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Abstract

Diffusion weighted magnetic resonance imaging, or DWI, is one of the most promising tools for 

the analysis of neural microstructure and the structural connectome of the human brain. The 

application of DWI to map early development of the human connectome in-utero, however, is 

challenged by intermittent fetal and maternal motion that disrupts the spatial correspondence of 

data acquired in the relatively long DWI acquisitions. Fetuses move continuously during DWI 

scans. Reliable and accurate analysis of the fetal brain structural connectome requires careful 

compensation of motion effects and robust reconstruction to avoid introducing bias based on the 

degree of fetal motion. In this paper we introduce a novel robust algorithm to reconstruct in-vivo 
diffusion-tensor MRI (DTI) of the moving fetal brain and show its effect on structural connectivity 

analysis. The proposed algorithm involves multiple steps of image registration incorporating a 

dynamic registration-based motion tracking algorithm to restore the spatial correspondence of 

DWI data at the slice level and reconstruct DTI of the fetal brain in the standard (atlas) coordinate 

space. A weighted linear least squares approach is adapted to remove the effect of intra-slice 

motion and reconstruct DTI from motion-corrected data. The proposed algorithm was tested on 

data obtained from 21 healthy fetuses scanned in-utero at 22–38 weeks gestation. Significantly 

higher fractional anisotropy values in fiber-rich regions, and the analysis of whole-brain 

tractography and group structural connectivity, showed the efficacy of the proposed method 
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compared to the analyses based on original data and previously proposed methods. The results of 

this study show that slice-level motion correction and robust reconstruction is necessary for 

reliable in-vivo structural connectivity analysis of the fetal brain. Connectivity analysis based on 

graph theoretic measures show high degree of modularity and clustering, and short average 

characteristic path lengths indicative of small-worldness property of the fetal brain network. These 

findings comply with previous findings in newborns and a recent study on fetuses. The proposed 

algorithm can provide valuable information from DWI of the fetal brain not available in the 

assessment of the original 2D slices and may be used to more reliably study the developing fetal 

brain connectome.
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1. Introduction

The analysis of white matter structure and neural connectivity is highly desired for the 

evaluation of normal and abnormal brain growth during the fetal and neonatal periods when 

the brain undergoes its most rapid development (Dubois et al., 2014; Vasung et al., 2016). 

Diffusion-weighted magnetic resonance imaging (DW-MRI), or DWI, is considered one of 

the most promising tools for the analysis of neural structural connectivity and white matter 

abnormalities. Significant insight has been gained about early brain development through ex-
vivo DWI and MRI of postmortem fetal brains as an excellent complement to histology 

(Huang et al., 2006; Kostovic and Vasung, 2009; Takahashi et al., 2012; Huang et al., 2013; 

Kolasinski et al., 2013; Xu et al., 2014; Huang and Vasung, 2014). While histology provides 

much better spatial resolution (~ μm) compared to ex-vivo and in-vivo DWI (~ 100–500 μm, 

and ~ 1000–2000 μm, respectively), DWI provides non-invasive 3D characterization and 

analysis of the whole brain anatomy with much less imaging time. Ex-vivo studies have 

shown proliferation of neuroepithelial stem cells during 9–13 week gestational age (GA) 

(Kostovic and Vasung, 2009), followed by radial migration and axonal growth which forms a 

dominant radial organization in the second trimester and gradually turns into emergent fiber 

bundles by the end of the third trimester (Takahashi et al., 2012). Limbic fibers develop first, 

association fibers develop last, and commisural and projection fibers develop from anterior 

to posterior throughout the prenatal developmental period (Huang et al., 2006; Huang and 

Vasung, 2014).

The advantage of ex-vivo imaging is its relatively high spatial resolution and signal-to-noise 

ratio that is achieved by using high-field magnets to scan a fixed, non-moving specimen with 

extended MR imaging time. The reported time to perform such scans ranges from 2 hours 

per case on 4.7-T MRI scanners (Takahashi et al., 2012; Xu et al., 2014) up to 21 hours per 

case on 4.7-T or 11.7-T MRI scanners (Huang et al., 2006, 2013). Ex-vivo DWI, however, 

can only be performed in postmortem specimens. The number of samples in previous ex-
vivo studies was hence limited to 3 fetal brains at 19–20 weeks GA by Huang et al. (2006), 

11 samples in the 13–21 weeks GA by Huang et al. (2013), and 17 samples in 19–41 weeks 

GA by Xu et al. (2014). Obviously the ability to perform in-vivo DWI in the fetus will 
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dramatically enhance the use of this powerful imaging technique in analyzing and 

understanding the mechanisms of brain development and neurodevelopmental abnormalities 

and their connection to genetic and environmental factors, as well as its clinical use 

(Takahashi et al., 2012; Huang et al., 2013). In-vivo DWI of the fetal brain, however, is very 

challenging, mainly because of uncontrollable fetal motion. Practical limits on acquisition 

time and limited signal-to-noise ratio (SNR) achievable from the small fetal brain through 

receivers of a body coil, combined with motion artifacts, limit the spatial resolution and 

accuracy of fetal DWI. Maternal sedation and breath-holds are not desired and not routinely 

performed in fetal MRI in the United States (U.S.) as most sedatives have been considered 

toxic or of uncertain harm in animal models by U.S. Food and Drug Administration (FDA).

Fetal DWI was examined in-vivo for the evaluation of white matter development in early 

2000s (Righini et al., 2003; Bui et al., 2006). Early studies and current clinical evaluation are 

based on measurements in 2D slices acquired rapidly with a few diffusion directions. 

Righini et al. (2003) used short (20-second) breath-hold DWI scans with only 3 non-colinear 

gradient directions to establish normal values of apparent diffusion coefficient (ADC) from 

15 fetuses scanned at 22–35 weeks GA. Bui et al. (2006) used ~ 1-minute DWI scans with 6 

non-colinear gradient directions to compute both ADC and fractional anisotropy (FA) 

values. Despite using oral sedatives and maternal breath-hold or quiet breathing they 

reported 50% dropout in tests due to excessive motion artifacts. These early studies showed 

the necessity of technical developments to compensate for motion and achieve better spatial 

resolution and SNR. Kim et al. (2008) developed a short-repetition time, fast DWI scheme 

with model-based compensation of longitudinal relaxation effects to achieve 3-directional 

DWI in 13 and 18 seconds. While this method allows maternal breath-hold and significantly 

reduces motion effects, it is limited to 3 or very few gradient directions that do not allow 

more advanced analysis of brain structure with DWI.

Advanced DWI analysis can lead to high-level information about the white matter 

microstructure and its connections beyond ADC and FA maps. With sufficient number of 

non-colinear gradient directions (more than 6), DWI can be used for diffusion-tensor 

imaging (DTI) which can map the white matter tracts in 3D. To achieve white matter 

tractography, in-utero, Kasprian et al. (2008) were the first who used ~ 2-minute axial, 

single-shot echo-planar DWI sequences with 32 diffusion gradient directions in 40 

unsedated fetuses in the GA range of 18–37 weeks and reported successful visualization of 

sensorimotor and callosal tracts in 40% of cases. Reduced head mobility due to engagement 

of the fetal head in the maternal pelvis (90% of studied fetuses were in cephalic 

presentation) and reduced amniotic fluid due to abnormalities were considered factors that 

potentially contributed to relatively high success rate despite the relatively long DWI 

acquisition times in this study. In another study, Zanin et al. (2011) applied 12-directional, ~ 
2-minute DWI scans to 61 normal fetuses in the GA range of 23–38 weeks. Despite running 

the DWI three times to increase the chance of a motion-free scan, they reported a 28% 

success rate, visualized corticospinal tracts, optic radiations, and callosal tracts in 17 fetuses, 

and suggested 3 phases for white matter maturation based on DTI measurements including 

FA and ADC values. In more recent studies, Kasprian et al. (2013) and Jakab et al. (2015) 

used in-vivo DWI and the commonly-used DTI processing software with volume-to-volume 

registration to analyze disrupted brain connectivity in fetuses with callosal agenesis. Mitter 
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et al. (2015b) applied similar DTI processing methods to 16-directional DWI and achieved 

in-vivo tractography of fetal association fibers in 24 living unsedated fetuses in the GA 

range of 20–34 weeks. They reported 20% success rate (24 of 120 fetal DTI examinations) 

in this analysis. Mitter et al. (2015a) validated in-vivo tractography of 7 fetal cases with 

histology. This cohort included 4 cases with callosal agenesis and a case with Joubert 

syndrome. The analysis showed both the value of in-vivo DWI and its limitations.

Fetal MRI has evolved through the use of more advanced hardware and software (?); for 

example the use of 3-T for fetal MRI has led to higher SNR and spatial resolution. Routine 

DTI processing methods and tools, designed for adult brains, including volume-to-volume 

registration and motion detection, were deemed insufficient and unsuitable for the 

continuously moving fetal brain, therefore several studies addressed the technical challenges 

surrounding 3D fetal DWI reconstruction from stacks of multiple 2D slices: Jiang et al. 

(2009) developed the first motion correction technique for the reconstruction of fetal brain 

DTI from multiple axial DWI scans. They used slice-to-volume registration for motion 

correction and scattered data interpolation (SDI) for DTI reconstruction. This technique was 

inspired by the earlier works on structural fetal brain MRI reconstruction (Rousseau et al., 

2006; Jiang et al., 2007), in which slice-to-volume registration was initialized by volume-to-

volume registration. Oubel et al. (2012) proposed a groupwise registration approach where 

diffusion-sensitized and non-diffusion sensitized image slices were registered separately in 

groups and subsequently to a T2-weighted MR image of the fetal brain, and solved a high-

order model of the DWI signal through dual radial basis function interpolation. Fogtmann et 

al. (2014) proposed adding a robust regularization prior based on Huber norm to a three-

stage registration-reconstruction process initialized by the registration approach developed 

by Oubel et al. (2012). They coupled registration (for motion correction) with a model of the 

imaging point spread function (PSF) to enable reconstruction from multiple-view scans. In 

terms of results, Jiang et al. (2009) reported ADC and FA values in 8 fetuses. Fogtmann et 

al. (2014) showed experimental results for FA and tractography (of the corpus callosum) in a 

sedated fetal monkey and 4 human fetal cases, and Oubel et al. (2012) presented the results 

of successful callosal and pyramidal tractography in 4 sedated human fetal cases.

Slice-to-volume registration, which has been the core of the above mentioned techniques for 

fetal head motion correction, was previously proposed to improve functional MRI of moving 

subjects (Kim et al., 1999) and has been extensively used in more recent, robust, model-

based structural T2-weighted fetal brain MRI reconstruction algorithms (Gholipour et al., 

2010; Kuklisova-Murgasova et al., 2012; Kainz et al., 2015). Motion correction in MRI, in 

general, has also been studied extensively with partial solutions that depend on the type of 

the sequences and application, and the amount and frequency of motion (Zaitsev et al., 

2015). Prospective motion correction techniques (Maclaren et al., 2010; White et al., 2010; 

Maclaren et al., 2013), in particular those designed for DWI (Aksoy et al., 2011; Kober et 

al., 2012), cannot be readily used for fetal DWI, and the currently-used retrospective 

methods, that are based on volume-to-volume registration and volume-level motion 

detection (Elhabian et al., 2014; Kreilkamp et al., 2015), are not robust and efficient in the 

case of continuous fetal motion. These technical difficulties motivated the technical works 

reviewed earlier (Jiang et al., 2009; Oubel et al., 2012; Fogtmann et al., 2014). Nevertheless 

Marami et al. Page 4

Neuroimage. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



motion correction using slice-to-volume registration and DWI reconstruction need to be 

further improved. In our experiments we identified that the ill-posed nature of the slice-to-

volume registration process and the effect of motion are the main barriers to achieve robust 

fetal brain DWI reconstruction.

To address the technical challenges in fetal brain DWI reconstruction, in this paper we 

introduce an algorithm that relies on two main innovations: 1) robust inter-slice motion 

estimation through coupling temporal image registration with a discrete-time model of fetal 

head motion dynamics; and 2) robust DTI model reconstruction through detecting and 

rejecting motion-corrupted data and weighted linear least squares (WLLS) estimation that 

mitigates the effect of signal loss caused by intra-slice motion, a critical point that was not 

addressed in previous works. The motion tracking algorithm we propose here for fetal DWI 

has been adapted from our recent work on motion-robust DWI reconstruction in young 

children and adults (Marami et al., 2016a). In contrast to previous works which relied on 

independent slice-to-volume registration (Oubel et al., 2012) or a regularized version of it 

(Fogtmann et al., 2014), in our approach we explicitly modeled dynamics of motion with a 

state space model, and estimated temporal motion trajectories with a robust Kalman filter 

(Agamennoni et al., 2012). We note that the ultrafast slice acquisition in DWI (slice 

acquisition time ≈ 100ms), results in a sampling rate close to 10Hz that allows effective use 

of our approach in DWI of moving subjects. In an extension of our original work we have 

achieved improved multi-plane coverage of the anatomy using simultaneous multi-slice DWI 

in adult subjects (Marami et al., 2016b).

To achieve robust performance in fetal brain DWI, which suffers from complex motion 

effects including intra-slice motion artifacts, limited SNR, limited spatial resolution, and 

arbitrary orientation, we 1) relax the causality property of our motion tracking approach 

through a sliding window on the sequence of acquired slices; 2) automatically detect and 

reject motion-corrupted slices to enhance motion tracking and model reconstruction; and 3) 

augment motion tracking with our proposed image registration and processing pipeline that 

allows DTI reconstruction and in turn standard color-coding and analysis of FA, 

tractography, and groupwise whole-brain connectivity analysis in a standard coordinate 

space. We examined our proposed algorithm first in adult volunteers who stayed still and 

moved during DWI scans and then in 21 non-sedated fetuses scanned in the GA range of 22 

to 38 weeks. We compared FA values in regions-of-interest and evaluated tractography and 

fetal brain connectivity analysis. The results indicate robust reconstruction and tractography 

in the presence of various amounts of motion, and significant improvement in all metrics and 

analyses, including group connectivity analysis, over methods that do not explicitly take into 

account the dynamics of motion and the effect of intra-slice motion-induced signal loss. 

Connectivity analysis based on 21 cases in this study shows that, similar to adult and 

newborn brains, the fetal brain network has high modularity and clustering, and small world 

characteristics in the second half of pregnancy. Our results comply with the findings in 

neural connectivity in preterm infants and newborns (van den Heuvel et al., 2014; De Asis-

Cruz et al., 2015), and fetuses (Jakab et al., 2015).
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2. Materials and Methods

A fetal DWI acquisition involves a series of 2D spin-echo echo-planar imaging volume 

acquisitions (each with M slices) that involve N0 b=0 volumes (S0) and N1 diffusion-

sensitized scans b≠0 (Si; i = 1…N1). Each Si has a corresponding diffusion gradient 

direction gi. Typical values of N0, N1, and M for fetal DWI can be 1–3, 12–15, and 15–30, 

respectively, depending on the age and size of the fetus. A single DWI scan, therefore, 

includes K = M × (N0 + N1) slices (i.e. 200–500 slices) that are acquired in an interleaved 

manner in intervals of the repetition time (TR). Often, the fetus moves continuously during 

slice acquisitions, but the motion is not always so fast that it affects the quality of each DWI 

slice acquisition. Consequently, intra-slice motion artifacts do not happen frequently as fetal 

and maternal motion is often much slower than the timing of each DWI slice acquisition (≈ 
100ms). Inter-slice motion, on the other hand, almost always exists. The DWI acquisitions 

may be repeated a few times in the same or different orientations (axial, coronal, or sagittal) 

with respect to the fetal head providing redundancy in data (in image and q-space) that 

would help increase the SNR in DTI model estimation if scans are combined.

Image slices are acquired in an interleaved manner, but each slice is associated with a time 

stamp k at which it is obtained (k = 1, …, K). All geometric properties (including points and 

gradient directions) are calculated in the world (scanner) coordinate system. Unlike an adult 

head that is oriented in a specific direction inside a head coil, the fetal head can be in any 

arbitrary position/orientation and can move continuously during acquisitions. One slice is 

the smallest packet of acquired k-space (and q-space) data; therefore, we consider each slice 

as an observation (or measurement) with a transformation Tk that defines the relative 

position of the fetal head at time k with respect to a target volume S. We further assume 

transformations that map S to a target S0, , S0 to a reconstructed T2-weighted (T2w) 

MRI scan R, , and R to an age-matched atlas image A, (TR→A) that is correctly 

oriented for color coding the FA and tracts. The details of estimating Tks, the target volumes 

and transformations, and DTI reconstruction technique are discussed in the following 

subsections.

2.1. Robust inter-slice motion tracking and registration

We propose to track and estimate the motion of the fetal head during DWI slice acquisitions. 

We consider a linear dynamic model for fetal head motion, which is described as a discrete-

time state-space model

(1)

This is a model in which the finite sequence of observations yk (DWI slices) are generated as 

a function of the sequence of hidden states xk that represent the d degrees-of-freedom 

motion; ωk and νk are the process and measurement noise and represent uncertainty in the 

modeling of motion dynamics and observations, respectively. IS is a nonlinear function that 

relates the motion states xk to the observations yk. The goal is to estimate the states xk ∈ ℜd.
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Assuming that the analysis is performed in an area around the fetal head, that undergoes 3D 

rigid-body motion, d = 6 and xk = [θx, θy, θz, tx, ty, tz]T is a vector of 3 translation and 3 

rotation parameters. The solution of the motion tracking problem constitutes estimating the a 
posteriori probability density function p(xk|y0, …, yK). To solve the problem with image 

registration, we separate the nonlinear part and rewrite the output model of (1) as

(2)

where zk ∈ ℜd is the measurement vector; f (IS(p), yk) is a similarity metric between a 

reference volume transformed with parameters p and the observations; and h is a window 

size parameter that controls the bias-variance trade-off in the estimation of motion 

parameters. An appropriate value of h depends on experimental conditions including 1) 

sampling rate vs. the speed of motion and 2) reliability of image registration, which depends 

on the degrees-of-freedom of the transformation and the fidelity of the similarity metric 

based on image features, resolution and SNR. In our experiments we tried different values of 

h in the range of 0 and 10 and found h = 1 as an appropriate value. Note that h = 0 leads to a 

causal motion tracking system that can be used for prospective correction, but has a 

relatively high variance so is not very robust to inaccuracy of slice-to-volume registration. 

On the other hand, large values of h significantly regularize slice-to-volume registration and 

make it robust but lead to smooth non-causal motion tracking systems that will be similar to 

volume-to-volume registration and interpolation.

The process noise in (1) is drawn from a Gaussian distribution, i.e.,  as we 

model it with a random walk; however, the measurement noise in (2) may have heavier tails 

than a Gaussian distribution because of 1) nonlinearity and uncertainties in slice-to-volume 

registration, and 2) intra-slice motion that may result in signal loss and exclusion of a 

number of slices. To deal with non-Gaussian measurement noise we used the robust state 

estimation technique developed by Agamennoni et al. (2012) that allowed accounting for 

uncertainties in the measurements caused by registration failures. For all practical purposes 

image registration was performed in the reverse order of source and target images, i.e., the 

algorithm dynamically tracks motion by registering a target volume to a set of 2h + 1 slices 

acquired over the k − h to k + h time steps. Note that due to the interleaved nature of DWI 

acquisition these temporally adjacent slices are not adjacent in image space and provide a 

distant coverage of the anatomy in 3D. For example in a 3-interleaved acquisition with a 

slice thickness of 2 mm, the three slices that fall within a temporal window of h = 1 are 6 

mm apart so they sample the anatomy in a distance of 12 mm. This provides a good 

coverage of the small fetal brain in the slice select direction and further enhances the image 

registration process for motion tracking.

For robust state estimation we used the algorithm developed by Marami et al. (2016a). 

Motion-free target volumes are not usually available in fetal MRI and should be 

reconstructed. We reconstructed R (a T2w image of the fetal brain) from multiple sets of 

T2w MRI slices using the robust algorithm developed by Kainz et al. (2015). S0 was 

reconstructed through an iterative process by running our inter-slice motion tracking method 

Marami et al. Page 7

Neuroimage. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for all b=0 volumes followed by reconstruction. The reconstructed image at each iteration 

was used in the next iteration as the target volume for registration. Similar to S0, S was 

reconstructed using all b≠0 volumes through iterations. Then, for each DWI scan, we 

estimated Tks (transformation parameters for each slice) using the proposed inter-slice 

motion tracking method where S was used as the target volume.  and TR→A were 

computed using volume-to-volume registration from S to S0 and from R to an age-matched 

template from a correctly oriented spatiotemporal fetal brain MRI atlas (Gholipour et al., 

2014b, 2017). As a result, we have a reference b=0 image in the atlas space and 

transformations  that map each DWI slice to that image.

The entire image processing and registration pipeline has been shown in Figure 1. This 

involves the processing of multiple stacks of T2w images of the anatomy (top row) and the 

processing of the DWI slices (bottom row). The reconstructed T2w image played the role of 

a reference image to map S0 and consequently the DWI data into the atlas coordinate space 

through  and TR→A. The brain mask and anatomical parcellation achieved on this 

image were also used to guide similarity metric calculation and improve motion-tracking 

slice-to-volume registration in DWI, and for tractography and region-based structural 

connectivity analysis, respectively. DTI reconstruction, tractography, and connectivity 

analysis, shown in this diagram, are discussed next.

In addition to motion tracking for inter-slice motion correction, we needed to take into 

account the effect of intra-slice motion in the slice motion estimation and DTI 

reconstruction. This is crucial as signal loss in motion-corrupted slices may mislead image 

registration and adversely affect the performance of the motion tracking algorithm; As 

shown in Figure 2a fast fetal motion often affects several slices in a row and the temporal 

registration information may not be reliable in that period. To this end, we implemented a 

technique to automatically detect and exclude through-slice motion-corrupted DWI slices 

using statistical learning. In our earlier work (Marami et al., 2016a) we employed a rule-

based technique using two image features computed through a morphological closing filter 

along the slice-select direction to detect inter-slice intensity discontinuity (first and second 

features in Figure 2b). In addition to using the above mentioned features, to adopt an 

algorithm for fetal brain DWI which presents more complex intra-slice motion artifacts, we 

used normalized mean intensity difference (NMID) of each slice with the whole volume 

(third feature in Figure 2b), and entropy of the individual slices (forth feature in Figure 2b) 

to model a support vector machine (SVM) classifier. For this purpose we labeled 2676 image 

slices (60 image volumes obtained from 12 fetuses), among which 735 were visually 

identified as corrupted by intra-slice motion. Using the labeled images, we trained and tested 

the SVM classifier achieving 86.6% sensitivity in detecting motion-corrupted slices and 

98.2% specificity on the test data (25% of the all labeled image slices). Using the trained 

classifier motion-corrupted slices were automatically detected and excluded from both 

motion tracking and DTI reconstruction processes.

2.2. Robust diffusion tensor image reconstruction

To reconstruct DWI models from registered slices, we construct a data structure of physical 

voxels from the mapped DWI data. This data structure stores the intensity value, point-
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spread-function (PSF), b value, and the corrected diffusion gradient direction in the local 

neighborhood of regular grid points on the reference b=0 image. For a DTI model based on 

the Stejskal-Tanner equation: , where B0 and Bi are the intensity values of 

the b=0 image and the diffusion-sensitized images (b≠0), respectively, we compute the DTI 

model using a WLLS estimation method (Koay et al., 2006; Marami et al., 2016a) by 

minimizing:

(3)

where γ = [Dxx, Dxy, Dxz, Dyy, Dyz, Dzz] is a vector of 6 DTI model parameters which is 

estimated in a way that guarantees a positive definite diffusion tensor D, and Mi,j is the n × 6 

DTI design matrix that is built from the (x, y, z) components of the diffusion gradient 

directions (gis) and the b value; Bi is the observed diffusion-sensitized signal at any 

registered slice voxel, and  is the corresponding b=0 signal, which is interpolated from the 

b=0 image at the slice voxel location, and n is the total number of voxels in the 

neighborhood of the regular grid point.

The weights wis in (3) balance the contribution of the observed voxels based on their 

distance to the tensor location, which are calculated based on the PSF kernel function. The 

shape of the PSF is acquisition dependent and its exact calculation yields improved image 

contrast in image reconstruction (Jiang et al., 2009; Gholipour et al., 2010; Kuklisova-

Murgasova et al., 2012; Kainz et al., 2015). For fetal DWI we used a Gaussian slice profile

(4)

where dxi, dyi and dzi are the distance between the center of the ith voxel and the center of 

the grid point (reconstructed voxel) transformed to the slice image domain using the 

transformation estimated for the slice image; hence, dxi and dyi are the offsets from the 

center of the voxel on the slice image plane, and dzi is the offset in slice acquisition 

direction. σx, σy and σz determine the width of the bell-shaped Gaussian function in the x, y 
(in-plane) and z (out-of-plane) direction. As suggested by Jiang et al. (2009) and Kainz et al. 

(2015) these values are obtained based on the image spacing as

(5)

where sx, sy and sz are image spacing in the x, y (in-plane) and z (out-of-plane) direction. 

The weights αi are set to Bi, not only to contribute to nonlinear DTI model estimation as 

suggested by prior work, e.g., Salvador et al. (2005), but also to make the estimation robust 

to complete or partial signal loss due to intra-slice motion. The gis in Mi,j are the corrected 
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diffusion gradient directions based on the Ttk of each slice; i.e., gi = Rtkg0i, where g0i is the 

ith predefined gradient direction in the scanner coordinates and Rtk is the rotation matrix 

corresponding to Ttk. The WLLS solution in (3) provides robust DTI reconstruction from 

motion-corrected data.

2.3. Tractography and connectivity analysis

Unlike most of the previous works that generated ROI-based tracts without standard color-

coding, standard color-coding of the FA maps and tracts was achieved in this study thanks to 

the mapping to the correctly-oriented atlas coordinates. While deterministic region-based 

tractography was used in previous works on fetal DWI, whole-brain stochastically-initialized 

locally deterministic step tractography was performed in this study. This was performed by 

the method described by Peters et al. (2012) and Lewis et al. (2013), with 8 tract seeds and 5 

steps per voxel, FA and direction momentum both equal to 0.5, minimum FA threshold of 

0.1 (Mukherjee et al., 2002), and maximum fiber angle of 40 degrees. The range of potential 

streamlines examined in this approach was broad compared to conventional deterministic 

tractography. Stochastic sampling was continued until a predetermined number of 

streamlines (equal to 8 here) were created for each seed voxel. Constrained quaternion 

interpolation was used and the tracts were stopped at the boundary of the brain mask.

Structural connectivity analysis was performed through atlas-based parcellation of the 

reconstructed T2w images (through the process described in the caption of Figure 1) and 

mapping the regions into the space of S0 using the inverse . Atlas-based parcellation 

was performed based on 90 anatomical regions mapped to the spatiotemporal fetal brain 

MRI atlas (Gholipour et al., 2017) from the neonatal brain MRI atlas developed by Blesa et 

al. (2016). We studied structural connectivity based on streamlines connecting all pairs of 

anatomical regions. A symmetric 90×90 connectivity matrix was obtained for each brain. 

Streamlines connecting each region to itself were ignored so diagonal elements of the matrix 

were zero. Using the structural connectivity matrices, we defined structural connectomes of 

the fetal brains as networks, where regions and connections were considered nodes and 

edges, respectively. Connectivity strength was calculated between regions ROIi and ROIj by

(6)

where Cij is the streamline count between the two regions and Vi and Vj are the volumes of 

the regions.

To study the properties of the fetal brain structural connectome, we used graph theory and 

calculated graph theoretical measures. In particular, we calculated measures of connectivity, 

integration, segregation, and small worldness of the brain network (Rubinov and Sporns, 

2010). We measured network connectivity by mean connectivity strength over all nodes. We 

calculated the node degree as the number of connections between a node and all other nodes. 

We also computed the degree distribution which is the probability distribution of node 

degrees over the entire network. We measured network integration using characteristic path 

length and global efficiency. Characteristic path length quantified the length of the shortest 
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paths through the network and was calculated as the average of the inverse sum of the edge 

weights for edges along a path (shortest path length) for all pairs of nodes. Global efficiency 

was calculated as the average inverse of the shortest path lengths. With integration we aimed 

at quantifying the density of the network. A fully connected network has high integration 

and a sparsely connected network has low integration. For segregation, which quantifies how 

much a network is organized into sub-networks, we used two measures: the modularity 

index and the clustering coefficient. Modularity was calculated as the maximum of the ratio 

of the number of connections within a sub-network to the number of connections exiting that 

network over all possible sub-networks. Clustering coefficient was calculated as the average 

of the fractions of a node’s neighbors that were also connected to each other, weighted by 

the product of the relevant edge strengths.

One of the most interesting characteristics of efficient complex networks, which has shown 

to exist in animal and human brain networks, is the small worldness property. A small-world 

network has both high connectivity and high clustering coefficient or modularity. Such a 

network has high connectivity while keeping low number of connections. It is not 

completely understood when the small world sub-networks of the human brain form during 

brain development but small world characteristics have been observed in neonatal brains 

(Brown et al., 2014). We measured the small worldness of the fetal brain as the ratio of the 

clustering coefficient to the characteristic path length. In order to test the degree of 

significance of these measures, we compared measures of fetal brain connectivity with 

average measures obtained from 100 random networks generated with similar number of 

nodes and edges.

Finally, to study the similarity and variability of the connectome between subjects, we 

calculated the edge space similarity (ESS) of the connectivity networks. Given the 

connectivity graph networks G and H for two subjects, the ESS is computed as

(7)

where  is the Dice coefficient of binary overlap between graphs G and H at threshold 

value d; and Gd and Hd are unweighted binary graphs obtained from thresholding G and H at 

the graph density value of d (Jakab et al., 2015). ESS is a measure of network similarity 

between two subjects and takes values between 0 and 1.

All steps of the proposed technique were implemented in C++ using the Insight Toolkit 

(ITK) (Johnson et al., 2013). For the registration of diffusion-weighted images, we used 

Mattes mutual information intensity-based image similarity metric (Mattes et al., 2003), a 

versor type rigid 3D transformation and a gradient-descent approach for optimization. We 

also used the Computational Radiology Laboratory Toolkit (CRKit) for diffusion MRI 

analysis, tractography, and the evaluation and visualization of results. Manual work for DWI 

reconstruction was minimal, limited to creating an approximate ellipsoidal brain mask in the 

brain region on one of the original images and regular quality control for generating this 
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mask, choosing an initial reference image, and ensuring validity of data and results from 

initial DICOM conversion to connectivity analysis. Computation time depends on the 

implementation, computational resources, the number of scans acquired and analyzed for 

each case, size of the brain (gestational age) and the desired spacing for DTI reconstruction. 

We ran all steps of the DWI reconstruction and tractography on a Linux system with Intel(R) 

Xeon(R) CPU X5690 @ 3.47GHz and 64 GB RAM. It required approximately 110 minutes 

for an example case with three DWI scans, 12 gradient directions (S images) and one S0 

image for each scan.

3. Results

We compared DTI reconstruction using our algorithm (motion-tracking slice-to-volume 

registration; called MT-SVR) with 1) original analysis without motion correction or robust 

reconstruction (Orig); 2) volume-to-volume registration (VVR) that is the state-of-the-art in 

DTI analysis (Elhabian et al., 2014), and has been used previously along with motion 

detection and volume rejection for fetal DTI reconstruction (Kasprian et al., 2008; Zanin et 

al., 2011; Kasprian et al., 2013; Jakab et al., 2015); and 3) hierarchical slice-to-volume 

registration (SVR) initialized by volume-to-volume registration followed by temporal 

registration between sets of S0 and S images, that follows, in steps, the techniques developed 

by Jiang et al. (2009) and Oubel et al. (2012). We used WLLS estimation in all four DTI 

reconstruction methods. For evaluation and comparison of techniques, we first conducted 

controlled motion experiments with healthy adult volunteers, and then applied the 

techniques to in-vivo DWI of 21 fetuses, in which we examined FA values in different brain 

regions, performed tractography, and analyzed group connectivity and edge space similarity. 

The results of these experiments are presented and discussed in the following subsections.

3.1. Quantitative evaluation by controlled motion volunteer experiments

For quantitative evaluation in controlled experiments with gold standard (GS), i.e., motion-

free scans, we performed volunteer experiments, where healthy adult volunteers were asked 

to stay still during one DWI scan and move during several other scans. The total number of 8 

DWI scans with intentional motion of different types and magnitude up to 30° (measured 

with an electromagnetic sensor) were acquired from two volunteers. Imaging was performed 

on a 3T Skyra Siemens scanner (Siemens Healthineers, Erlangen, Germany) using a 32-

channel head coil, and involved DWI with 6 b=0 images and 30 diffusion directions, with b 
= 1000s/mm2, TR/TE = 9000–13200/88 ms, flip angle =90°, slice thickness =2mm, matrix 

size =128 × 128, and field-of-view of 256 mm. The study was approved by the Boston 

Children’s Hospital Institutional Review Board Committee and written informed consent 

was obtained from all participants.

Figure 3 compares the color-coded FA of different methods for a volunteer experiment. The 

results indicate that even in the presence of extensive continuous head motion (up to 15 mm 

in translation and 30° of rotation), our proposed method (MT-SVR) generated superior 

results that are comparable to the gold standard (GS). Statistics of the L2 norm of FA value 

differences (ΔFA) (Marami et al., 2016a) and the angle between the principal eigenvectors of 

the tensors of each method and the GS (ΔDir) (Marami et al., 2016a), shown in Table 1 for 
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three fiber-rich brain regions, showed significantly lower errors by MT-SVR compared to the 

other methods.

3.2. Fetal DTI reconstruction

We analyzed MRI scans of 21 fetuses scanned at GA range of 22–38 weeks, 30.6 ± 5.3 

weeks. Fetal MRI for these cases was performed on 3T Siemens Skyra scanners using 16 

channel body matrix and spine coils with a protocol that involved a 3-plane localizer, 

multiple repeated T2-weighted (T2w) half-Fourier acquisition single shot turbo spin echo 

scans of the fetal brain, and 2–8 DWI scans in the axial and/or coronal planes. Each DWI 

scan was performed with 1–3 b=0 volumes and 12 diffusion-sensitized volumes with b=500 

s/mm2, TR/TE=3000–4000/60 ms, variable slice thickness between 2–4 mm, and in-plane 

resolution of 2 mm. The total acquisition time for each DWI scan was between 50 to 90 

seconds, depending on the size of the fetal brain, number of slices, and TR. No maternal 

sedation or breath-hold was used. The study was approved by the Boston Children’s 

Hospital Institutional Review Board Committee and written informed consent was obtained 

from all participants.

Figure 4 shows color-coded FA of a 32 week GA fetus obtained from different techniques as 

well as the corresponding region of the reconstructed T2w image. This comparison, in 

specific, shows the effectiveness of motion correction and robust reconstruction technique 

(MT-SVR). Note that in these experiments we rejected motion corrupted data and used 

WLLS reconstruction in Orig, VVR, and SVR, but the advantage of MT-SVR in robust 

dynamic motion tracking and robust reconstruction led to its superior performance compared 

to other configurations. For quantitative evaluation we calculated FA values obtained from 

different reconstructions in small regions-of-interest in the corpus callosum (CC) and the 

anterior/posterior limbs of the internal capsule (LIC), and plotted them for all fetal cases as a 

function of GA (in days) in Figure 5. This figure shows a steady increase in FA with GA in 

these fiber-rich regions where high FA values are expected. Uncorrected motion, however, 

results in blur artifacts and a reduction in FA values; therefore, robust motion correction and 

reconstruction should result in increased FA values. This analysis indicates improved results 

by MT-SVR compared to other reconstructions including SVR, which also performed well 

compared to Orig and VVR. The improvement using MT-SVR over SVR was more 

prominent in the lower GA range where the fetus usually moves more frequently and faster.

We performed multiple regression analysis to investigate the relationship between FA (in CC 

and LIC) with GA, number of scans and gradient directions (N1), and the magnitude and 

speed of motion based on estimated slice motion parameters. Although FA showed negative 

correlation with the magnitude and speed of motion for all techniques, the effect was non-

significant (p > 0.1) for MT-SVR and SVR. The reduction in FA with higher magnitude and 

speed of motion was, however, significant for Orig and VVR. The results are shown in 

Figure 6. The dependence to both GA and N1 was significant and positive at p < 0.05, with 

R2 = 0.45 and 0.82 for the multiple regression models for CC and LIC, respectively. This 

analysis showed that MT-SVR was robust to motion, while Orig and VVR were not; and the 

results were improved with higher number of scans, which is expected as more scans 

improve the SNR and may also improve registration. Linear regression equations for FA vs. 
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GA (in days), obtained from MT-SVR results, were FACC = 0.2424 + 0.0008GA and FALIC 

= 0.0234 + 0.0011GA.

As previously mentioned, we used the WLLS estimation technique in Equation (3) for DTI 

reconstruction. The weights, set as the diffusion-sensitized signal at each voxel, made the 

estimation robust to complete or partial loss of signal due to fast motion. The effect of 

WLLS is shown in Figure 7, in which color-coded FA of a 28-week GA fetus obtained from 

WLLS estimation is compared against FA obtained from linear least square (LLS) 

estimation (where the weights αi in Equation (3) were set to 1 for LLS). While all image 

slices were used for reconstruction in Orig, VVR and SVR methods, intra-slice motion-

corrupted slices were detected and excluded in the MT-SVR reconstruction. As can be seen 

from (a) and (e), the fetus moved significantly during the scan (both intra- and inter-slice 

motion). Intra-slice motion artifacts can be easily seen in (b) and (c) where LLS estimation 

was used, where these artifacts are much reduced in (f) and (g) with WLLS estimation. 

Comparing (c) with (d), and (g) with (h) shows the effectiveness of our motion-tracking 

slice-to-volume registration technique against the SVR method.

3.3. Fetal tractography and connectivity analysis

Figures 8 and 9 show whole-brain tractography results for two fetuses scanned at 24 and 36 

weeks GA, respectively. While tractography based on Orig was significantly degraded by 

uncompensated motion (Figures 8a and 9a), by using MT-SVR (Figures 8d and 9d), we were 

able to reconstruct major fiber pathways despite large and fast fetal motion. With MT-SVR 

we were consistently able to visualize the corticospinal and callosal tracts, as well as corona 

radiata and cingulum tracts that can easily be obscured or distorted if Orig or VVR 

reconstructions are used. Visual assessment of tractography results complied with 

quantitative analyses based on FA values reported earlier, and was also confirmed through 

groupwise connectivity analysis presented and discussed next. Connectivity analysis shows 

the impact of MT-SVR and the accuracy that is practically gained by using our proposed 

method as opposed to using VVR or SVR.

Figure 10 shows color-coded edge space similarity (ESS) matrices of the study subjects 

obtained from the four reconstruction methods. Grayscale-coded average magnitude of 

motion has also been shown for each case in the bottom x-axis of the matrices. It is observed 

that cases with higher amounts of motion typically showed lower ESS values (corresponding 

to blueish lines) in the matrices. While the effect of uncompensated motion was remarkable 

in Orig matrices, it was much less in VVR and SVR, and was further decreased in MT-SVR 

matrices. In particular, the block diagonal values in the bottom right corner of MT-SVR 

matrix show high similarity of structural connectivity between fetuses at GAs higher than 34 

weeks.

Finally, using connectivity analysis results obtained from MT-SVR DTI reconstruction, we 

analyzed the properties of the fetal connectome based on graph-theoretic network measures. 

Figure 11 shows small-world properties of the fetal connectome based on a high level of 

binary clustering, short average characteristic path lengths, and a high degree of modularity. 

These have been compared to baseline measures calculated for 100 random networks for 

each subject. Figure 12 shows that there is a small number of densely connected hub nodes 
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in the fetal connectome, which results in a heavy-tailed (truncated power law) distribution of 

hub degrees, which is another evidence for the small world properties of the fetal brain 

network.

4. Discussion and Conclusion

We introduced a novel technique for robust reconstruction and processing of fetal brain DTI, 

evaluated it with adult volunteer experiments, and examined on DWI of 21 non-sedated 

human fetuses scanned in-utero. Two main innovations distinguish our technique from 

previous works: 1) a robust formulation of slice-to-volume registration using an explicit 

dynamic model of fetal motion and registration to a common coordinate system, and 2) 

robust reconstruction based on detecting and rejecting motion-corrupted slices and a 

weighted linear least squares (WLLS) solution of the DTI model that mitigates the effect of 

intra-slice motion artifacts. We note that temporal adjacency of slice information was 

implicitly used in previous SVR methods, but we have developed an explicit dynamic 

motion tracking approach that uses slice timing and robust state estimation to estimate 

motion at the slice level. Moreover, we detected and filtered the effect of intra-slice motion 

which was not considered in the previous works. In all experiments our method (MT-SVR) 

performed much better than the reconstructions based on original data (Orig) and volume-to-

volume registration (VVR). The improvement using MT-SVR over SVR with similar 

reconstruction technique was more prominent in the lower GA ranges. This is because 1) the 

magnitude and speed of motion is lower at higher GAs as older fetuses typically have less 

space to move, and 2) DW images of older fetal brains have more features that naturally 

make the slice-to-volume registration more robust, thus improve the performance of SVR.

We regressed FA values with the average magnitude and speed of motion calculated from 

estimated motion parameters, the number of scans, and GA. Similar to previous studies we 

observed an increase in FA values in fiber-rich regions with increased GA. Our results 

complied with the FA values and their increase by age reported previously by Jiang et al. 

(2009) based on 3 normal fetuses compared against curves obtained from serial DTI analysis 

of 14 preterm neonates by Partridge et al. (2004). Our motion analysis results showed 

significant reduction in FA with increased magnitude and speed of motion for the Orig and 

VVR methods, but not for SVR and MT-SVR. These results, presented in Figure 6, showed 

that MT-SVR was the most robust technique to motion. With MT-SVR we were able to 

perform whole-brain tractography at unprecedented details (sample results shown in Figures 

8 and 9). Groupwise connectivity analysis, also, independently showed improved edge space 

similarity between subjects through the use of MT-SVR (compared to other methods), which 

implied that more meaningful connectivity was achieved through effective motion 

compensation and robust reconstruction versus not compensating for inter-slice and intra-

slice motion. This analysis, shown in 10, supports the hypothesis that more meaningful and 

stronger structural connectivity is shaping throughout the course of in-utero brain 

maturation; and may be compared to the results obtained from similar groupwise structural 

connectivity analysis in preterm infants (van den Heuvel et al., 2014).

Using the results obtained from MT-SVR we analyzed the characteristics of the fetal brain 

connectome using graph theory and observed small world properties. These results for the 
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prenatal period complies with the findings based on neonatal brain connectivity analysis by 

De Asis-Cruz et al. (2015) and van den Heuvel et al. (2014). The modules and the degree 

and betweenness hubs of the fetal connectome based on the group averaged structural 

connectome in our study are shown in Figure 13. These results also comply with results 

previously reported by De Asis-Cruz et al. (2015) based on functional connectome in 

neonates and by Jakab et al. (2015) in fetuses. All in all, our results and analyses indicate 

that robust motion correction and reconstruction can significantly improve the analysis of in-
vivo fetal DWI and structural fetal brain connectome. The approach we have developed can 

be extended to other models of the diffusion signal, but to strengthen the results and 

evaluation in the absence of sufficient DWI data (i.e. high number of gradient directions and 

b values typically needed for higher-order models), we focused on a DTI model. We 

obtained brain tractography with unprecedented details in fetuses in a wide age range. Our 

results showed that uncompensated motion led to reduced FA values in regions of dense 

unidirectional fiber tracts such as corpus callosum and the limbs of the internal capsule. Our 

proposed algorithm based on MT-SVR consistently resulted in highest FA values in those 

fiber-rich regions.

Invaluable work has been done in the past decade on the analysis of prenatal development of 

human brain connectome using both ex-vivo (Huang et al., 2006; Kostovic and Vasung, 

2009; Takahashi et al., 2012; Kolasinski et al., 2013; Xu et al., 2014; Huang and Vasung, 

2014; Vasung et al., 2016) and in-vivo (Kasprian et al., 2008, 2010; Zanin et al., 2011; Jakab 

et al., 2015; Mitter et al., 2015b) fetal MRI, and their correlation and validation with 

histology (Huang et al., 2013; Mitter et al., 2015a). While routine DTI analysis pipelines 

were adopted for in-vivo fetal DWI analysis in these studies, our results in this paper and the 

previous works by Jiang et al. (2009), Oubel et al. (2012), and Fogtmann et al. (2014) show 

that slice-level motion correction and reconstruction lead to more accurate results, especially 

in the presence of continuous motion which frequently happens in fetal DWI. Our algorithm, 

in particular, showed robust performance due to 1) the use of a robust state estimation 

technique (Agamennoni et al., 2012) for inter-slice motion correction through dynamic 

motion tracking, and 2) detection and rejection of intra-slice motion and robust 

reconstruction through weighted linear least squares estimation. The processing pipeline 

developed in this study for fetal brain DWI analysis, technical advances in fetal brain MRI 

reconstruction, new advances in fetal brain functional MRI analysis (Seshamani et al., 

2016), along with spatiotemporal atlases of the fetal brain (Gholipour et al., 2014a, 2017; 

Serag et al., 2012) and neonates (Blesa et al., 2016; Makropoulos et al., 2016) can 

significantly improve the use of in-vivo MRI and DWI to study the development of human 

brain connectome in-utero. This in-turn facilitates the use of MRI as a powerful imaging 

modality for the analysis of neurodevelopmental disorders caused by preterm birth, growth 

restriction, or congenital anomalies.
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Figure 1. 
The processing pipeline for motion-robust fetal brain DTI reconstruction and structural 

connectivity analysis. The two dashed-line boxes in the figure separate the T2w image 

processing pipeline (on top) from the DWI processing pipeline (in the bottom). A volumetric 

T2w image with isotropic resolution of 0.7mm3 is reconstructed from multiple stacks of 

T2w scans using robust super-resolution volume reconstruction. An approximate ellipsoidal 

brain mask is used to crop the brain region prior to reconstruction, but a precise manual 

brain mask is obtained after reconstruction in ITKSNAP (Yushkevich et al., 2006). The brain 

mask is then used in N4 correction of intensity non-uniformity (Tustison et al., 2010). The 

corrected masked image is registered to the atlas space using the algorithm discussed by 

Gholipour et al. (2012), and tissue segmentation and anatomical parcellation is obtained 

from multi-atlas segmentation using label propagation through ANTS deformable 

registration (Avants et al., 2008) and probabilistic label fusion (Akhondi-Asl and Warfield, 

2013). A spatiotemporal fetal brain MRI atlas (Gholipour et al., 2014b, 2017) is used in this 

process with anatomical parcellations adopted from the neonatal brain atlases by Blesa et al. 

(2016). The DWI stacks of slices are processed with the algorithm developed and discussed 

in section 2.1. Through the combination of the rigid transformations computed throughout 

this pipeline, the DWI data are mapped into the S0 image for the reconstruction of DTI in 

standard orientation. This allows standard color-coding of FA and tractography and enables 

groupwise connectivity analysis.
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Figure 2. 
(a) Some of the slices among 25 interleaved axial diffusion-sensitized image slices of a fetal 

brain DWI scan, shown in this figure, are corrupted by intra-slice fast motion. slices are 

ordered from top-left to bottom-right. (b) Input features and the output of the SVM classifier 

for the example test volume shown in (a). Seven slices were classified as motion-corrupted 

for this volume.
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Figure 3. 
Axial view of the color-coded FA in an adult volunteer experiment. Our method (MT-SVR) 

generated FA that is very similar to the GS (based on motion-free scans) and outperformed 

SVR (note the red artifact on PLIC in (c)), VVR, and Orig.
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Figure 4. 
(a–d) From top to bottom: axial, coronal, and sagittal views of the color-coded FA in a 32-

week GA fetus using different DTI reconstructions. (e) The corresponding region of 

reconstructed T2w image. By correcting motion and robust reconstruction, MT-SVR 

generates meaningful FA maps of structures like CC, internal capsule, cingulum, and 

corticospinal tracts that comply much better with our knowledge of the anatomy. The effects 

of uncompensated motion artifacts are observed in FA maps obtained from Orig, VVR and 

SVR.
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Figure 5. 
Comparison of FA values in the CC and LIC regions as a function of GA using different DTI 

reconstructions. Uncompensated motion resulted in reduced FA in fiber-rich regions such as 

CC and LIC. This figure shows 1) superior results using MT-SVR compared to other 

methods, and 2) increased FA with GA which can be attributed to increased anisotropic 

diffusion due to brain maturation. Linear regression equations for FA vs. GA (in days), 

obtained from MT-SVR results, were FACC = 0.2424 + 0.0008GA and FALIC = 0.0234 

+ 0.0011GA.
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Figure 6. 
Comparison of FA values obtained from different DTI reconstructions in the CC and LIC 

regions as a function of the average absolute value and speed (differential) of motion. 

Uncompensated motion resulted in reduced FA in fiber-rich regions such as CC and LIC. 

This is evident from the reduction in FA in these regions with higher average absolute value 

and speed of motion. The rate of reduction in FA with increased magnitude and speed of 

motion was significant for Orig and VVR, but was not significant for MT-SVR. This shows 

the robustness of MT-SVR to motion in these regions.
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Figure 7. 
Sagittal views of the color-coded FA in the CC region in a 28-week GA fetus using different 

motion correction and DTI reconstructions, LLS (a–d) and WLLS (e–h). This figure 

illustrates the effectiveness of WLLS estimation in mitigating intra-slice motion artifacts in 

comparison to LLS. It should be noted that although artifacts caused by intra-slice fast 

motion can be seen in Orig, VVR, and SVR using LLS estimation, since motion-corrupted 

slices were excluded from the estimation in MT-SVR (both LLS and WLLS), less artifacts 

are seen in MT-SVR images.
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Figure 8. 
Tractography of the brain of a 24-week fetus using different motion correction methods. 

While tractography based on Orig failed, MT-SVR revealed the highest number of major 

fiber pathways that are formed as early as 24 weeks GA.
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Figure 9. 
Tractography of the brain of a 36-week fetus using different motion correction methods. Our 

method (MT-SVR) generated the most detailed tractography of major fiber pathways. Tracts 

obtained from the other methods were degraded because of residual motion artifacts.
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Figure 10. 
Edge space similarity (ESS) of fetal structural connectivity in the study subjects (ordered by 

age) for four methods: Orig, VVR, SVR, and MT-SVR. Each color-coded element of the 

square matrix shows the edge space similarity between two subjects. The subjects (1–21 in 

the y axis of matrices) have been ordered by age. The grayscale color bar in the bottom of 

the matrix shows the average absolute magnitude of subject motion calculated from 

estimated motion parameters (brighter corresponds to larger motion). Rows 2, 9, and 14 

correspond to subjects 2, 9, and 14 which had largest magnitudes of motion during image 

acquisition. These subjects showed low ESS corresponding to bluish lines in the matrices for 

Orig and VVR methods. Similarity matrices with DTI images, corrected and reconstructed 

using SVR and MT-SVR, clearly show improved similarity between subjects at similar GA 

ranges (i.e. block diagonal elements). In particular subjects 9 and 14 show higher similarity 

to other subjects within the same GA range after motion correction. The block diagonal 

values in the MT-SVR matrix show high structural similarity of fetuses at GAs larger than 

34 weeks. This complies with previous work (van den Heuvel et al., 2014) that showed 

higher ESS in infants at higher GA-equivalent ages. MT-SVR showed better results than all 

other methods. The similarity was much diminished in matrices corresponding to Orig and 

VVR due to uncompensated motion effects.
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Figure 11. 
Small-world properties of the fetal connectome: The results show high level of binary 

clustering (0.49 ± 0.046) in the fetal brain network compared to the corresponding random 

graph (0.38±0.024) with same number of nodes and degrees for each node (100 random 

networks for each subject). Furthermore, topological analysis indicates short average path 

length between graph nodes (2.60 ± 0.17). Taken together the normalized clustering 

efficiency and normalized path length along with the small world index (2.43 ± 0.27) 

indicate that the fetal brain structural network at second and third trimesters shows small-

world network characteristics. The modularity value for fetal connectome (0.46 ± 0.04) is 

significantly higher than the corresponding random graph (100 random networks) (p < 

0.001) which indicates that the fetal connectome is modularly developed.
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Figure 12. 
Heavy-tailed degree distribution of fetal connectome: The graph on the left shows the degree 

distribution, p(k), of the group-averaged fetal connectome thresholded and binarized at ratio 

0.15. It can be seen that the group averaged degree distribution is heavy-tailed. There is a 

small number of densely connected hub nodes located on the right tail of the distribution. 

This complies with the previous studies on functional connectivity in neonatal brain 

networks (De Asis-Cruz et al., 2015) and neonatal connectome analysis (van den Heuvel et 

al., 2014). Right: degree distribution follows an exponential truncated power law, i.e., 

, using Akaike information criterion (AIC) for finding the best model, contrary 

to a power law, p(k) k−α, or exponential distribution, p(k) = eαk. We used the R package 

Brainwaver (Achard et al., 2006) (https://cran.r-project.org/web/packages/brainwaver/

index.html) to find the best fit for the degree distribution.
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Figure 13. 
Group averaged fetal structural connectome can be separated in 6 modules (shown with 

different colors). Bigger nodes have higher degrees. These modules comply with the 

modules detected previously in functional connectome in neonates (De Asis-Cruz et al., 

2015). The analysis of the degree and betweenness hub of the group averaged connectome 

show that the top 14 (15% of total) of highest connected nodes are: left and right precuni, 

left and right thalami, left and right insula, left and right lenticular nuclei, putamen, left and 

right anterior cingulate and paracingulate gyri, left and right median cingulate and 

paracingulate gyri, and left pallidum. These result confirm previous findings reported by 

Jakab et al. (2015). We used BrainNet Viewer (Xia et al., 2013) to visualize the brain 

network.
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