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Abstract

Aligning brain structures across individuals is a central prerequisite for comparative neuroimaging 

studies. Typically, registration approaches assume a strong association between the features used 

for alignment, such as macro-anatomy, and the variable observed, such as functional activation or 

connectivity. Here, we propose to use the structure of intrinsic resting state fMRI signal correlation 

patterns as a basis for alignment of the cortex in functional studies. Rather than assuming the 

spatial correspondence of functional structures between subjects, we have identified locations with 

similar connectivity profiles across subjects. We mapped functional connectivity relationships 

within the brain into an embedding space, and aligned the resulting maps of multiple subjects. We 

then performed a diffeomorphic alignment of the cortical surfaces, driven by the corresponding 

features in the joint embedding space. Results show that functional alignment based on resting 

state fMRI identifies functionally homologous regions across individuals with higher accuracy 

than alignment based on the spatial correspondence of anatomy. Further, functional alignment 

enables measurement of the strength of the anatomo-functional link across the cortex, and reveals 

the uneven distribution of this link. Stronger anatomo-functional dissociation was found in higher 

association areas compared to primary sensory- and motor areas. Functional alignment based on 

resting state features improves group analysis of task based functional MRI data, increasing 

statistical power and improving the delineation of task-specific core regions. Finally, a comparison 

of the anatomo-functional dissociation between cohorts is demonstrated with a group of left and 

right handed subjects.
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Introduction

Accurate alignment of brain structures is essential for the quantitative comparison of local 

characteristics across individuals. Anatomical alignment is a standard procedure for fMRI 

analysis, and has had a substantial impact by enabling location specific comparison of 

individuals or cohorts (Fischl, 2012). However, relying on macro-anatomy suffers from 

limitations if the association between anatomy and function is weak. Here, we propose to 

align imaging data across individuals based on the global functional connectivity structure 

observed during resting state functional magnetic resonance imaging data (rs-fMRI), while 

at the same time constraining the transformations to diffeomorphisms on the cortical surface.

The potential dissociation between structure and function has been addressed in only a small 

number of studies which used functional features for inter-individual alignment (Sabuncu et 

al., 2010; Conroy et al., 2013; Robinson et al., 2014; Langs et al., 2015). Anatomo-

functional dissociation occurs if the variability of functional architecture across subjects 

cannot be entirely explained by anatomical differences (Mueller et al., 2013; Tootell et al., 

1995; Smith et al., 2005; Brett et al., 2002). Group studies that rely on a static anatomical 

relationship can be biased by reduced spatial overlap of functionally similar regions across 

individuals and corresponding reduced group-level activation. Individual variability in 

functional architecture could become more complex if diseases affect both function and 

anatomy, thus making anatomical alignment more prone to these confounding factors (Brett 

et al., 2002).

We propose a functional alignment approach based on a diffeomorphic registration of 

functional resting state features along a spherical projection of the cortical surfaces. The 

proposed alignment is independent of specific tasks, and uses only rs-fMRI signals as a basis 

for alignment. We quantify global functional network characteristics by spectral embedding, 

which provides a functional signature of the entire cortex based on resting state fMRI. In this 

embedding, each dimension represents different aspects of the rs-fMRI architecture.

Functional alignment enables the separate analysis of functional variability and differences 

in anatomical location. Alignment based on resting state functional connectivity provides a 

complementary source for correspondence, and allows for the analysis of task-fMRI 

experiments based on unified correspondences across individuals. While constraining the 

alignment to a diffeomorphic surface transform limits the variability the method can capture, 

it disambiguates possible similarities of connection characteristics in widely distributed 

regions forming functional networks with an anatomical constraint.

In this work, we test if (1) cortical alignment guided by rs-fMRI information is repeatable 

across scan sessions, (2) if it captures differences across individuals, (3) if the variability is 

constant or heterogeneous across the cortex, (4) if this alignment improves group-level task 

fMRI evaluation, and (5) if it can quantify differences across two cohorts of left- and right-

handers.
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State of the art

Existing standard registration approaches establish correspondence across multiple 

individuals by assuming anatomical comparability. Typically, in fMRI studies, spatial 

normalization is employed to map brain regions to a common template space, e.g., the MNI 

atlas (Evans et al., 1993). This ensures comparability across different studies and atlas 

labeling. Volume-based normalization approaches are standard and provided by widely used 

tools such as FSL (Jenkinson et al., 2012) or SPM (Friston et al., 2007). Non-rigid, volume-

based transformation models, such as diffeomorphic demons (Vercauteren et al., 2009) or 

angular interpolation (Duarte et al., 2013), can account for inter-subject anatomical 

variability and achieve more accurate anatomical registration. Surface-based registration 

techniques, such as in FreeSurfer (Fischl, 2012) and Spherical Demons (Yeo et al., 2010), 

use spherical representations of surfaces and align them based on cortical features such as 

curvature or sulcal depth. Lombaert et al. (2013a) and Lombaert et al. (2013b) introduced 

diffeomorphic alignment based on spectral features of cortical anatomy providing a speed 

advantage over traditional surface based registration techniques. Lombaert et al. (2015) 

extended the spectral alignment approach and incorporated features based on retinotopy on 

the visual cortex. While we follow a similar paradigm - using a representation of features in 

a spectral embedding space - the proposed approach uses the global resting-state 

connectivity structure instead of anatomical features as a basis for alignment. Current 

volumetric and surface registration approaches provide highly accurate alignment of the 

macroanatomy; however, they neglect the variability in function across and within subjects 

(Tootell et al., 1995; Smith et al., 2005), hampering group-level functional analyses 

especially when the anatomo-functional association is weak.

Alignment approaches that take functional information into account can improve the 

correspondence across subjects in group analyses. Sabuncu et al. (2010) proposed fine-

tuning of anatomical alignment via non-rigid registration that maximizes inter-subject 

correlation of fMRI signals recorded during a synchronized movie-viewing stimulus. 

Similarly, Conroy et al. (2013) used spatial patterns of functional responses to movie stimuli 

to guide anatomical registration with a focus on areas involved in visual processing. Jiang et 

al. (2013) introduced a progressive matching of multi-range functional connectivity patterns 

for spatial normalization, and showed that functional alignment improves the overlap of 

resting-state networks, such as the default mode network. Extending this approach, Langs et 

al. (2014) proposed decoupling anatomy from function, and aligned fMRI signals recorded 

during language tasks in an embedding space, improving the match of corresponding task-

activation across individuals. Langs et al. (2015) also identified shared resting-state 

functional networks despite varying spatial footprints across individuals, by parcellation in a 

population-level embedding space. Nenning et al. (2015) addressed noise during group-wise 

alignment in the embedding space by a joint-diagonalization approach. By assuming a single 

activation peak whose position varies across individuals, Gramfort et al. (2015) aligned 

cortical maps via optimal transport. More recently, Wang et al. (2015) established an 

individualized functional network parcellation strategy that may provide landmarks of 

functional networks for cross-subject alignment. Robinson et al. (2014) proposed a surface 

based multi-modal alignment technique, which allows for anatomical and local functional 

features to drive cortical alignment. Here we de-couple anatomy and function, and use the 
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distributed connectivity structure represented in a spectral embedding space as a basis for 

alignment, and investigate how anatomical- and functional alignment differ.

Contribution

Here, we describe diffeomorphic alignment of the cortical surface based on rs-fMRI 

connectivity characteristics. We tested whether this would improve the accuracy of 

alignment of functionally similar regions identified on t-fMRI, by evaluating the overlap of 

homologous regions mapped across subjects and evaluating group-level task activation 

analysis. The proposed alignment improved overlap and group-level analysis. Aligning 

repeat rs-fMRI scans of the same individuals showed that the method is stable, while still 

detecting displacements across subjects. Further investigation of this anatomo-functional 

dissociation revealed that it was unevenly distributed across the cortex. To test whether this 

might be a feasible technique with which to study differences between cohorts, we evaluated 

the difference between left- and right-handed subjects. Results from the experiments support 

a strong link between functional resting state and task responses, and that functional 

alignment with resting state networks improve the group analysis of t-fMRI.

Diffeomorphic functional surface alignment

We briefly review diffusion map embedding for the representation of the rs-fMRI data, then 

explain the alignment of individual subject maps in the embedding space, and, finally, detail 

how this joint embedding map can drive a diffeomorphic alignment of the cortical surface. 

An illustrative overview of the method is displayed in Fig. 1.

Embedding map representation of functional connectivity

We review embedding of signal correlation patterns by diffusion maps (Coifman and Lafon, 

2006) subsequent to the embedding map alignment described in (Langs et al., 2010, 2011).

For each of S subjects, rs-fMRI data IS ∈ ℝT×N consists of N surface nodes V with a BOLD 

signal observed at T time points. The connectivity structure of the resting state data can be 

viewed as a graph, where the vertices represent the surface nodes, and a similarity measure 

between the corresponding signal time courses defines the edges. We define the edges of this 

graph as an affinity matrix, WS, where  is the Pearson correlation coefficient between 

the time-series of nodes i and j in subject s, and we keep only the connections with a 

correlation of r > 0.25 to discard weak and negative connections. Subsequently, the graph is 

checked to ensure that it is a connected graph.

The spectral representation of the functional connectivity structure in each subject is based 

on a transition probability graph PS, with P = D−αWD−α. D is the diagonal matrix of node 

degrees, i.e., di = Σj Wij, and α is a normalization parameter tuning the influence of the data 

point density, typically set to 0.5 (Coifman and Lafon, 2006). Eigenvalue decomposition of 

the normalized Laplacian of this graph results in eigenvalues Λ = λ1,…,λn, with λ1 = 1 > 

λ2 > … > λn, and corresponding eigenvectors Φ. The embedding map representation, or 

functional geometry of all surface nodes in one subject is defined by new embedding 
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coordinates Ψt of the diffusion map representation. Each vertex, v, in the original graph is 

represented by new coordinates in the d dimensional embedding space:

(1)

where t is the diffusion time, which can be viewed as a scaling parameter. A high diffusion 

time leads to an embedding that primarily captures coarse network structure, while a low 

diffusion time captures connectivity with finer granularity. At the same time the diffusion 

time limits the influence of the neighboring network parts influencing the distance between 

two nodes. Limiting this influence to a local neighborhood leads to stable results for very 

large graphs. We fixate the diffusion time with t=1, which considers strong connectivity 

between nodes, and follows previous literature in this choice (Langs et al., 2014, 2015). For 

further processing, we only keep the first 50 embedding coefficients. This embedding space 

reflects the functional organization of the fMRI data decoupled from spatial positions, since 

the graph is defined only by correlation between the time-series. The functional connectivity 

structure is encoded as an embedding map, Ψ, where the functional relationships of the 

fMRI signals are captured by the diffusion distance, Dt. The Euclidean distance in this new 

embedding space approximates the diffusion distance

(2)

and represents the probability of traveling from node i to node j in t steps, by considering all 

possible paths between these two nodes. The embedding reflects the functional organization 

of the brain and allows the uncoupling of function from spatial position, and modeling the 

connectivity structure as a graph forces brain regions with high correlation to be close in this 

map.

Functional alignment of resting-state networks

Subject-specific spectral embedding maps are not directly comparable, since the eigenvalue 

decomposition can result in flips of coefficient signs, rotations, and differences in the 

ordering of the embedding dimensions. Thus an initial orthonormal alignment is necessary. 

For each individual, a functional geometry representation is computed and functional 

registration is performed with an orthonormal manifold alignment approach proposed by 

Langs et al. (2014). A source subject-specific functional geometry, Ψs, is aligned to a 

template embedding map, Ψt, using an orthonormal transformation matrix, Qst. This 

transformation matrix accounts for rotations, sign flips, and reordering of the spectral 

components. The optimal transformation can be calculated in closed form with

(3)
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where wc is the Euclidean distance between the spatial coordinates of a corresponding vertex 

pair c. Since the core regions of resting-state networks show spatial consistency across 

healthy subjects (Damoiseaux et al., 2006), correspondences based on spatial position can be 

used as the initialization for the alignment. An example of the functional alignment is 

illustrated in Figure S3 in the Supplementary material.

Aligning the individual embedding maps of a target subject t, Ψt, and a source subject s, Ψs, 

results in a joint embedding space of comparable spectral representations with new 

coordinates Θt and Θs, denoting the aligned embedding maps. The coordinates of each 

surface node can be viewed as a spectral signature, which is comparable across subjects, and 

can be used as a functional feature, characterizing the connectivity structure. In our 

experiments, we aligned the embedding maps of all subjects to the functional geometry of 

one subject, resulting in aligned embedding coordinates, 〈Θ1, Θ2,…,ΘS〉, representing all 

subjects.

Functional surface alignment

We adapted the Spherical Demons (SD) algorithm (Yeo et al., 2010) for diffeomorphic 

alignment of functional connectivity structures.

Spherical Demons (SD) registers brain surfaces by extending Diffeomorphic Demons 

(Vercauteren et al., 2009) from Euclidean space to the unit sphere. SD uses a spherical 

representation of a brain hemisphere for diffeomorphic registration and aligns regions with 

similar anatomical features describing cortical topology such as curvature or sulcal depth. 

We used SD for surface alignment, but the cost function is driven by the similarity of 

functional features rather than of anatomical characteristics. Specifically, we used the 

spectral signature of the embedding maps as features, and aligned the surface so that the 

difference between the embeddings, Θi and Θj, of corresponding data points i and j was 

minimized. The transformation of the Demons algorithm is defined as

(4)

where Θt and Θs represent the aligned embedding maps of a target subject and a source 

subject. The desired transformation, Γ, between the source and the target should 

approximate the hidden transformation Y, where dist (ϒ, Γ) = ||ϒ − Γ||2 ensures that they are 

close to each other. We used Θt − Θs○Γ for the difference between the embedding 

coefficients at the target subject and the embedding coefficients at corresponding positions 

in the source target, where Γ is the spherical coordinate transformation that establishes 

correspondence. The regularization term, Reg (ϒ), penalizes the gradient magnitude of the 

displacement field, defined as Reg (ϒ) = ||δ(ϒ − Id)||2 To extend the Demons algorithm to 

the unit sphere S2, Yeo et al. (2010) defined the distance term between Γ and Y as the 

distance between sets of N tangent vectors,  and , with 

. The regularization term is defined as Reg(ϒ) ≜ ||ϒ⃗||V, where 
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ϒ⃗ is restricted to belong to the Hilbert space, V, of vector fields obtained by the closure of 

the space of smooth vector fields on S2.

We used the diffeomorphic properties of the Spherical Demons algorithm to register brain 

surfaces based on functional signatures, specified by the spectral representations of the 

functional resting state architecture. In a multi-resolution fashion, each dimension of the 

embedding space is iteratively used as a feature for the registration. This ensures that 

principal dimensions that describe global features, e.g., task-positive and task-negative 

networks, are used first and fine-tuning occurs with local features, encoded in subsequent 

dimensions.

Vertex to vertex correspondence—The surface alignment results in new spherical 

coordinates, Ω, for each vertex and subject. We establish correspondences across subjects in 

the functional domain of aligned spheres, Ω. For each vertex, I, on a target sphere, Ωt, a 

corresponding vertex, î, on a source sphere, Ωs, is defined as

(5)

where dist is a distance function between the spherical coordinates of Ωt (i) and Ωs (j). 
During group-level analysis, for each vertex we collected corresponding signals or labels on 

a template by assigning the signal or label of the nearest neighbor on the aligned spheres of 

multiple subjects.

Data and preprocessing

Two different datasets are used for our experiments

The HCP dataset comprised 100 randomly chosen subjects of the Human Connectome 

Project (HCP) (Essen et al., 2012) 500-Subject data release, and contained 54 females and 

46 males. The data consists of 3 Tesla MRI acquisitions including two sessions with 

repeated resting-state measurements (two runs per session), with multiband, accelerated, 

echo-planar imaging sequencing with a repetition time of 720 ms, providing a total of 1200 

frames for each run of resting state acquisition, corresponding to 14 min and 33 s. We used 

the time-series of two repeated rs-fMRI runs for alignment and repeatability evaluation. In 

addition, we used t-fMRI data for seven different paradigms (working memory, gambling, 

motor, language, social cognition, relational processing, emotion processing), each with 

multiple conditions. We used the t-fMRI data to evaluate the alignment of functionally 

homologous regions, and the effect of alignment on group-wise t-fMRI analysis. The HCP 

data release provides already minimally preprocessed data (Glasser et al., 2013), including 

anatomical surface data normalized to a common average template space, and results from 

GLM activation analysis. For this work, we used the time-series from the resting state 

acquisitions mapped onto the surface, consisting of 32492 time-series per hemisphere. We 

performed nuisance regression of the motion artifacts and bandpass filtering in the 0.01–0.1 
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Hz frequency range. For the task-based data, we used the z-scores of the GLM activation 

analysis to evaluate the overlap of active regions on the group level.

The handedness dataset included rs-fMRI data from 52 left-handed and 52 matched (age, 

gender, ethnicity, education, fMRI data acquisition, head motion, data quality, and other 

parameters), right-handed subjects (Wang et al., 2015). Each subject performed two resting-

state (eyes open) runs in the MRI scanner (6 m 12 s per run). All data were collected on 

matched 3 T Tim Trio scanners (Siemens, Erlangen, Germany), using a 12-channel phased-

array head coil. Images were acquired using the gradient-echo echo-planar pulse sequence 

(TR=3000 ms, TE=30 ms, flip angle=85°, 3×3×3 mm voxels, FOV=216 and 47 slices 

collected with interleaved acquisition with no gap between slices). Structural data included a 

high-resolution multiecho T1-weighted magnetization-prepared gradient-echo image 

(TR=2200 ms, TI=1100 ms, TE=1.54 ms for image 1 to 7.01 ms for image 4, FA=7°, 

1.2×1.2×1.2 mm voxels and FOV=230). Subjects were instructed to stay awake, keep their 

eyes open, and minimize head movement; no other task instruction was provided. The 

handedness of each subject was assessed via the Edinburgh handedness inventory (Oldfield, 

1971). We used the time-series from the resting state acquisitions mapped onto the 

FreeSurfer average surface, consisting of 2562 time-series per hemisphere.

Evaluation

We evaluated four aspects of diffeomorphic functional alignment based on resting-state 

networks: (a) Is the alignment valid and stable? (b) How is the dissociation between 

anatomy and function distributed across the cortex? (c) Does the alignment of resting-state 

networks improve group-level analysis of task fMRI data? (d) Can we compare the 

dissociation between function and anatomy between two cohorts of left- and right-handed 

subjects?

Stability

To validate the stability of functional surface alignment, we aligned data from two repeated 

resting-state acquisitions of the same subject, and calculated the spatial displacement 

between the aligned rs-fMRI networks. We detected corresponding vertices on the aligned 

spheres, and calculated the spatial distance between their coordinates on the cortical surface 

template for both rs-fMRI scans of each subject. If the functional alignment reflects a stable 

architecture for a subject, this distance should be 0 for the entire cortex. We compared this 

within-subject variability with the displacement detected across subjects, the functional 

alignment of each subject, and a random different subject.

Distribution of the displacement across the cortex

We evaluated the distribution of average cross-subject displacement, to test whether the link 

between anatomical location and rs-fMRI structure was weak, and if it varied across the 

cortex. For within-subject and cross-subject stability analysis, we reported the average 

displacement and the displacement across the entire cortex, in order to detect the most 

variable brain regions. In addition, we quantified the spatial displacement for seven basic 
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resting-state networks defined by Yeo et al. (2011) to achieve results comparable to the 

existing literature.

Improvement of t-fMRI group studies

A dissociation between anatomical location and function affects t-fMRI group studies, since 

spatial normalization can compensate only for those differences linked to anatomy across 

subjects. We evaluated whether functional alignment of rs-fMRI networks could improve 

group-level analysis of t-fMRI data. Improvement indicates whether there is a sufficiently 

strong link between rs-fMRI and t-fMRI structures.

First, we performed group-level activation analysis (one-sample t-test, fdr 0.05) of the 

General Linear Model (GLM) contrasts available in the Human Connectome Project (HCP) 

data set on the entire population. We compared the results obtained after functional 

alignment with those obtained after standard anatomical alignment in the FreeSurfer average 

surface space. Functional alignment is based on rs-fMRI, and no information about the t-

fMRI is used. We showed qualitative results, and quantified the change in group-activation 

in different sections across the cortex. We expected the specificity of the group-level 

activation to increase, i.e., we expected better defined activated areas, whose activation was 

not reduced by the spatial variability across individuals. We evaluated in which of the seven 

basic resting-state networks (Yeo et al., 2011) different experimental conditions benefited 

the most from resting-state alignment.

Second, we measured whether group activation generalizes better to a new individual subject 

after functional alignment. We quantified how well we could predict an individual activation 

pattern in a held-out subject based on the group activation of the other subjects. Again, we 

compared functional alignment to standard anatomical normalization. In a leave-one-out 

cross validation, we compared the activation in the brain regions of a held-out subject with 

the group average activation, where brain regions with a GLM z-score >3 were labeled as 

active. We calculated the Dice coefficient between the prediction labeling and the region 

measured in the held-out subject. We reported the percentage of overlap improvement 

between the prediction obtained after functional alignment compared to anatomical 

alignment in the FreeSurfer surface space.

Comparing the anatomy-function link between different cohorts

Functional alignment reveals the extent to which the brain regions of one subject must be 

displaced in order to functionally match those of another subject. Since we used spatially 

normalized data for initialization, we could quantify the distance between initially 

corresponding brain regions after functional alignment on the spheres. This distance reflects 

the anatomical discrepancy of the functional anchor locations across subjects. Using this, we 

could compare the location of corresponding functional areas in different cohorts. We 

evaluated the difference in functional anchoring in left- and right-handed individuals. First, 

two repeated resting-state fMRI runs were spatially normalized to a FreeSurfer surface 

template. For each resting-state run, we performed a pairwise functional alignment between 

random pairs of left-handed subjects, and right-handed subjects respectively. We then 

performed a paired t-test between the within cohort displacement measure for each vertex on 
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the cortical surface. The results indicated differences in the spatial distribution of 

corresponding functional areas. We regressed out anatomical features such as cortical 

thickness, curvature, and sulcal depth, and used two repeated resting-state acquisitions to 

evaluate the repeatability of the results, and reported the location and magnitude of the 

dissociation between the cohorts.

Results

Functional surface alignment is stable over repeated measurements

A cortical map of the within-subject average displacement is shown in Fig. 2. The average 

displacement between two runs of the same subject was 1.4 mm with a standard deviation of 

0.3 mm, whereas the average displacement between two runs of random different subjects 

was 3.5 mm, with a standard deviation of 1.3 mm. The functional displacement was far from 

evenly distributed across the cortex, and large, average across-subject displacement regions 

(>8 mm) were not present for within-subject displacement. The average within-subject 

displacement was significantly smaller than the average cross-subject displacement (two-

sample t-test, p < 0.001).

Functional surface alignment reveals a nonuniform link between anatomy and function 
across the cortex

While the within-subject analysis showed that the approach is stable, the cross-subject 

results reflected the variability in functional architecture between the subjects. The 

dissociation between anatomy and function was distributed unevenly across the cortex (Fig. 

2). Fig. 2(b) shows the cross-subject variability in the seven basic resting-state networks 

(Yeo et al., 2011). This variability was particularly high in the dorsal attention-, fronto 

parietal-, and default networks, while relatively low in the limbic-, and somato-motor areas.

To confirm that the cross-subject displacement is not due to difficulties in aligning 

inconsistent cortical folding patterns, we calculated the residual variance of cortical 

curvature and sulcal depth after alignment by FreeSurfer and after functional alignment (see 

Figure S1 in the Supplementary material). If functional alignment would primarily help to 

correct for anatomical alignment errors, or deal with local minima, we expect the residual 

cortical curvature and sulcal depth variance to decrease. I.e., the functional alignment fixes 

errors of the anatomical alignment. The residual variance in cortical curvature and sulcal 

depth is not reduced from anatomical to functional alignment. This supports our 

interpretation of deformation maps relating to the dissociation between function and 

anatomy.

Functional alignment based on rs-fMRI improves t-fMRI group analysis

Diffeomorphic functional alignment improves the correspondence of task-specific group 

activation patterns. Region-specific results for different task conditions are illustrated in Fig. 

3. After functional alignment, the overlap of homologous regions across the group increases. 

This provides higher statistical power for task-specific core regions, and enables a more fine-

grained analysis of group-level activation compared to spatial normalization. Fig. 3 shows 

improved task-specific delineation of the functional core regions and an increase in t-values. 
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For the math condition of the language task, temporal language-relevant regions were more 

strongly defined. For the left foot condition of the motor task, we observed an increase in the 

t-statistic in the motor cortex on the right hemisphere, similar to that in the left hemisphere 

for the right foot condition. Multiple conditions of the relational task showed that the 

functional alignment resulted in distinct peaks, with increased t-values on the left and the 

right hemisphere in the frontal regions, whereas spatial normalization was not able to detect 

those regions optimally.

Compared to the standard spatial normalization, the central regions of the group activations 

exhibited higher t-values after functional alignment. Subject specific activation foci become 

closer to each other with functional alignment, compared to anatomical alignment (see 

Figure S4 in the Supplementary material).

Functional alignment increases the overlap of functional regions across individuals

For each resting-state network, Yeo et al. (2011), we calculated the average standard 

deviation of the task-specific z-scores between subjects, and quantified the percent change 

between spatial normalization and functional alignment. Results are shown in Fig. 4. 

Functional alignment decreased the standard deviation across subjects for almost all task 

conditions and resting-state networks. The largest decrease occurred in the dorsal attention, 

fronto parietal and default networks. Not surprisingly, these are also the networks with the 

highest spatial displacement across subjects, as displayed in Fig. 2.

Functional alignment based on rs-fMRI improves the prediction of a single subject 
activation pattern

Compared to spatial normalization, functional alignment of resting state features improves 

the prediction of a subject-specific activation pattern. Functional alignment supports the 

generalization of a group activation to a new individual subject. Fig. 5 shows the percent 

change for prediction results for all task conditions of the HCP dataset. Except for the 

language task conditions, we observed a stable prediction improvement over all 

experimental conditions. The motor task benefited the most, where we achieved up to a 19% 

improvement in predicting the activation for the right foot condition.

Differences in spatial distribution of function between left- and right-handed subjects

When comparing the displacement between left- and right-handed cohorts, a distinct pattern 

occurs. Most noticeable is the difference in the frontal cortex, the inferior parietal cortex 

around the supra-marginal gyrus and the temporal cortex. Overall, the left hemisphere shows 

a higher displacement compared to the right hemisphere. For left-handed subjects, a higher 

displacement is found in the frontal regions of the brain, whereas right-handers exhibit a 

higher displacement in the inferior parietal cortex around the supra-marginal gyrus and the 

temporal cortex. The higher displacement in the left hemisphere, and in the frontal and 

tempo-parietal regions indicate a relationship to the language related functional variability 

found between left and right handers. Fig. 6(a) shows the results for both resting-state runs, 

and Fig. 6(b) illustrates the results for each resting-state run separately to demonstrate the 

stability of the located core regions despite intra subject variability. Fig. 6(c) illustrates 

differences in face size of the surface mesh between the two cohorts after alignment. To 
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confirm that the differences between the two cohorts are not an artifact of anatomical 

differences affecting anatomical registration, we compared the residual variance of sulcal 

depth and cortical curvature after alignment across the two cohorts with a paired t-test. 

Neither of these measures exhibits a significant difference between left-and right handed 

subjects (see FigureS2 in the Supplementary material).

Discussion

Understanding the variability - differences in spatial distribution and function - of the 

functional brain architecture across individuals is important for fMRI studies. In this work, 

we have shown that diffeomorphic alignment of cortical surfaces based on rs-fMRI signal 

correlation patterns is feasible. This type of alignment reflects the stable characteristics of 

individuals, and captures differences across subjects. Using rs-fMRI information can align t-

fMRI activation patterns better than sole anatomical normalization, resulting in increased 

overlap between group- and individual level activation, and higher specificity of the 

delineation of activated areas than a group-level analysis. Further, the method enables the 

comparison of cohorts, and reveals the region specificity of the anatomo-functional 

dissociation across the cortex.

Diffeomorphic functional alignment captures the dissociation between anatomy and 
function

Spectral embedding maps the global connectivity structure observed in rs-fMRI data to a 

space that represents signal relationships within subjects. The resulting maps are specific 

enough to enable matching them across subjects based on their shape in the embedding 

space. This results in a set of maps where representatives of cortical points that share a 

similar connectivity profile are spatially close. The resolution of the correspondence in the 

embedding space is determined by the specificity of the functional connectivity profile of 

each cortex point (Langs et al., 2014, 2015; Nenning et al., 2015). While this enables the 

alignment of points based on their role in functional networks, decoupled from anatomy, it is 

limited because points with a very similar connectivity profile cannot be separated. We 

constrained the mapping between individuals to diffeomorphic deformations of the cortical 

surface. If, after anatomical registration, regions have the same anatomical location but are 

functionally different, then they have different embedding features, and the alignment results 

in a deformation approximating the difference in spatial locations of functionally similar 

regions. While the diffeomorphic constraint reduces the ability to map substantial 

differences across subjects, e.g. due to a pathology such as a brain tumor, it can 

disambiguate the registration of regions that are part of the same functional network, but are 

spatially separated, such as different areas of the default network. Similar approaches have 

been used in spatial normalization with spherical demons (Yeo et al., 2010), and in 

alignment based on across-individual signal correlations (Conroy et al., 2013).

The small displacement of functional alignment between repeated scans of the same 

individual show that the method is stable, and can be due to either noise or variability in the 

resting-state activity at different scan times. Notably, the results indicate a link between the 

resting-state functional connectivity architecture and the location of task specific activation 
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areas. In line with this, the increase in task-specific area overlap across the cortex, largely 

coincides with the amount of average displacement across individuals.

Overall, the residual variance of cortical folding patterns after spatial alignment with 

FreeSurfer is not decreased after functional alignment (see Figure S1 in the Supplementary 

material). This indicates that the cross-subject displacement and corresponding improvement 

after functional alignment is not primarily due to difficulties in aligning inconsistent cortical 

folding patterns, but due to a dissociation between function and anatomy captured by the 

proposed alignment. However, note that diffeomorphic deformation maps cannot capture 

functional variability involving inconsistent topology, which is present even across healthy 

subjects (Glasser et al., 2016).

Anatomo-functional dissociation is distributed unevenly across the cortex

Functional alignment of random pairs of subjects reveals substantial differences in the 

cortical location of functional areas. The average displacement is not evenly distributed 

across the cortex. Areas with particularly high discrepancy include the fronto-parietal 

network, the dorsal attention network, and the default network (Margulies et al., 2016), 

whereas regions associated with the somato-motor or visual networks have to be warped less 

to be functionally aligned. These results are related to previous studies, which investigated 

inter-subject variability, evolutionary timing, and development. In Mueller et al. (2013), the 

parieto-frontal-, attention, and default networks showed high inter-subject variability of 

functional connectivity, but the study did not investigate to what extent this was caused by 

location differences of functional areas, or by the functional connectivity itself. In Langs et 

al. (2015), shared brain areas were studied by clustering in an embedding space that was 

constructed similarly to this work. Clusters in the parieto-frontal areas exhibited the highest 

differences across subjects. In Jakab et al. (2014), the authors studied the timing of emerging 

functional networks during fetal development, with motor and vision areas emerging first, 

and temporal- and parieto-frontal networks later. In the present paper, we could specifically 

assign differences to a displacement of cortical areas involved in a specific network.

Functional alignment improves group-level t-fMRI studies

The proposed diffeomorphic alignment is purely driven by the functional rs-fMRI 

connectivity structure, without information about task conditions or corresponding fMRI 

data. Nevertheless, there is a sufficiently strong relationship between t-fMRI and rs-fMRI to 

yield consistent improvements in the t-fMRI group activation patterns, and the overlap of 

homologous regions identified by t-fMRI based solely on rs-fMRI. We do not fully 

understand the relationship between function during rest and tasks (Buckner et al., 2013), 

although these results suggest a connection between functional resting-state architecture and 

the neuronal responses to specific tasks. Previous studies have shown that spontaneous brain 

activity during a resting state contributes to the variability of stimulus-evoked brain 

responses (Fox et al., 2007; Northoff et al., 2010; He, 2013), revealing a functional link 

between those conditions. However, the relationship between resting-state and task-based 

network architecture is largely unexplored. Our results show that the variability in task fMRI 

activation patterns and resting-state connectivity structure is related.
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In addition to helping to understand the relationship of rs-fMRI networks and anatomy, this 

has direct utility for t-fMRI group studies. Functional alignment normalizes with regard to 

displacement of functional areas on the cortex, and improves the corresponding specificity 

of individual regions on the group level.

Comparison of anatomo-functional dissociation between cohorts

The most noticeable difference of anatomo-functional dissociation between left- and right-

handed subjects is found in the left hemisphere, and in regions that can be associated with 

the arcuate fasciculus (Catani et al., 2005; Catani and Mesulam, 2008) and the uncinate 

fasciculus. We observed distinct differences in the inferior parietal cortex around the supra-

marginal gyrus, the lateral temporal cortex, and in the lateral frontal cortex. Takaya et al. 

(2015) showed in a study group of right-handers, that functional connectivity along the 

arcuate fasciculus is asymmetric. Similar to Takaya et al. (2015), our results also show the 

highest displacement for right-handers in the inferior parietal cortex and the lateral temporal 

cortex. This indicates that our functional alignment approach reveals the functional 

variability in language related regions. A higher displacement in the frontal regions of the 

left hemisphere for left-handed subjects could be related to heterogeneous language 

lateralization. It has been shown that handedness influences the lateralization of language-

related brain activity (Knecht et al., 2000) and language-related resting-state networks 

(Wang et al., 2015). Similar, but less variable, core regions associated with the arcuate 

fasciculus could be observed on the right hemispheres. Since the arcuate fasciculus connects 

brain regions that are part of the language network (Catani et al., 2005; Catani and Mesulam, 

2008), it can be assumed that the largest difference between the cohorts is related to the 

connectivity structure of the language connectome.

Comparison to similar approaches

Functional alignment as proposed by Langs et al. (2014) allows us to fully decouple function 

from spatial position, since the embedding is purely based on functional connectivity. 

Comparable manifold alignment techniques, such as Lombaert et al. (2013b) or Lombaert et 

al. (2015) rely on the incorporation of cortical features and geometrical properties. And 

while these methods show remarkable results in terms of alignment and computational 

speed, they are in particular interesting for anatomical surface alignment. Robinson et al. 

(2014) introduced a flexible framework for multi-modal surface matching, which also offers 

the possibility to incorporate functional characteristics. While we focus on vertex-wise 

connectivity, Robinson et al. (2014) derives functional features from a group ICA on rs-

fMRI data, followed by dual regression to achieve comparability across subjects. Conroy et 

al. (2013) uses inter-subject correlation to drive cortical alignment. While this is feasible for 

stimulus induced task fMRI data, it may fall short for resting-state data, since fluctuations in 

the BOLD signal are not comparable across subjects.

Limitations

The proposed method has several limitations. The functional alignment is restricted to 

diffeomorphic deformations of cortical surfaces between subjects, and for the diffeomorphic 

constraint, the topology of the functional networks matters. This can capture only spatially 

regularized displacements along the cortex, e.g. alignment of areas that are part of the same 
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network, and not substantial changes, such as the unknown migration of a functional area to 

another hemisphere. The diffeomorphic constraint is a regularization that limits the 

variability we are able to capture, at the same time it provides a transparent constraint on the 

inter-individual differences the method can capture. Although core regions of resting-state 

networks show topological similarity at coarse scales across healthy subjects (Wang et al., 

2015), topological variability in function and structure is evident (Glasser et al., 2016; van 

Essen, 2005). Therefore, the diffeomorphic constraint may limit the ability of the alignment 

to capture topological inconsistencies. However, it is a means to regularize and disambiguate 

mappings. Further research is necessary to determine if this constraint should be relaxed, 

and if diffeomorphic alignment is suited for task related fMRI data. It may fail for a 

heterogeneous study group with substantial functional variability, such as in patients affected 

by brain tumors, or epilepsy (Desmurget et al., 2007; Elbert and Rockstroh, 2004).

Another limitation of the present work is the restriction to an analysis of the cortical surface, 

which does not capture differences in the entire volume. While the surface representation 

corresponds to many t-fMRI studies, and allows reporting of relevant results, an extension to 

the entire volume is a clear next step.

Conclusion

In this paper we have proposed a diffeomorphic functional alignment approach based on the 

spectral signatures of functional connectivity structures. We applied this approach on rs-

fMRI data and showed that our approach is stable, and enables a quantification of the 

dissociation between anatomy and function. It also addresses the shortcomings of spatial 

normalization, and enables an evaluation of the differences between cohorts of interest. In 

particular, we have demonstrated that functional alignment based on rs-fMRI characteristics 

improves group analysis of task fMRI data, indicating a link between functional resting-state 

and task architecture.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Overview of the functional alignment approach. (a) We mapped individual rs-fMRI 

functional connectivity architectures into an embedding space, and performed an alignment 

of these subject-specific functional maps. (b) We projected the resulting aligned embedding 

coefficients back to the cortical surface obtaining a feature vector for each vertex, and used 

them to (c) perform diffeomorphic functional alignment along the surface, based on 

spherical demons.
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Fig. 2. (a) Stability
when applied to two repeated rs-fMRI acquisitions of the same subject (within-subject), the 

group-average spatial displacement estimated by functional demons was low (a, left). 

Variability across the cortex: the group-average spatial cross-subject displacement 

captured the location variability of functional networks across subjects. It was distributed 

un-evenly across the cortex (a, right). The difference between within- and cross-subject 

displacement was significant (two-sample t-test, p < 0.001). (b) Compared to the spatial 

within-subject displacement, the spatial cross-subject displacement is un-evenly distributed 

across the seven basic resting-state networks defined by Yeo et al. (2011).
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Fig. 3. Group analysis of t-fMRI data
Functional alignment (FA) of resting-state networks supports group analysis of t-fMRI data, 

compared to common anatomical surface alignment with FreeSurfer (FS) and Spherical 

Demons (SD). It improved the overlap of t-fMRI specific activation patterns, increasing the 

statistical power of functional core regions and resulting in a sharpened delineation of 

smaller activated areas. A quantitative assessment of the improvement is provided in Fig. 4.
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Fig. 4. 
Functional alignment decreased the standard deviation of the z-scores for most task 

conditions, suggesting an improved match of similarly activated areas across the population. 

The network-specific decrease in standard deviation was the largest in regions associated 

with the dorsal attention, fronto-parietal, and default network, and the improvement for 

different conditions within the same experimental tasks was consistent. The overall decrease 

in standard deviation was the highest in regions that exhibited the largest displacement 

during the functional alignment procedure.
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Fig. 5. 
The generalization of the group activation to subject-specific activation patterns is improved 

with functional alignment. Compared to spatial normalization, the prediction of subject-

specific activation patterns, based on group activation analysis of a population showed 

improvement in all except the language task conditions. This is further evidence that 

functional alignment improves the overlap of functionally equivalent regions across subjects.
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Fig. 6. 
(a) Differences in the functional variability between left-handers and right-handers over two 

repeated resting-state runs. The colormap illustrates the t-values of a paired t-test between 

the within cohort variability. Blue colors represent a higher variability for right-handers, and 

red colors a higher variability for left-handers. Overall, the left hemisphere exhibits higher 

variability than the right hemisphere. Frontal regions are more variable for left-handers, 

while tempo-parietal regions show a higher variability between right-handed subjects. (b) 

Individual analysis of two repeated resting-state runs reveals similar core regions, despite 

existing functional variability. (c) Differences in face size of the surface mesh between left- 

and right handers after functional alignment.
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