Skip to main content
. Author manuscript; available in PMC: 2017 Sep 1.
Published in final edited form as: Clin Lung Cancer. 2016 Feb 16;17(5):441–448.e6. doi: 10.1016/j.cllc.2016.02.001

Table 4.

Multiple logistic regression analysis of clinicopathological parameters and radiomic features predicting the presence of EGFR mutation in peripheral lung adenocarcinomas

Model Features p-value Odds Ratio AUC
Point 95% CI Point 95% CI
Lower Upper Lower Upper
Clinical features Pathologic grade (ref= Lower or Intermediate) High 0.002 0.39 0.22 0.70 0.667 0.604 0.721
Smoking status (ref = Never smokers) Yes <.0001 0.38 0.23 0.61
Radiomic features Main direction (F27) 0.115 1.17 0.96 1.42 0.647 0.576 0.701
3D Laws features L5 L5 S5 Layer 1 (F92) 0.010 0.52 0.31 0.85
Histogram ENERGY Layer 1 (F186) 0.025 0.50 0.27 0.92
3D Wavelet decomposition. P2 L2 C9 Layer 1 (F190) 0.048 1.29 1.00 1.67
3D Wavelet decomposition. P1 L2 C5 Layer 1 (F216) 0.137 1.16 0.96 1.40
Clinical + Radiomic features Pathologic grade (ref= Lower or Intermediate) High 0.016 0.47 0.25 0.87 0.709 0.654 0.766
Smoking status (ref = Never smokers) Yes 0.001 0.41 0.25 0.67
Main direction (F27) 0.20 1.14 0.93 1.40
3D Laws features L5 L5 S5 Layer 1 (F92) 0.056 0.60 0.36 1.01
Histogram ENERGY Layer 1 (F186) 0.11 0.60 0.32 1.13
3D Wavelet decomposition. P2 L2 C9 Layer 1 (F190) 0.13 1.22 0.94 1.59
3D Wavelet decomposition. P1 L2 C5 Layer 1 (F216) 0.24 1.13 0.92 1.38

AUC – area under curve