cm in [40]),
good for clinical use. In a similar manner, it can also be used to localize any slice by
constructing the corresponding slice model.

In this paper, only one object is segmented at a time. With the shape constraints of multiple
organs, the proposed /GC-OAAM method can be easily generalized to segment multiple
organs simultaneously. However, this brings up an issue for GC - of the unavailability of a
globally optimal min cut solution for simultaneously segmenting multiple objects. For single
object segmentation, global optimality is guaranteed. For multiple objects, the a-expansion
method can find segmentations only within a known factor of the global optimum [46].

Current proposed method for segmenting one organ is taking about 5 min. To make it more
realistic in clinical application, the parallelization or multi-threads of the algorithm is one of
the good solutions. Anderson et al. [48] and Liu et al. [49] proposed the parallelization of
GC methods, and achieved the good performance. This will also be investigated for the
proposed method in near future.
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The executable version of 3D shape constrained GC with user interface can be downloaded
from website http://xinjianchen.wordpress.com/research/. Source codes will be available

SO

on. By opening source, we believe it will benefit to the whole society.
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The flowchart of the proposed GC-OAAM system.
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Fig 2.
Ilustration of top slice recognition. (a) Coronal view of the abdominal region. Cross point
represents the top slice of the left kidney. (b) The distance values for the top slice of the left

kidney.
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(a) (b) ©

Fig. 3.
Comparison of conventional AAM and OAAM segmentation. (a) Original image. (b)

Conventional AAM segmentation showing a good appearance fit but poor boundary
detection accuracy (arrows). (c) OAAM result shows substantial improvement in boundary
location (arrows).
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(2) (b) (c)

Fig. 4.
The illustration of how to update the landmark’s position. (a) P1, P2 and P3 are three

landmarks from AAM shape results. (b) The middle point Q1 of the LIW/segment between
P1 and P2, Q2 of P2 and P3 are generated. (c) Landmark P2 is moved to the closest point
P2” on the live wire segment from Q1 to Q2.
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Fig 5.
Ilustration of refinement of the 3D recognized shape
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Fig. 6.

Illustration of the accuracy factors for delineation for a binary case. Here, Cyq is the
corresponding scene of ‘true’ delineation, Cy, is the delineation result by method M.
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() (b) ()

Fig. 7.
llustration of models used in organ initialization. The 15, 214, 3 and 4t row correspond to

liver, right kidney, left kidney, and spleen, respectively. (a) The landmarks of organ and skin
on one slice. (b) The corresponding AAM shape model for this slice level. (c) The
corresponding AAM appearance model for this slice level.
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Fig. 8.

E)?perimental results for three slice levels of liver segmentation. The left column is the
MOAAM initialization result; the right is /GC-OAAM result in which red contour represents
the reference image 1, green represents the reference image 2, and blue contour represents
segmentation by the proposed method.
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Fig. 9.

E)?perimental results for three slice levels of right kidney segmentation. The left column is
the MOAAM initialization result; the right is /GC-OAAM result in which red contour
represents the reference image 1, green represents the reference image 2, and blue contour
represents segmentation by the proposed method.
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Fig. 10.
Experimental results for three slice levels of left kidney segmentation. The left column is the

MOAAM initialization result; the right is /GC-OAAM result in which red contour represents
the reference image 1, green represents the reference image 2, and blue contour represents
segmentation by the proposed method.
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Fig. 11.
Experimental results for three slice levels of spleen segmentation. The left column is the

MOAAM initialization result; the right is /GC-OAAM result in which red contour represents
the reference image 1, green represents the reference image 2, and blue contour represents
segmentation by the proposed method.
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(2) (b)

© (d)

Fig. 12.
3D surface distance (mm) between the segmentation result by /GC-OAAM and reference

image (ground truth 1). Positive value represents the vertex on the surface of the
segmentation is outside of the surface of ground truth, vice versa. (a), (b), (c) and (d)
correspond to surface distance for liver, right kidney, left kidney and spleen segmentation,
respectively.
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Fig. 13.
Experimental results for three slice levels of one image on MICCAI grand challenge dataset.

The left column is the MOAAM initialization result; the right is /GC-OAAM result in which
red contour represents the reference (ground truth) and blue contour represents segmentation
by the proposed method.
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Slice localization error (in mm) of the organ top and bottom

Organ Mean error (in mm) + std.dev.
Top 5.1+25
Liver
Bottom | 9.2+#5.1
Top 7.545.2
Left kidney
Bottom | 6.2+4.6
Top 8.3+6.5
Right kidney
Bottom | 7.1+5.8
Top 8.15.2
Spleen
Bottom | 7.3%#6.1
Average 7.3%5.1
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Table 2

Number of Landmarks and Slices Used in Modeling

Number of Landmarks in Organ

Number of Landmarks in Skin Object

Number of Interpolated Slices

Liver 35 8 50
Left Kidney 20 8 32
Right Kidney | 20 8 32
Spleen 26 8 32

IEEE Trans Image Process. Author manuscript; available in PMC 2017 August 08.

Page 33



Page 34

Chenetal.

620920 €E'0¥6L°0 GC ‘0¥ GL0 ¢e0F 180 20'0¥ ST°0 €0'0¥ 120 200F €T0 €00+ 9T0 | 6ET+89V6 | 680FSEV6 | SOT*STV6 | ¢6°0F €016 NVYVO-09OI
¢C0+SL0 620+ SL°0 8¢ 0¥ 1.0 GE'0F6L°0 ¢0'0¥¢T°0 ¢0'0¥ 910 €0'0¥ ST°0 S0'0+ZT0 | OT'T¥¢C'S6 | 6L0FCT'S6 | 96'0F ¢€'S6 | LB'0F 98'V6 /el puoxs
€0TFELT ST+ 18T 26'0¥ 29T €0T¥E6'T ET0F TL°0 TT°0¥ 290 900 L9°0 SO0+ €S0 | TST+G906 | €9T+¢S68 | ¢cCT+¢E€68 | ETTIFCT06 | WVYVOIN AE-Opresd
880+ T9'1 86'0F CL'T 90T+ ¢8'T T¢T+10¢C 9T'0+ L9°0 €T°0¥ 650 ¢T'0¥ S50 TT0F9V'0 | 880F¢CET6 | ¢S T+9€06 | TOT+ST06 | €6'0F 506 ANVVIN de WVYVYIN
8CEF CTV T9EF 6EY 9EEFTCY T8'€¥ 65V 190 20T 97 0F GL'T S7'0F €6°0 8E'0FCT'T GE'TFEL'G8 | 89 T+8T'E8 | 09T+ EOY8 | ¢E'T+ 0S8 de-opresd
CTY+CETT | 8LV+86'0T | 6EVF6STT | C€GFCTCT | SEVFCOVT | TOEFGTCT | GC€F¥9€'GT | 8EC+CTOT | GC'LFTE6S | SE9+TOES | 98+ T0TS | ¢T'S+T0°09 VYV gg-opresd
usa|ds Aaupy b | Asupiy 1a| JaNI| usa|ds Aaupi b | Asupiy ya| JaAI| usa|ds Aaupix ybia | Asupiyj yo| BE]|
(ww) 181Q d984INS SbeIANY (%) ANdd (%) 4NdL

Author Manuscript

€ 9|qel

Author Manuscript

Author Manuscript

"usa|ds pue ‘sAaupy omy
BN IO} WYVO-D091 PUe WYVOW Qg-0pnasd Wy v ae WyvW Ag-o0pnesd Wiy Ag-0pnesd 10y 4Ad+ FAd.L JO UONEBIASD PIepUEls pue UesiA

Author Manuscript

IEEE Trans Image Process. Author manuscript; available in PMC 2017 August 08.



1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuen Joyiny

Chenetal.

Table 4

Page 35

Average computational time (in seconds) in all experiments for pseudo-3D MAAM, 3D MAAM, pseudo-3D
MOAAM, and IGC-OAAM.

Average computational time (in seconds)

organ Pseudo-3D MAAM | 3D MAAM | Pseudo-3D MOAAM (initialization) | 1GC-OAAM (delineation)
Liver 50 732 60 310
Left Kidney 33 495 40 275
Right Kidney | 32 476 40 260
Spleen 35 556 45 280
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