Skip to main content
. 2015 Feb 20;12(3):187–202. doi: 10.1007/s10433-015-0338-z

Table 4.

Predictive potential of residential satisfaction regression models; R-squared values of adjusted variance

Not at risk of poverty At risk of poverty
Model 1 Model 2 Model 1 Model 2
AT 0.06*** 0.13** 0.15*** 0.25***
BE 0.00** 0.03** 0.04** 0.11***
DE 0.01** 0.02** 0.00 0.06***
DK 0.07 0.04* 0.08 0.24***
ES 0.01*** 0.05*** 0.02** 0.11**
FI 0.05*** 0.15**
FR 0.10*** 0.19*** 0.10*** 0.35***
GR 0.05*** 0.30*** 0.02* 0.26***
IE 0.03*** 0.07* 0.05*** 0.09***
IT 0.05*** 0.13*** 0.05*** 0.15***
LU 0.01 0.11 0.14 0.30**
NL 0.05*** 0.11** 0.21** 0.42***
PT 0.05*** 0.12*** 0.05*** 0.28***
SE 0.10*** 0.12** 0.12* 0.24*
UK 0.05*** 0.16*** 0.05*** 0.11***

Source EU-SILC (Wave 2007) Signification level: *** p < 0.000; ** p < 0.05; * p < 0.1

Model 1: Control variables (age, sex, health status, limitations ADL, living arrangements, tenure, housing cost as financial burden)

Model 2: Control variables + living conditions’ predictors: accessibility to community services, inadequate housing maintenance, basic dwelling facilities, environmental problems

Not possible to carry out binary logistic regression due to lack of cases

AT Austria, BE Belgium, DE Germany, DK Denmark, ES Spain, FI Finland, FR France, GR Greece, IE Ireland, IT Italy, LU Luxembourg, NL The Netherlands, PT Portugal, SE Sweden, UK United Kingdom