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Abstract The colonic mucosa provides a vital defensive
barrier separating the body from the microbial populations
residing in the intestinal lumen. Indeed, growing evidence
shows that loss of this barrier may cause disease or exac-
erbate disease progression. The loss of barrier integrity
increases the translocation of bacterial antigens and stimu-
lates inflammation in the intestinal mucosa, which is the
central pathological feature of inflammatory bowel dis-
eases (IBDs). This review focuses on how intestinal mucus
and intercellular tight junctions (TJs) act together to main-
tain the integrity of the colonic barrier and how barrier
integrity is dysregulated in IBD.
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Introduction

Inflammatory bowel diseases (IBD), encompassing Crohn’s
disease (CD) and ulcerative colitis (UC), are characterized
by chronic or intermittent inflammation of the intestinal mu-
cosa [1]. IBD is an idiopathic andmultifactorial condition, and
recent studies indicate that both genetic and environmental

factors contribute to the disease [2, 3]. During the etiology
of IBD, aberrant immune responses triggered by the microbi-
ota itself or excessive leakage of bacterial antigens into the
mucosa cause inflammatory responses that progressively de-
grade the intestinal epithelia. This in turn permits more antigen
leak and exacerbates inflammation, further compromising bar-
rier integrity. The mucosal barrier integrity, therefore, is a key
determinant of disease initiation, progression, and severity in
IBD patients. Disrupting the inflammatory feedback cycle is a
fundamental goal of IBD therapy. In experimental models,
exposure of epithelial cells to proinflammatory cytokines such
as tumor necrosis factor-α (TNF-α) causes cell death, alters
the production of secreted mucins, and disrupts the epithelial
barriers) [4–8]. Notably, the anti-TNF-α monoclonal anti-
body, infliximab, a treatment for advanced IBD, short-
circuits this inflammatory feedback loop by limiting immune
activation and mitigating cytotoxic effects [5].

Epithelial tissue acts not only to separate essential internal
organ systems from the outside world but also facilitates
communication with the microbiota and absorbs nutrients.
Additional features of the colonic barrier include secreted
mucus and water absorption. The epithelial layer is com-
posed of a simple monolayer of around 20 billion contigu-
ous cells [9], which, like the skin, continually regenerates.
Stem cells, located at the base of the crypts of Lieberkühn,
produce daughter cells that differentiate. As the progeny
cells migrate toward the luminal surface, they lose their pro-
liferative capacity and differentiate into specialized cells,
which include colonocytes and mucin producing goblet cells
(Fig. 1) [10, 11]. Cells at the luminal surface eventually
undergo programmed cell death (apoptosis) and are shed
(Fig. 1). From birth to death, the regenerative process is
complete within a few days [12].

Mature cells facing the lumen, termed surface cells, are
in close apposition to layers of mucus. The cells and the
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mucus together form a layered barrier separating the body
from the colonic microflora and limiting influx of bac-
teria and bacterial antigens. The combination of the ep-
ithelial sheet and the mucus layers forms a biologically
flexible and environmentally responsive barrier to lumi-
nal contents. Indeed, growing evidence shows that loss
of barrier integrity may cause disease or exacerbate dis-
ease progression (reviewed in [13, 14]). This review
focuses on how the mucus and TJs together provide a
layered defensive barrier in the colon and how their
dysregulation contributes to IBD.

Mucins separate the epithelia from the intestinal
lumen

The colonic mucosa secretes copious amounts of mucus,
which is composed of complex and extensive O-linked
oligosaccharide modifications on a mucin protein back-
bone. These glycoproteins form large disulfide-linked
macromolecules, and upon release from goblet cell gran-
ules into the lumen, become hydrated and expand to form
a net-like gel [15]. Whereas the small intestine contains a
single layer of loose unattached mucus, mucus in the co-
lon is organized into three distinct layers. Membrane-
anchored mucins associated with the colonic epithelial
cells form the glycocalyx. The glycocalyx gives way to
a second tightly crosslinked inner layer primarily com-
posed of the mucin protein MUC2. The outermost layer,
generated by proteolysis of the inner layer, is less dense
and less viscous. A more detailed description of mucin
organization in the colon is reviewed elsewhere [16–18].

These mucus layers serve to separate bacteria in the lumen
from the epithelia in several ways. First, the mucus layers
achieve different densities, such that commensal flora or even
pathogens can reside within the low density outer layer [16,
18] but are generally excluded from the high density inner
layer and glycocalyx [19]. The outer mucus layers contain
diverse carbohydrate motifs, immunoglobulins, and other pro-
teins that serve as binding sites for bacteria [20, 21]. A second
means of separating the bacteria is mucus turnover. As secret-
ed mucus is extruded, proteolyzed in the inner layer, and ulti-
mately secreted into the lumen, bound bacteria are expelled
and removed from the body by intestinal peristalsis. The mu-
cus layers turn over in a matter of hours, providing dynamic
removal of bacteria and limiting their access to the epithelium
[22]. Finally, the mucus serves as a lubricant to prevent feces
from abrading and tearing the epithelia [22]. Thus, the mucus
serves to limit access of bacteria to the epithelia. It is important
to note that the density of the mucus does not preclude access
of secreted bacterial metabolites or toxins to the epithelia
based on size alone. Given the importance of these molecules
in epithelial barrier integrity, a role for the mucus in regulating

their access promises to be an increasingly important area of
investigation.

Defective mucin production or processing has been linked
to human IBD. UC patients have fewer goblet cells and de-
creased synthesis and secretion of MUC2, especially during
episodes of severe disease. This allows direct contact of the
colonic microbiota with the epithelial barrier [23]. In addition,
lower levels of the goblet cell differentiation factors HATH1
and KLF4 were evident in biopsies from patients with active
UC [24]. Furthermore, genome-wide association studies
(GWAS) have implicated mutations in the MUC genes in
IBD pathogenesis, including the membrane-anchored MUC3

Fig. 1 Protective layers of the colonic mucosal barrier. The outer mucus
layer, composed of Muc2 and various carbohydrate modifications,
interacts with colonic microflora, while the density of the inner layer
prevents bacterial penetration. The innermost mucus layer, the
glycocalyx, is attached to the plasma membrane. Together, the inner
and outer mucus layer limit abrasion and trap bacteria, thereby
restricting their contact with the epithelia. In general, the mucus limits
contact of bacteria with underlying epithelial cells but does not restrict
access of bacterial metabolites. The epithelial paracellular barrier is
composed of intercellular contacts called tight junctions (TJs). TJ
strands, composed of proteins called claudins, connect apposing cells
and occlude the paracellular space. Some claudins form ion pores
within the TJ (pore pathway, inset), which selectively permit ion and
water exchange. However, bacterial products may breach TJ defenses
upon separation (a) or rupture of the TJ strands (b). Epithelial cell
turnover likely helps to remove attached bacteria, and mucus flux
ensures trapped bacteria are eliminated. Stem cells residing in the crypt
bases produce progeny that migrate toward the lumen surface. While
doing so they differentiate, producing goblet cells that secrete mucins.
Differentiating cells also change the complement of claudins that they
express, such that pore forming claudins are more highly expressed in
the crypt-base compared to the luminal surface [54]
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and MUC19 [2, 25]. Moreover, variants of MUC2, the major
secreted mucin in the human colon, have been found in IBD
cases [26].

Unlike UC patients, CD patients exhibit increased mucus
production [24, 27]. However, despite the increased levels, the
mucus barrier still fails to restrict bacterial access to the epi-
thelia [28]. These observations suggest that secondary struc-
tural modifications, in addition to mucin levels, are critical for
function of the mucus barrier. In this regard, it has been pro-
posed that increased bacterial access is due to impaired mucin
processing in CD patients, which may affect the length of
glycans attached by O-glycosylation [8, 23]. Notably, proper
glycosylation, sulfation, and sialylation are essential for the
viscoelastic functions of mucus. Humans and mice with IBD
have been found to have higher levels of sulfide, a product of
sulfate reducing bacteria, that could reduce the disulfide bond
between mucins and degrade the mucus network, thus
allowing increased microbial contact with the host [29, 30].
Accordingly, glycosylation and sulfation defects have also
been found in a UC cohorts, indicating that mucus modifica-
tion may play a role in limiting barrier function in disease
[31–33]. More specifically, mutations in core 1 β3GalT-
specific molecular chaperone (Cosmc), a chaperone for the
T-synthase glycosyltransferase responsible for the synthesis
of the O-glycans on mucin proteins, have also been associated
with IBD in GWAS studies [34]. The location of Cosmc on X
chromosome may provide an explanation for the male gender
bias of IBD [35].

Experimental disease models in mice further strengthen the
role the mucus barrier and mucins can play in the prevention
or pathogenesis of IBD. For example, 5 weeks after birth,
Muc2 knockout animals (Muc2−/−) develop spontaneous co-
litis and display increased susceptibility to experimental DSS
colitis, presumably due to the direct contact of intestinal mi-
crobiota with the epithelia [36]. Animal models also demon-
strate that glycoprotein modification is crucial to intestinal
homeostasis. Mice lacking core 1-derived O-glycans, recapit-
ulating defects in humans with mutations in Cosmc, show loss
of mucus complexity and rapid spontaneous colitis [31]. It is
important to note that the outer and inner mucus layers of the
colon are almost entirely composed of Muc2, and it is expect-
ed that Muc2−/− strains would then depend only on the glyco-
calyx for fecal lubrication [21]. In summary, the secreted mu-
cus barrier appears to function as a means of preventing or
limiting contact of bacteria and bacterial antigens with epithe-
lial cells.

The outer layer of colonic mucus is a habitat for both in-
digenous and transient microorganisms, called autochthonous
and allochthonous, respectively. Changes in the resident au-
tochthonous bacteria appear to have more impact on the host’s
health than do changes in transient luminal allochthonous
bacteria found in the fecal matter [37]. An imbalance of the
microbiota, a state referred to as dysbiosis, is characteristic of

IBD, indicating the importance of maintaining the appropriate
bacteria in the intestinal mucus [38]. Mucus provides nutrients
to bacteria, including amino acids and sugars, which are espe-
cially important for those bacteria capable of degrading the
glycans on the mucin backbone [39, 40]. Akkermansia
muciniphila is a mucus-degrading bacterium underrepresent-
ed in many disease states including IBD, obesity, and type 2
diabetes, and numerous studies have correlated the presence
of A. muciniphila with a healthy mucosa [41, 42].
Additionally, providing mice with A. muciniphila during
high-fat diet (HFD) feeding, which normally results in de-
creased barrier integrity, led to a restored barrier, increased
goblet cell numbers, and prevention of metabolic
endotoxemia [42] [43] [44]. Interestingly, bacteriophages
within the mucus layer may also dictate the abundance and
diversity of bacteria found in the intestine [38]. One study of
an IBD cohort demonstrated an inverse correlation between
bacteriophage expansion and diversification on the one hand
and bacterial diversity on the other, raising the possibility that
bacteriophages may contribute to the dysbiotic state in IBD
[45]. Taken together, these studies demonstrate the importance
of intestinal mucus in supporting growth of protective com-
mensal bacteria as well as facilitating repopulation and main-
taining commensal homeostasis to prevent dysbiosis.
Accordingly, disruption of the mucus barrier may result in
dysbiosis.

TJs form a paracellular seal

Epithelial cells are networked together through proteinaceous
adhesive contacts called junctions, which both join cells to-
gether and provide a paracellular seal. The seal between cells
requires tight junctions (TJs), a specialized multipurpose ad-
hesion that simultaneously occludes the paracellular space,
dictates ion flux across the tissue, and maintains cellular po-
larity. The TJs are positioned at the boundary of the apical and
lateral membrane surfaces of adjacent epithelial cells in the
colon and consist of 5–7 membrane fusion sites called
Bkissing points^ [46, 47]. The entire circumference of each
cell is joined to apposing cells via an adhesive TJ band, called
a strand. TJ strands in the colon are not linear but rather highly
branched structures that form anastomosed webs that extend
several hundred nanometers laterally from the apex of the cell.
All epithelial cells that line the intestine are joined in this
manner.

TJs regulate the flux of ions and solutes on the one hand,
termed the Bgate function,^ and maintain cell polarity on the
other, termed the Bfence function^ [48, 49]. Thus, TJs serve as
a barrier to bacteria and bacterial products while also corral-
ling apical plasma membrane proteins, and presumably the
glycocalyx mucins, at the lumen-facing domain of the epithe-
lial cell.
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The claudin family proteins are essential components of
TJs. Claudins form TJ strands by polymerizing within the
plasma membrane and dimerizing with claudins on apposing
cells, across the extracellular space, to generate the
paracellular seal. There are 24 claudin genes in humans, with
multiple claudins expressed within any given cell [50].
Importantly, several claudin proteins dimerize to form charge
and size-selective ion pores that are vital for ionic homeostasis
in epithelial tissues. For example, mice deficient in both
claudin 2 and 15 mice fail to equilibrate sodium levels in the
luminal space of the small bowel, which leads to low nutrient
absorption, wasting disease, and premature death [51]. Other
claudins, such as claudin 4, appear to promote a tighter seal;
claudin 4 does not form ion pores within the TJ but appears to
exclude pore-forming claudin 2 [52]. The permeability of the
TJ is thought to derive at least in part from the relative
amounts of amounts of pore forming or sealing claudins with-
in the stands, as well as the architecture of the strands, partic-
ularly the complexity and numbers of TJ strands [49, 53].

Different complements of claudins are expressed at differ-
ent levels in epithelia along the length of the intestinal tract, as
well as within the intestinal crypts themselves [52] (Fig. 1).
For example, our recent studies in mice indicate that 11
claudins are expressed as a gradient within the crypts
(Fig. 1) [54]. In general, Bleaky^ pore forming claudins are
restricted to the colonic crypt base, whereas Btight^ sealing
claudins are more prominently expressed in surface cells fac-
ing the lumen.

At the molecular level, the TJ is a highly diverse structure
composed of both transmembrane and cytoplasmic proteins
[55, 56]. Besides claudins, there exist three additional classes
of transmembrane proteins in the TJ: occludin, tricellulin, and
junctional adhesion molecules (JAMs) [53, 57–59]. A dense
Bplaque^ of scaffolding molecules is anchored to the trans-
membrane proteins, which include the Zonula Occludins
(ZO) and MAGUK family proteins (reviewed in [49]).
These scaffolding proteins link the transmembrane proteins
to kinases and signaling molecules that localize at the junc-
tion. These molecules in turn control not only cell-cell con-
tacts but also the actin polymerization machinery and contrac-
tility apparatus of apically situated actin and myosin [49, 60].
Scaffold proteins have different affinities for claudins and may
regulate the types of claudins in the TJs [61]. Likewise, the
contractile machinery appears to regulate localization of
claudins within the TJs [62–65]. In summary, this molecular
signaling apparatus controls claudin localization and function,
and thus the permeability of the epithelial barrier.

In addition to forming ion pores, claudin strands have a
poorly understood mechanism that permits small molecules
to traverse the TJ, termed the paracellular Bleak pathway^
[66–68]. There is accumulating evidence that TJ strands them-
selves are dynamic and frequently break, reform, and ex-
change claudin proteins in response to physiological,

environmental, and pathogenic stimuli [52, 63]. However, it
remains to be established whether the paracellular leakage
results from separation of transcellular dimers, strand break-
age, or some other unknownmechanism. Interestingly, several
pathogens, including both bacteria and viruses, have evolved
means to traverse the paracellular junctions by disrupting
claudins, or the actin structures that provide structural integrity
to the cell and the TJs (reviewed in [69]). For example, the
bacterium Clostridium perfringes secretes a toxin that binds
claudins 3 and 4, whereas Hepatitis C virus interacts with
claudin 1 [69]. In summary, the composition and numbers of
the TJ strands, the type of claudins that compose them, their
localization within the intestinal tract, and the intracellular
signaling apparatus all contribute to the permeability of the
intestinal barrier.

Several lines of evidence implicate dysregulation of the
mucosal barrier, and of TJ architecture and claudin expression
in particular, in the etiology of IBD [47, 70]. GWAS studies
have identified several genes that link TJ function to IBD [2,
71]. Of the IBD implicated genes, one of the best understood
is hepatocyte nuclear factor alpha (HNF4a) [72]. HNF4a is a
transcription factor involved in the maturation of colonocytes
as they migrate out of the crypts. HNF4a regulates claudin
expression, including claudin 7 [73]. Moreover, multiple stud-
ies have demonstrated a change in TJ transmembrane proteins
in IBD patients. Tricellulin, a specialized occludin-like mole-
cule responsible for sealing the TJ at tricellular contacts, is
decreased in UC [74, 75]. Moreover, expression of the sealing
claudins 1 and 4 is suppressed in IBD patients [70, 76].
Furthermore, upregulation of claudin 2 expression and down-
regulation of claudin 5 and 8 correlate with barrier dysfunction
and active CD [77]. A more comprehensive review of the TJ
and TJ-associated proteins dysregulated in IBD can be found
elsewhere [75, 78, 79].

Disease phenotypes of human IBD are recapitulated in
micewith genetic deficiencies similar to those found in human
patients and confirm the importance of altering TJs and barrier
integrity in IBD pathogenesis. For example, mice deficient in
claudin 7 in the colon develop lethal colitis soon after birth
[80, 81]. Notably, based on freeze fracture EM analysis, TJs of
wild type and claudin 7 knockout animals have nearly identi-
cal structure, yet the character and function of the TJ appears
compromised. Without claudin 7, the epithelial barrier is more
permeant to small molecules (~400 Da), although the flux of
larger molecules (~4 kDa) and the overall balance of Na+ and
Cl− were unchanged [80]. Therefore, claudin 7 appears to
function to selectively regulate permeability of small mole-
cules, and its dyregulation is sufficient to cause disease. The
observation that loss of claudin 7 disrupts the TJ seal raised
the possibility that this claudin might also limit flux of bacte-
rial antigens. Accordingly, antibiotics ameliorated colitis in
mice with claudin 7 deficiency, whereas addition of bacterial
antigen (fMLF) reversed this protective effect [80]. Together,
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these data support a model of IBD pathogenesis in which
dysregulation of TJs facilitates leakage of luminal antigens
across the epithelial barrier that trigger inflammation and ini-
tiate colitis. Master regulators of claudin expression have also
been implicated in mouse models of IBD. As in humans,
Hnf4a regulates expression of claudin genes in mice [82,
83]. Accordingly, loss of function alleles of Hnf4a in mice
results in dysregulation of claudin expression and spontaneous
colitis [84].

The mucosal barrier, inflammation, and IBD

Themucosal barrier is not a static structure, and epithelial tight
junctions andmucus production both respond to inflammatory
stimuli. For example, upon infection, the inflammatory cyto-
kine TNF-α increases epithelial permeability through alter-
ations in TJ function, structure, and dynamics [52, 85]. Yet,
TNF-α also increases mucus production by goblet cells to
limit the inflammatory response by stemming influx of bacte-
ria through the mucus layers.

Importantly, sustained inflammation or protracted dys-
regulation of barrier integrity initiates or exacerbates IBD.
In this regard, loss or dysregulation of either the mucus or
the TJs suffice to cause colitis, an effect that depends
upon bacterial or antigen translocation. Thus, mice lack-
ing claudin 7, Hnf4a, and Muc2 all develop spontaneous
colitis [72, 80, 86]. The observation that symptoms are
relieved under germ-free conditions or after treatment
with antibiotics highlights the non-redundant role of the
mucus as well as TJs in limiting access of microbes and
microbial products to the body and the contribution of
bacterial antigens to colitis. Additionally, the mucus bar-
rier and TJs are interdependent such that loss of one di-
minishes the other. In this regard, Muc2−/− mice display
increased epithelia barrier permeability and dysregulated
claudin gene expression in addition to defects in the mu-
cus [86]. Likewise, numbers of mucin-producing goblet
cells and mucus are diminished in Hnf4a−/− mice [84].
Such interdependence could result from dysregulation of
signals that coordinate both the mucus and TJs.
Alternatively, inflammation associated with either knock-
out phenotype could damage the remaining barrier. In any
case, such interdependence may facilitate feedback in-
flammatory responses that perpetuate IBD.

Summary and future directions

The epithelial TJs and the three mucus layers cooperate to
form a highly integrated barrier system that together limit
access of luminal contents to the body proper. The molecular
constituents of this barrier are still being identified and their

functions elucidated. Nevertheless, through in vivo and
in vitro studies in experimental models, as well as studies of
human IBD, an integrated understanding of mucosal barrier
function is beginning to emerge. The capacity of the mucus to
prevent abrasion and trap bacteria represents the first line of
defense, while the paracellular TJ barrier prevents leakage of
bacterial antigens from the lumen into the body. Furthermore,
the rapid turnover of both mucus and lumen-facing epithelial
cells ensures that bacteria that do interact with these structures
are constantly being evicted. This multilayer system thus
functions to limit bacterial contact with the host while still
permitting access of small molecules, including microbial
metabolites.

A comprehensive understanding of the epithelial barrier
system and its relationship to commensal microbes and to
the immune system may provide a more integrated approach
to treatment of IBDs. For example, strategies aimed at
strengthening both the mucus and epithelia barriers and there-
by reducing exposure to inflammatory antigens, coupled with
therapeutics that reduce susceptibility of the mucosa to dam-
age caused by bacteria or by inflammatory responses, may
restore the intestinal tract of IBD patients to a more benevolent
state.
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