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Abstract

Background—Mathematical models can help aid public health responses to Chagas disease.
Models are typically developed to fulfill a particular need, and comparing outputs from different
models addressing the same question can help identify the strengths and weaknesses of the models
in answering particular questions, such as those for achieving the 2020 goals for Chagas disease.

Methods—Using two separately developed models (PHICOR/CIDMA model and Princeton
model), we simulated dynamics for domestic transmission of 7rypanosoma cruzi (T. cruzi). We
compared how well the models targeted the last 9 years and last 19 years of the 1968-1998
historical seroprevalence data from Venezuela.

Results—Both models were able to generate the 7. cruzi seroprevalence for the next time period
within reason to the historical data. The PHICOR/CIDMA model estimates of the total population
seroprevalence more closely followed the trends seen in the historic data, while the Princeton
model estimates of the age-specific seroprevalence more closely followed historic trends when
simulating over 9 years. Additionally, results from both models overestimated 7. cruzi
seroprevalence among younger age groups, while underestimating the seroprevalence of 7. cruziin
older age groups.

Conclusion—The PHICOR/CIDMA and Princeton models differ in level of detail and included
features, yet both were able to generate the historical changes in 7. cruzi seroprevalence in
Venezuela over 9 and 19-year time periods. Our model comparison has demonstrated that different
model structures can be useful in evaluating disease transmission dynamics and intervention
strategies.
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1. Introduction

Chagas disease, caused by the protozoan parasite 7rypanosoma cruzi, is one of the world's
most important neglected tropical diseases (NTDs). It infects approximately 6-7 million
people worldwide (World Health Organization, 2016) and results in an estimated $627.46
million in healthcare costs and $7.19 billion in societal costs annually (Lee et al., 2013).
Given its substantial burden Chagas is one of the ten NTDs targeted for control or
elimination by 2020, with one of the London Declaration's stated goals for being 100%
certified interruption of domestic transmission in Latin America (Tarleton et al., 2014).
Historically, control of Chagas disease has focused on vector control. This can be achieved
directly by vector reduction using insecticides or indirectly through housing modifications.

Mathematical models are simplifications of real life that are developed to address a
particular need or question (Garnett et al., 2011). Model development must balance the
actual complexity of biological systems with the simplifying assumptions that ensure
computational tractability (Lee, 2008). Additionally, models are not a one size fits all. The
applicability of different models to answer specific research and public health questions lies
in appropriateness and flexibilities of specific methodologies employed. Thus, assessing and
comparing mathematical models and determining if they capture relevant features of reality
for a particular application is fundamental to optimal model design (St-Pierre, 2016). While
model assessments and comparisons have been conducted in other fields/pathogens (notably
human immunodeficiency virus (Hontelez et al., 2013; Eaton et al., 2012)), little has been
done in the realm of NTDs (Hollingsworth et al., 2015).

In this study, we parameterize two differently structured, independently developed, Chagas
disease transmission models to evaluate the same research question using the same input/
baseline data. We compare model results, and discuss possible causes of differences.
Comparing outputs from different models addressing the same question can help identify the
strengths and weaknesses of the models to answer particular questions. For example, one
model may be best at answering policy questions related to disease prevalence and control in
humans, while another may be better suited to answer questions about ecology and vector
control. Model comparison can also help us gain understanding on how data informs
parameter estimation and impacts output. Understanding model strengths and weaknesses
can aid various decision makers in knowing which model is best apt to answer questions and
in interrupting model results, which can be helpful in achieving the 2020 goals.

2. Methods

We independently developed two 7. cruzitransmission models (described below). The
comparison consisted of simulating the transmission of 7. cruziin the domestic setting in the
two models and comparing the resulting seroprevalence between the models and to the
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historical seroprevalence data. Table 1 shows key input parameter values and sources for
both models, while Fig. 1 provides an outline of each model.

2.1. PHICOR/CIDMA model

This model was developed by a team at Johns Hopkins Bloomberg School of Public Health
and the Center for Infectious Disease Modeling and Analysis (CIDMA) at Yale School of
Public Health. It was originally developed to answer questions about vector control on 7.
cruzitransmission (i.e., measuring new acute Chagas cases) and the role of non-human hosts
on a larger scale than previous models, and has three general age categories to explore
potential target populations for interventions. Developed in Python (Python Software
Foundation, Wilmington, DE), this compartmental simulation model represented vector and
host populations involved in 7. cruzitransmission and included triatomines, human hosts,
and non-human hosts (i.e., dogs) and vector-borne transmission among these populations in
the domestic habitat (Fig. 1). The model ran in monthly time steps (i.e., t = 1 month or 30
days), chosen due to the long disease course of Chagas, and simulated a 41-year period.
During each time step, epidemiological and clinical rates defined transitions between model
compartments, stratified by the different vector and host populations. Vectoral transmission
in this model was governed by the force of infection.

Triatomine bugs could be susceptible (not infected with 7. cruziand able to become
infected) or infectious (infected with 7. cruziand able to transmit to vertebrae hosts upon
biting). Upon biting an infectious host (human and viable non-human), a susceptible bug had
probabilities of becoming infected with 7. cruzi, depending on the disease state of the host.
The number of triatomine bugs (N, = 475,972) in the model was determined from the
carrying capacity, or the number of bugs sustainable in the habitat, which was assumed to be
50 bugs per person (consistent with previous work (Peterson et al., 2015)). The following
formulas describe the susceptible and infectious states for triatomine bugs:

ds.,
dt‘ =b, _’YVSV - dev

dl
V—ry S, —d, I

dt Vv VoV

where b,/ is the number of bug births, @, is the triatomine death rate, and yy/is the force of
infection. The number of bug births is determined by the birth rate, carrying capacity, and
total number of triatomines by the following formula:

carrying capacity — N
b, =birthrate * N, * Y g' P y, v,
carrying capacity

The following formula determine the force of infection (77):
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pDaDID+pH (QAAH+91 (IH+90))
PuNy+pp N, ’
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where S represents the triatomine biting rate, @is the probability of transmission (or
infectivity), My, and N the number in the human and dog populations, respectively; pyand
Pp, and describe the vector feeding preferences for humans and dogs, respectively.

The human population (/) consisted of 10,000 persons at the start of the simulation and
was comprised of three age groups, 7 (0-19 years old, 20-39 years old, and 40 years and
older following historical age-specific demographic data from the World Population
Prospects (United Nations, 2015)). The human population is divided into four states:
susceptible (Sg, not infected with 7. cruziand able to become infected), acute stage Chagas
disease (Ap, infected with 7. cruziand able to transmit, exhibit mild and nonspecific
symptoms, and person has microscopically detectable parasitemia), indeterminate stage
Chagas disease (/4, asymptomatically infected with 7. cruziand able to transmit), and
symptomatic chronic stage Chagas disease (Cp, infected with 7. cruzi, able to transmit, and
show symptoms of chronic disease such as cardiomyopathy and/or megaviscera). Thus, a
person in any of the three Chagas disease states are considered positive. Upon the bite of an
infectious triatomine, a susceptible human had a probability of becoming infected with 7.
cruzi, based on the force of infection (), and once infectious, persons were remained
infectious in absence of treatment (i.e., once seropositive, always seropositive, with no
decay). Those in the acute and symptomatic chronic states of disease had probabilities of
Chagas-related mortalities. These states and the transmission between them are described by
the following four equations:

ds.,.
ﬁ:bm - VHSHz' —d

H ™~ Hi

dA,,,
dtHz =Y S — Tu Ay — (dytiga) Ap,

dl,,
d;,{ :WHAHi - )\HIHi - dHIHz'

dCy,

dt )\HIHi - (dH+MHC) CHri,

where by is the number of people entering each age group (i.e., number of births or number
of persons aging (United Nations, 2015)), dj is the human death rate from all causes, i, is
the probability of Chagas related mortality in the acute phase of disease, and gy is the
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probability of Chagas related mortality in the chronic phase. Two variables, zy, and A4,
describe the rate of movement from the acute phase to the indeterminate phase and the
indeterminate phase to the chronic phase, respectively.

The force of infection in humans from vectors, denoted 7', is defined by the following
equation:

(5
Y=~ |8
" Pp+Dy

Dogs serve as reservoir hosts for 7. cruzi and could be either susceptible (Sp) or infectious
(/p), with a susceptible dog becoming infected upon the bite of an infected vector based on
the force of infection. Dogs could transmit 7. cruzito susceptible triatomines (i.e.,
triatomines could become infected upon biting an infected dog). The number of dogs in the
model (NVp=3930) was determined from the literature based on the ratio of dogs to humans
(Table 1). Equations dictating the movement of dogs between states and their force of
infection are as follows:

dsS
d_tD:bDND - ’}/DSD - dDSD

dl
d—tD:’yDSD —dyI,

_ely, ( Pp )
FYD* N /BpD+pH

D

Here, bpand dpp are birth and death rates of dogs, respectively. e is the probability of 7.
cruzitransmission to dogs given the bite of an infected vector. As already described, gis the
vector biting rate, and pand pp, are vector preferences for humans and dogs, respectively.

Chagas prevention and control interventions are modeled as a reduction in contact between
the triatomine and host populations, using the following formula to attenuate the force of
infection:

(1 - rID) * Yy

where r;pis the reduction in intradomiciliary transmission to domestic vectors due to control
measures.
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The PHICOR/CIMDA model was fitted to account for uncertainty in empirical data. Initial
conditions assumed the values in Table 1, for fitted parameters, we started with the reported
value and then allowed the calibration method to search in a range around these values. The
model calibration used two methods: 1) a genetic algorithm that searched and identified
combinations of parameter values within our search space, mean squared error measured
goodness of fit of these sets compared to the published range and 2) a search for sets of
parameter values that generated seroprevalence values within 0.5% of the published range to
reflect the uncertainty around the reported seroprevalence and model's input parameter
values. Table 1 lists the ranges for these parameters. Results are reported as the average
across all the simulated years runs during a given timer period, with the range representing
the minimum and maximum average over the time period across all simulation runs.

2.2. Princeton model

This model was developed in R (R Foundation for Statistical Computing, Vienna, Austria),
by Dobson and Peterson at Princeton University (Fig. 1). It was originally developed to
examine the dynamics of Chagas disease in an age-structured population, to look at how
age-prevalence patterns of infection would change in response to different interventions. The
model is an age-structured differential equation model that runs in 1 week time steps. Since
the duration of the acute phase of Chagas disease is a matter of weeks, while the chronic
phase is a matter of years, we selected one week time steps to capture the dynamics in both
phases.

In this model, the human population (N) is divided into 6 ten-year age groups (/), each of
which contains uninfected hosts, infected individuals in an acute phase, 1, and a chronic
phase, I.. The uninfected human population in each age group i, is equal to Nj — (15 +lg;)-
The population grows slowly with the birth rate, v, equal to two times the mortality rate, d.
Individuals move from the acute phase into the chronic phase at rate a. All Chagas phases
are considered positive. A maturation rate, m (=1/10), moves individuals into sequential age
groups. Infected individuals in the chronic stage have an increased mortality rate, Cm. An
age-dependent exposure term, Ba, accounts for the accumulation of 7. cruz/infection in each
age group. This determines the rates at which vectors are distributed across the host
population and the rate at which humans of different ages acquire infection in the model.

The triatomine population is divided into uninfected bugs, B, exposed and incubating, X;
and infected and infectious, V. The 7. cruziincubation period within the bugs is represented
by /nc. All bugs have a birthrate, r, and a death rate, /. We assume a triatomine-human
contact rate of 8, with the transmission probability upon contact from humans to bugs being
different between infection stages with /1, and £, representing the transmission probabilities
from humans in the acute and chronic phases, respectively. The probability of transmission
from bugs to humans is represented by /. Vector control interventions such as insecticide
spraying or housing improvements are represented throughout the model by the terms H//
and HDI. These terms represent the proportion of houses infested (AH//) and the number of
bugs per total houses examined (HD/; from the “House Infestation Index” and “House
Density Index,” (Ache and Matos, 2001)). We use a density dependence parameter, de/,
which determines bug abundance relative to humans, and is calculated by:
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(st (=)
100HDI 1—HII

Vector control interventions are represented elsewhere in the model with two additional
terms Hllp, and HDIg, which represent the slopes of the regression of AH//and HD/ over
time.

The full age-structured model can be described by the following set of equations:

Human hosts

ds; \%4
E—msl,l - 6tha’LSZ (N) - Sz (d+m)
dla o (V)
7 =phpBa;S; N I, (d+a)
dl;
pn =algi+mle—1 — (d—m+Cm) 1,

Triatomine dynamics

dB_—BHDI,
dt (1 — HII)

d—XZBﬁ haZ?:l fa¢+hc2?=1
dt N (1 — HII)

] P
) — X (y+inc)

Cil—‘t/:Xinc 14
Intervention
CH;—tT: (—HII) (HIT,,)
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Initial conditions were set up for each ten year run using the observed age-prevalence
relationships and estimates of average bug density and proportion of houses treated.
Parameter variability is included in the model as an array of 100 random values within the
95% confidence intervals for each parameter generated with the function rtruncnorm from
the package “truncnorm” (Trautmann et al., 2014). This package uses least squares to
measure fit. For parameters obtained from experimental results, (i.e., triatomine mortality),
the range of values observed in the given experiment were used. Values from this array were
then selected for each parameter for each year of 100 runs of the model. Results are
presented as the average and 95% confidence interval, with the confidence interval
calculated from the mean and standard deviation of the simulation runs.

2.3. Differences between models

There are a few key differences between the PHICOR/CIDMA and Princeton models. They
differ in the number of age groups included and how infection may vary by age (i.e., the
Princeton model accounts for the rate at which humans of different ages acquire infection).
While both models include a chronic state, only the PHICOR/CIDMA model differentiates
between the indeterminate and determinate chronic Chagas disease states. Likewise, Chagas
mortality representations differed. The host species in the models differ, which impacts
transmission dynamics. Intervention representations also where accounted for differently in
both models. The PHICOR/CIDMA model simulates a change in the force of infection,
while the Princeton model simulates changes in bug abundance. These differences require
data to calibrate.

2.4. Data sources

Both models utilized age-structured 7. cruzi seroprevalence data from the national Chagas
Disease Control Programme (CDCP) for Venezuela as reported in Ache and Matos (Ache
and Matos, 2001). These data were originally collected by the Venezuelan Ministry of
Health between 1958 and 1998 in regions of Venezuela considered to be at high-risk for
Chagas disease. This historic data is reported in six 10-year age groups. The PHICOR/
CIMDA model collapsed two sequential age groups so there where three groups total, while
the Princeton model represent the same six groups. Due to Chagas' long disease course, the
compartments of both models would tend to be at equilibrium in the absence of any
intervention. Entomological interventions, including insecticide spraying and improvements
of over 400,000 houses, were carried out during the same time. These interventions resulted
in a drastic reduction in 7. cruzi seroprevalence in Venezuela. However, control has slowed
down since the turn of the century and there are reports of increases in 7. cruzi prevalence in
humans (Anez et al., 2004; Anez et al., 2011; Anez et al., 2016).

Each model accounted for the ongoing Chagas disease intervention and control programs in
Venezuela over time differently. The PHICOR/CIDMA Model used data on the change in
the force of infection (FOI) over time for the same Venezuelan dataset, as reported in
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Feliciangeli et. al (Feliciangeli et al., 2003), and determined the reduction in the FOI for
each time interval. Yearly estimates were aggregated and used as proxies in place of specific
historical interventions. The Princeton Model used both age-specific force of infection
(calculated from the data for each successive ten year time interval) and changes in the
house infestation indexes and house density indexes to estimate the change (i.e., slope
calculated by regression in a linear model) in the number of bugs per house and in infested
houses overtime (Fig. 2).

2.5. Model comparison scenarios

3. Results

We used the age-stratified seroprevalence data from Venezuela over the 41-year period of
1958-1998 (Ache and Matos, 2001) split into 4 time periods (historic data in Tables 2 and
3). In the first scenario, targeting the last time point, we independently calibrated our models
to the first three time periods (first 32 years, 1958-1989) and compared observables for the
last time period (last 9 years, 1990-1998). In the second scenario, targeting the last two time
points, we calibrated our models to the first two time periods (first 21 years, 1958-1978) and
compared observables for the last two time periods (last 19 years, 1980-1998). The
PHICOR/CIDMA model allowed for the calibration of any number of time periods and
simulation of the full 41 years of historical data, while the Princeton model used the
seroprevalence of the time period prior to the simulated time period as a starting point to
generate seroprevalences over the next 9 or 19 years. Observables of interest were age-
stratified 7. cruziseroprevalence in humans and 7. cruzi seroprevalence in triatomine bugs.

3.1. PHICOR/CIDMA model

Table 2 shows the average simulated 7. cruzi seroprevalence among humans for each age
group for each time period and the range across the years for each time period. While the
model generated seroprevalences were within the reported 95% confidence intervals of the
observed prevalences, the average 7. cruzi seroprevalence among 0-19 year olds was
consistently higher than the historical data for the last three time periods (Table 2).
Additionally, the modeled average seroprevalence for 1990-1998 among those 40 years and
older is lower than the historical data (by a relative 36%, absolute difference of 13.4% when
targeting the last two time points). These trends are most likely due to the lack of data to
adequately represent the impact of Venezuela's historical Chagas interventions.

When calibrating to two time periods and targeting the last two, the PHICOR/CIDMA
model generated consistent 7. cruzi seroprevalence among the age groups. The resulting
average seroprevalence between 1980 and 1989 was consistent between the calibrated
scenario and the targeted scenario (absolute difference of 0.6% to 1.4% across the age
groups). The generated seroprevalence for the last time period was consistent with the three
calibration points, with an absolute difference of 0.3—-1.3 across the age groups (Table 2).

Fig. 3 shows the simulated 7. cruziseroprevalence in humans compared to the historical
data. The PHICOR/CIDMA model generated seroprevalences were statistically within the
observed values for each of the scenarios for all time periods, except for 1969-1978. This

Epidemics. Author manuscript; available in PMC 2018 March 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Bartsch et al.

Page 10

may be due to the sharp decline in infestation following insecticide spraying interventions
that may not be adequately captured by our modeled change in FOI. When targeting the last
time period, the PHICOR/CIDMA model's generated seroprevalence was a relative 7.1%
lower than the historical data (absolute difference of —0.65%); when targeting the last two
time periods, the resulting seroprevalence was a relative 2.1% and 14.1% lower (absolute
difference of —0.28% and —1.30%) than the obeserved historical data for 1980-1989 and
1990-1998, respectively. Fig. 2b shows the change in 7. cruzi seroprevalence over the entire
simulation for each of the three age groups; the circle represents the simulated average over
the time period plotted at the middle of the time period (thus the monthly prevalence many
exactly pass through the average) while the squares show the historical data. Compared to
the observed prevalences, all model generated values were within an absolute difference of
-13.4% (40 years and older for 1990-1998) to 1.9% (0-19 year olds for 1980-1989).

3.2. Princeton model

This model produced seroprevalence curves that matched the directional trends for each age
group reported in the historical data in both scenarios (Fig. 4, Table 3), with the
seroprevalence values being closer to the observed values when targeting the last time point
(i.e., 9 year simulation) than when targeting the last two time points (i.e., 19 year simulation
values). When targeting the last time period (1990-1998), the absolute difference between
the model generated and the observed seroprevalences ranged from 0.23% to 2.23% across
age groups, with all model generated values higher than those in the data. The model
generated seroprevalence values were closest to the historic values for two the youngest age
classes, with an absolute difference of 0.23% and 0.10% for the 0-9 year and 10-19 year
age groups, respectively. Compared to the historic data, the generated seroprevalences in the
older age groups where higher, with the absolute difference being 2.31%, 2.09% and 2.23%
for the 30-39 year, 40-49 year and 50+ year age groups, respectively. The model generated
total population seroprevalence was 2.2% higher than the observed values (11.4% generated
vs. 9.2% historical data).

When targeting the last two time periods (1980-1998), the simulation values for each age
class were similar to observed values for 1990-1998 than compared to the 1980-1989
period, but the overall seroprevalence values were more similar in the short term (for 1980—
1989). Absolute differences between the model generated seroprevalences and the historical
data ranged from —4.99% to 4.44% for 1990-98 and —3.40% to 2.19% for 1980-89, while
the absolute difference for total population seroprevalence was 0.1% and 1.9% for 1980-
1989 and 1990-1998, respectively. The average modeled seroprevalence in the youngest age
group (0-9 years) where consistent with the historic data throughout the simulation (Fig. 3),
with the difference between the model and the historical data being 1.83% and 0.8% for
1980-1989 and 1990-1998, respectively. The model underestimated the average
seroprevalence in the oldest age group by an absolute difference of —4.99% for 1980-1989
and —-3.18% for 1990-1998.

3.3. Comparison

Fig. 5 shows the model generated 7. cruzi seroprevalence values from both models in
addition to the historical Venezuelan data. Overall, the PHICOR/CIDMA model more
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closely estimated the total population seroprevalence for 1990-1998 in both simulations
(Fig. 5a), while the Princeton model estimated age-specific seroprevalence that more closely
aligned with the historic values reported when targeting the last time period. This is possibly
due to the disproportional sampling of the historic data among the younger age groups (60%
of total population sample are 0-19 years old). The PHICOR/CIMDA model generated
seroprevalence for this younger age group are with (absolute difference 0.6%) compared to
the observed value, thus the greater difference in the older age group (13.4% absolute
difference compared to the observed data) is minimized. While the narrower age-groups of
the Princeton model allowed it to generate age-specific seroprevalences closer to the historic
data. In general, both models overestimated 7. cruzi seroprevalence among younger age
groups, while underestimating the 7. cruzi seroprevalence in older age groups. Additionally,
model generated values tended to be more similar to the reported historic data when
calibrating to three time periods and estimating one. However, simulated seroprevalence for
the last two time periods were still in line with the historical data.

Compared to the historical data in \enezuela, the PHICOR/CIDMA model estimated a
lower total population seroprevalence of T. cruzi (absolute —0.3% to —1.3% difference)
whereas the Princeton model generated a higher total seroprevalence (absolute 0.1%—-2.2%
difference), as shown in Fig. 5a. When targeting only the last time period, the range of
absolute difference across the age groups for the Princeton model was less than that of the
PHICOR/CIDMA model (Princeton model: absolute 0.23%-2.23% difference, PHICOR/
CIDMA model: absolute —12.1% to 0.6% difference). Compared to the historic data, when
targeting the last two time periods, the PHICOR/CIDMA model generated 7. cruzi
seroprevalence was closer in the younger age groups, while the Princeton model generated
seroprevalence was closer among older age groups. Between the models, the PHICOR/
CIDMA model generated seroprevalence values for the combined age groups that fell
between the averages produced by the Princeton model for all age groups except 40 years
and older.

Even without data on the seroprevalence of 7. cruziin triatomine bugs, both models
estimated similar 7. cruzi seroprevalence values for the bugs across the two scenarios (Fig.
5c—d). The largest difference between models (13.6% vs. 9.6%) occurred for the 1980-1989
time period in the 19-year simulation (1980-1998).

4. Discussion

The ability of a model to generate historic data depends on the situation that is simulated
(e.g., stable, rapid declines, or near elimination). Here, we modeled a scenario in which
seroprevalence declined steadily for most of a 41 year period, in the presence of an
intervention that waned toward the end of the time period. Our two independently developed
models produced similar model genearated 7. cruzitransmission in humans using different
methodologies. Both models estimated the seroprevalence of 7. cruziin Venezuela over the
evaluated time periods within an absolute difference ranging from —13.4% to 5.5% from the
historical values across all age groups and scenarios.
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Although they evaluate intervention effectiveness in different ways, both models
overestimated the impact of the intervention on Chagas disease seroprevalence among older
age groups (i.e., resulted in a lower estimated 7. cruzi seroprevalence) and underestimated
the impact among lower age groups (i.e., resulted in a higher estimated 7. cruzi
seroprevalence). These age groups are likely to be the most- and least-impacted by vector
control interventions; the youngest age class theoretically contains the highest proportion of
uninfected individuals, and thus would be the most affected, while the oldest age group
would be the least affected by interventions, as this age group contains the lowest proportion
of uninfected individuals and the most chronically infected individuals. As interventions
such as those used for Chagas disease (e.g., housing improvements and indoor residual
spraying) do not target a specific age group (vs. a vaccine for example), the impacts of
interventions in many Chagas models tend to be consistent across all age groups or
simulated for the entire population. Hence, it is not surprising that the two most extreme
outcomes are the least precisely estimated. This illustrates the importance of accuracy when
reporting information on interventions and their efficacies, as these can greatly impact model
estimates that could inform policy decisions. It also emphasizes the challenge of fine-tuning
models to reflect the differences in the impact of intervention in an age-dependent manner.
This is critical for Chagas disease in particular, as the Pan American Health Organization
uses 7. cruzi seroprevalence of under 1% in children under five as a base indicator of success
in vector control interventions (Salvatella et al., 2014).

While the historical data for Venezuela we used were the most comprehensive and long-term
data on seroprevalence available, these data do have limitations for modeling purposes. First,
data were accumulated over the time periods (condensed from monthly and annual
information) and presented by Ache and Matos as averages (Ache and Matos, 2001). The
starting and ending seroprevalence for each time period are not known, nor is the frequency
of the data collection, which prevents us from knowing the true shape of the seroprevalence
curves for each time period. Second, although it is well known that vector-borne 7. cruz/
infection in humans (i.e., Chagas disease) is consistently underreported by as much as 85%
(Abad-Franch et al., 2014), it is likely that an increase in underreporting may have occurred
in the last time period modeled (1990-1998), as only 15-18 municipalities per year were
surveyed in that time period, down from 110 to 143 municipalities surveyed per year in the
thirty years prior. Third, several details on Chagas disease interventions and their
measureable impact on 7. cruzi seroprevalence were not readily available or reported. For
example, we do not know the number of houses that were treated, the total population size of
the areas surveyed, intervention efficacy, or if all reported prevalence values were from
individuals residing in the municipalities where entomological surveillance or interventions
took place. More robust data to feed into and calibrate the models may lead to better
estimates.

Historically, models for Chagas disease are underutilized compared to other infectious
diseases, but hold promise (Nouvellet et al., 2015). A few modeling approaches (e.g.,
population dynamics, spatial models, force of infection, compartment models, etc.) have
been used to represent Chagas disease and transmission in the past (Nouvellet et al., 2015).
These models tend to be complex and evaluate biological or epidemiological systems. Our
models were developed to answer more policy related questions and to focus more on
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relevant outcomes rather than to be complex and to evaluate, explore, and understand the
dynamic relationships of 7. cruzitransmission. It is important to highlight the benefit of
including different features in Chagas disease transmission models. While the PHICOR/
CIDMA and Princeton models differ in level of detail and included features (e.g., number of
age groups included, separate indeterminate and determinate chronic Chagas disease states,
other vertebrae host compartments, intervention representations, etc.), both were able to
estimate the historical seroprevalence of 7. cruziin Venezuela with several similar trends in
their results. This demonstrates that the level of detail necessary to include in models is
dependent on the question being asked. For example, the current scenarios focused on
targeting 7. cruzi seroprevalence in the human population from nation-wide data
accumulated over 10 year periods, thus the additional detail of an animal component may
not be necessary. However, in the evaluation of 7. cruzitransmission on a smaller scale (one
house or one village) an intervention that would impact triatomine feeding sources or 7.
cruzi seroprevalence in animals, this component would be necessary to adequately answer
the question at hand. These details can be important for answering different questions for
achieving the 2020 goals for Chagas disease.

It should be noted that both models are simplifications and neither accounted for age-related
general morality nor the potential for the clustering of exposure. However, the Venezuelan
population age structure and life expectancy was relatively consistent over the modeled time
period (United Nations, 2015; The World Bank, 2016), therefore both models made a
simplifying assumption not to include age-related mortality. Neither model accounts for the
potential clustering of exposure due to data limitations. Serological data will overlook
heterogeneity of the population and the risk of Chagas disease will not be the same for each
person. While the risk will not be identical, we modeled a limited area so there may not a be
a substantial difference in terms of risk across the modeled population. Additionally, neither
model took into account the accuracy of serological testing for Chagas disease and how it
may change over time. However, given the point of this exercise was to estimate reported
seroprevalence, this does not impact the current analysis.

5. Conclusions

While the PHICOR/CIDMA and Princeton models differ in level of detail and included
features, both were able to target the historical seroprevalence of 7. cruziin Venezuela
across a 41-year time period. Differing methods and level of detail between the models
allow for different interventions and questions to be investigated, but both can be used to
estimate 7. cruzi seroprevalence and evaluate general intervention control approaches.

Acknowledgments

The authors gratefully acknowledge funding of the NTD Modelling Consortium by the Bill and Melinda Gates
Foundation in partnership with the Task Force for Global Health. The views, opinions, assumptions or any other
information set out in this article are solely those of the authors.

Epidemics. Author manuscript; available in PMC 2018 March 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Bartsch et al.

Page 14

References

Abad-Franch F, Diotaiuti L, Gurgel-Goncalves R, Gurtler RE. On bugs and bias: improving Chagas
disease control assessment. Mem Inst Oswaldo Cruz. 2014; 109(1):125-130. PubMed PMID:
24809110. [PubMed: 24809110]

Ache A, Matos AJ. Interrupting chagas disease transmission in Venezuela. Rev Inst Med Trop Sao
Paulo. 2001; 43(1):37-43. PubMed PMID: 11246282. [PubMed: 11246282]

Anez N, Crisante G, Rojas A. Update on Chagas disease in Venezuela-a review. Mem Inst Oswaldo
Cruz. 2004; 99(8):781-787. /S0074-02762004000800001. PubMed PMID: 15761591. [PubMed:
15761591]

Anez N, Atencio R, Rivero Z, Bracho A, Rojas A, Romero M, et al. Chagas disease inapparent
infection in asymptomatic individuals from a Yukpa ethnic community in western Venezuela. Bol
Moal Salud Amb. 2011; 51(2):167-175.

Anez N, Crisante G, Rojas A, Rojas RO, Bastidas J. A new acute oral Chagas disease outbreak in
Merida, Venezuela: a comprehensive study. Int J Clin Med Res. 2016; 3(1):29-37.

Arevalo A, Carranza JC, Guhl F, Clavijo JA, Vallejo GA. Comparison of the life cycles of rhodnius
colombiensis moreno, jurberg & galvao 1999 and R. prolixus stal, 1872 (Hemiptera, reduviidae,
triatominae) under laboratory conditions. Biomedica. 2007; 27(Suppl. 1):119-129. PubMed PMID:
18154252, [PubMed: 18154252]

Bern C, Martin DL, Gilman RH. Acute and congenital chagas disease. Adv Parasitrol. 2011; 75:19-47.
PubMed PMID: 21820550.

Bern C. Chagas' disease. N Engl J Med. 2015; 373(19):456-466. http://dx.doi.org/10.1056/
nejmc1510996 (PubMed PMID: 26535522). [PubMed: 26222561]

Berrizbeitia M, Concepcion JL, Carzola V, Rodriguez J, Caceres A, Quinones W. Seroprevalence of T.
cruzi infection in Canis familiaris, state of Sucre, Venezuela. Biomedica. 2013; 33(2):214-225.
PubMed PMID: 24652131. [PubMed: 24652131]

Bonfante-Cabarcas R, Rodriguez-Bonfante C, Vielma BO, Garcia D, Saldivia AM, Aldana E, et al.
Seroprevalence for Trypanosoma cruzi infection and associated factors in an endemic area of
Venezuela. Cad Saude Publica. 2011; 27(10):1917-1929. PubMed PMID: 22031196. [PubMed:
22031196]

Cardenas R, Sandoval CM, Rodriguez-Morales AJ, Bendezu H, Gonzalez A, Briceno A, et al.
Epidemiology of American tegumentary leishmaniasis in domestic dogs in an endemic zone of
western Venezuela. Bull Soc Pathol Exot. 2006; 99(5):355-358. PubMed PMID: 17253053.
[PubMed: 17253053]

Crisante G, Rojas A, Teixeira MM, Anez N. Infected dogs as a risk factor in the transmission of human
Trypanosoma cruzi infection in western Venezuela. ActaTrop. 2006; 98(3):247-254. http://
dx.doi.org/10.1016/j.actatropica.2006.05.006 (PubMed PMID: 16797466).

Dias Fde A, Guerra B, Vieira LR, Perdomo HD, Gandara AC, Amaral RJ, et al. Monitoring of the
parasite load in the digestive tract of rhodnius prolixus by combined gPCR analysis and imaging
techniques provides new insights into the trypanosome life cycle. PLoS Negl Trop Dis. 2015;
9(10):20004186. http://dx.doi.org/10.1371/journal.pntd.0004186 (PubMed PMID: 26496442;
PubMed Central PMCID: PMCPMC4619730). [PubMed: 26496442]

Eaton JW, Johnson LF, Salomon JA, Barnighausen T, Bendavid E, Bershteyn A, et al. HIV treatment
as prevention: systematic comparison of mathematical models of the potential impact of
antiretroviral therapy on HIV incidence in South Africa. PLoS Med. 2012; 9(7):e1001245. http://
dx.doi.org/10.1371/journal.pmed.1001245 (PubMed PMID: 22802730; PubMed Central PMCID:
PMCPMC3393664). [PubMed: 22802730]

Feliciangeli MD, Campbell-Lendrum D, Martinez C, Gonzalez D, Coleman P, Davies C. Chagas
disease control in Venezuela: lessons for the Andean region and beyond. Trends Parasitol. 2003;
19(1):44-49. PubMed PMID: 12488226. [PubMed: 12488226]

Garnett, Geoffrey P., Cousens, Simon, Hallett, Timothy B., Steketee, Richard. Neff Walker
Mathematical models in the evaluation of health programmes. Lancet. 2011; 378:515-525.
[PubMed: 21481448]

Epidemics. Author manuscript; available in PMC 2018 March 01.


http://dx.doi.org/10.1056/nejmc1510996
http://dx.doi.org/10.1056/nejmc1510996
http://dx.doi.org/10.1016/j.actatropica.2006.05.006
http://dx.doi.org/10.1016/j.actatropica.2006.05.006
http://dx.doi.org/10.1371/journal.pntd.0004186
http://dx.doi.org/10.1371/journal.pmed.1001245
http://dx.doi.org/10.1371/journal.pmed.1001245

1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Bartsch et al.

Page 15

Gurtler RE, Cecere MC, Castanera MB, Canale D, Lauricella MA, Chuit R, et al. Probability of
infection with 7rypanosoma cruzi of the vector Triatoma infestans fed on infected humans and
dogs in northwest Argentina. Am J Trop Med Hyg. 1996; 55(1):24-31.

Hollingsworth TD, Adams ER, Anderson RM, Atkins K, Bartsch S, Basanez MG, et al. Quantitative
analyses and modelling to support achievement of the 2020 goals for nine neglected tropical
diseases. Parasit Vectors. 2015; 8:630. http://dx.doi.org/10.1186/s13071-015-1235-1 (PubMed
PMID: 26652272; PubMed Central PMCID: PMCPMC4674954). [PubMed: 26652272]

Hontelez JA, Lurie MN, Barnighausen T, Bakker R, Baltussen R, Tanser F, et al. Elimination of HIV in
South Africa through expanded access to antiretroviral therapy: a model comparison study. PLoS
Med. 2013; 10(10):e1001534. http://dx.doi.org/10.1371/journal.pmed.1001534 (PubMed PMID:
24167449; PubMed Central PMCID: PMCPMC3805487). [PubMed: 24167449]

Lee BY, Bacon KM, Bottazzi ME, Hotez PJ. Global economic burden of Chagas disease: a
computational simulation model. Lancet Infect Dis. 2013; 13(4):342-348. [PubMed: 23395248]

Lee BY. Digital decision making: computer models and antibiotic prescribing in the twenty-first
century. Clin Infect Dis. 2008; 46(8):1139-1141. [PubMed: 18444847]

Nouvellet P, Dumonteil E, Gourbiere S. The improbable transmission of 7rypanosoma cruzito human:
the missing link in the dynamics and control of Chagas disease. PLoS Negl Trop Dis. 2013;
7(11):e2505. [PubMed: 24244766]

Nouvellet P, Cucunuba ZM, Gourbiere S. Ecology, evolution and control of Chagas disease: a century
of neglected modelling and a promising future. Adv Parasitol. 2015; 87:135-191. http://dx.doi.org/
10.1016/bs.apar.2014.12.004 (PubMed PMID: 25765195). [PubMed: 25765195]

Pena-Garcia VH, Gomez-Palacio AM, Triana-Chavez O, Mejia-Jaramillo AM. Eco-epidemiology of
Chagas disease in an endemic area of Colombia: risk factor estimation, Trypanosoma cruzi
characterization and identification of blood-meal sources in bugs. Am J Trop Med Hyg. 2014;
91(6):1116-1124. http://dx.doi.org/10.4269/ajtmh.14-0112 (PubMed PMID: 25331808; PubMed
Central PMCID: PMCPMC4257632). [PubMed: 25331808]

Peterson JK, Bartsch SM, Lee BY, Dobson AP. Broad patterns in domestic vector-borne Trypanosoma
cruzi transmission dynamics: synanthropic animals and vector control. Parasites Vectors. 2015;
8:537. [PubMed: 26489493]

Pinto AY, Valente SA, Valente VVda C, Ferreira Junior AG, Coura JR. Acute phase of Chagas disease in
the Brazilian Amazon region: study of 233 cases from Para, Amapa and Maranhao
observedbetween 1988 and 2005. Rev Soc Bras Med Trop. 2008; 41(6):602—-614. PubMed PMID:
19142440. [PubMed: 19142440]

Rassi A Jr, Rassi A, Rassi SG. Predictors of mortality in chronic Chagas disease: a systematic review
of observational studies. Circulation. 2007; 115:1101-1108. [PubMed: 17339568]

Rassi A Jr, Rassi A, Marin-Neto JA. Chagas disease. Lancet. 2010; 375:1388-1402. [PubMed:
20399979]

Rojas ME, Varquez P, Villarreal MF, Velandia C, Vergara L, Moran-Borges YH, et al. An
entomological and seroepidemiological study of Chagas' disease in an area in central-western
Venezuela infested with Triatoma maculata (Erichson 1848). Cad Saude Publica. 2008; 24(10):
2323-2333. PubMed PMID: 18949234. [PubMed: 18949234]

Salvatella R, Irabedra P, Castellanos LG. Interruption of vector transmission by native vectors and the
art of the possible. Mem Inst Oswaldo Cruz. 2014; 109(1):122-125. http://dx.doi.org/
10.1590/0074-0276140338 (PubMed PMID: 24626310; PubMed Central PMCID:
PMCPMC4005527). [PubMed: 24626310]

St-Pierre NR. Comparison of model predictions with measurements: a novel model-assessment
method. J Dairy Sci. 2016; 99(6):4907-4927. http://dx.doi. org/10.3168/jds.2015-10032 (PubMed
PMID: 27040786). [PubMed: 27040786]

Tarleton RL, Gurtler RE, Urbina JA, Ramsey J, Viotti R. Chagas disease and the london declaration on
neglected tropical diseases. PLoS Negl Trop Dis. 2014; 8(10):e3219. http://dx.doi.org/10.1371/
journal.pntd.0003219 (PubMed PMID: 25299701; PubMed Central PMCID: PMCPMC4191937).
[PubMed: 25299701]

The World Bank. World Development Indicators, 1960-2015. The World Bank; 2016. [updated 2016;
cited 2016 May]

Epidemics. Author manuscript; available in PMC 2018 March 01.


http://dx.doi.org/10.1186/s13071-015-1235-1
http://dx.doi.org/10.1371/journal.pmed.1001534
http://dx.doi.org/10.1016/bs.apar.2014.12.004
http://dx.doi.org/10.1016/bs.apar.2014.12.004
http://dx.doi.org/10.4269/ajtmh.14-0112
http://dx.doi.org/10.1590/0074-0276140338
http://dx.doi.org/10.1590/0074-0276140338
http://dx.doi
http://dx.doi.org/10.1371/journal.pntd.0003219
http://dx.doi.org/10.1371/journal.pntd.0003219

1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Bartsch et al. Page 16

Trautmann, H., Steuer, D., Mersmann, O., Bornkamp, B. Truncnorm: Truncated Normal Distribution.
2014. p. 0-7.R package version 1, Available from: http://cran.r-project.org/package=truncnorm)

United Nations. Population Division World Population Prospects: the 2015 Revision, dvd edition.
Department of Economic and Social Affairs; 2015.

World Health Organization. Chagas Disease Factsheet. World Health Organization; Geneva,
Switzerland: 2016. Available from: http://www.who.int/mediacentre/factsheets/fs340/en/) [cited
2016 March 30]

Epidemics. Author manuscript; available in PMC 2018 March 01.


http://cran.r-project.org/package=truncnorm
http://www.who.int/mediacentre/factsheets/fs340/en/

1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuepy Joyiny

1duosnuely Joyiny

Bartsch et al.

A. PHICOR/CIDMA Model
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Fig. 1.
Model outline for a) the PHICOR/CIDMA model, and b) the Princeton model (i denotes

different age groups in both models).
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Fig. 2.
Entomological surveillance data for triatomine bugs and triatomine-infested houses from

Ache 2001 for the time period of 1958-1998. The blue line indicates the percentage of
houses infested with triatomine bugs; we assume the proportion of humans at risk of Chagas
disease varies directly with this index. The green line is the average number of triatomine
bugs per house, including those that are not infested. The red line is the average number of
triatomine bugs per infested house, calculated from the two prior indices. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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A. Simulated total population prevalence compared to historic data
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Simulated seroprevalence from the PHICOR/CIDMA model a) 7. cruzi seroprevalence in
the total population over the four time periods, and b) age-stratified seroprevalence over time
with the average simulated seroprevalence compared to the historical seroprevalence when
targeting the last two time periods.
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Table 2

Average (range) simulated T. cruzi seroprevalence (%) for each time period using the PHICOR/CIDMA
Model compared to historical Venezuelan data.

1duosnuey Joyiny

1duosnuen Joyiny

Time Periods (Years)

1958-1968 1969-1979 1980-1989 1990-1998
Historical Data?
Ages 0-19 years 26.3(18.3-29.8) 6.0 (3.4-11.0) 1.7 (0.9-2.6) 1.1 (0.42-2.0)
Ages 20-39 years 55.3 (46.6-64.7) 32.3(26.9-36.5) 18.3 (11.5-27.6) 10.4 (5.5-16.8)
Ages 40 years and older ~ 65.5 (62.2-68.5)  44.4 (38.2-52.7) 443 (36.2-48.9)  37.1(27.2-43.9)
Targeting the Last Time Point

Calibrated Calibrated Calibrated Generated
Ages 0-19 years 25.4(15.9-39.5) 10.8(6.3-15.8) 4.2 (2.6-6.3) 1.7 (1.1-2.5)
Ages 20-39 years 55.5(42.3-68.8) 32.2(21.9-42.2) 15.8(10.8-21.8) 7.8 (5.4-10.7)
Ages 40 years and older ~ 63.4 (68.0-58.3) 51.9 (43.6-58.2)  36.7 (30.1-43.5)  25.0 (20.3-30.0)
Targeting the Last Two Time Points

Calibrated Calibrated Generated Generated
Ages 0-19 years 24.8 (14.8-39.5) 9.8(5.5-14.7)  3.6(2.1-5.5) 1.4 (0.9-2.1)
Ages 20-39 years 54.9 (41.3-68.8) 31.0 (20.6-41.1) 14.6 (9.8-20.4) 7.0 (4.8-9.8)
Ages 40 years and older ~ 63.0 (57.4-68.0)  50.7 (42.2-57.3)  35.3 (28.7-42.1) 23.7 (19.2-28.6)

NOTE: average across all the simulated years and runs during each time period; range represents the minimum and maximum over the time period
across all simulation runs.

aAverage for age-groups combined from data reported in Ache and Matos (Ache and Matos, 2001); range represents the lower and upper bounds of
the 95% confidence intervals reported for the individual age-groups.
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Average (95% confidence interval) simulated T. cruzi seroprevalence (%) for each time period using the

Table 3

Princeton Model compared to historical \enezuelan data.

Time Periods (Years)

1980-1989 1990-1998
Historical Data?
Ages 0-9 years 1.1(0.9-1.2) 0.5 (0.42-0.56)
Ages 10-19 years 2.4 (2.2-2.6) 1.8 (1.6-2.0)
Ages 20-29 years 12.4 (11.5-12.8) 5.9 (5.5-6.3)

Ages 30-19 years
Ages 40-49 years

Ages 50 years and older

26.6 (25.5-27.6)
37.5 (36.2-38.8)
48.0 (47.0-48.9)

Targeting the Last Time Point

Ages 0-9 years

Ages 10-19 years
Ages 20-29 years
Ages 30-19 years
Ages 40-49 years

Ages 50 years and older

Targeting the Last Two Time Points

Ages 0-9 years

Ages 10-19 years
Ages 20-29 years
Ages 30-19 years
Ages 40-49 years

Ages 50 years and older

2.93 (2.88-2.98)
6.84 (6.72-6.96)
16.81 (16.37-17.25)
27.76 (27.30-28.21)
41.98 (41.56-42.40)
43.01 (42.95-43.07)

16.1 (15.4-16.8)
28.3 (27.2-29.4)
43.0 (42.1-43.9)

0.73 (0.71-0.75)
1.90 (1.88-1.93)
7.18 (6.99-7.37)
18.41 (18.02-18.81)
30.39 (30.01-30.78)
45.23 (45.07-45.39)

1.30 (1.27-1.33)
3.63 (3.58-3.69)
8.09 (7.98-8.20)
14.61 (14.39-14.82)
24.90 (24.53-25.27)
39.82 (39.64-40.01)

a\/alues are average (95% confidence interval) as reported in Ache and Matos (Ache and Matos, 2001).
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