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Abstract

Connectivity measures are (typically bivariate) statistical measures that may be used to estimate 

interactions between brain regions from electrophysiological data. We review both formal and 

informal descriptions of a range of such measures, suitable for the analysis of human brain 

electrophysiological data, principally electro- and magnetoencephalography. Methods are 

described in the space-time, space-frequency, and space-time-frequency domains. Signal 

processing and information theoretic measures are considered, and linear and nonlinear methods 

are distinguished. A novel set of cross-time-frequency measures is introduced, including a cross-

time-frequency phase synchronization measure.
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1. Introduction

Networks (Sporns, 2011) and rhythms (Buzsáki, 2006) are two conceptual paradigms, both 

alone and in combination, that have come to play a prominent role in the analysis, 

description, and understanding of human brain function. In this paper, we discuss a range of 

methods that have been developed and applied to human brain electrophysiological data. 

This includes especially extracranial electro- and magnetoencephalography (EEG and MEG, 

or jointly EMEG) as well as intracranial EEG (or iEEG, which encompasses 

electrocorticography, or ECoG) for the characterization of brain network connectivity at the 

millisecond time scale and centimeter length scale for EMEG and, potentially, the millimeter 

length scale for iEEG. We consider methods that can identify rhythmic interactions (in the 

space–frequency and space–time–frequency domains) as well as those useful for the 

characterization of non-rhythmic interactions (in the space–time domain).
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Networks are described typically by a set of nodes and a set of edges. The edges, which 

connect the nodes in a pairwise fashion, define the network topology. If the nodes or edges 

can be embedded in a geometrical space, for example, the brain, then the network will have 

a geometrical structure as well. Typically, the network topology is described by a graph, and 

the connectivity is represented by an edge matrix. The analysis tools that we are interested in 

allow us to assign values to the elements of the edge matrix. These values may be real or 

complex numbers, or, to generalize the matrix concept somewhat, real-valued functions of 

time, depending on the connectivity measure.

Friston (1994) introduced the useful analytical categories of anatomical, functional, and 

effective connectivity into the brain functional imaging literature. Anatomical connections 

may be determined by a variety of invasive and non-invasive tract-tracing methods that, 

when successful, can provide a description of network geometry. These methods typically do 

not include EMEG, so we will not discuss anatomical connectivity further, except for a few 

brief observations. Anatomy may be an obviously useful starting point for subsequent 

physiological investigation. It may also serve as a measure of plausibility of results obtained 

from the analysis of physiological data. Anatomical connectivity may be represented by 

graphs that are either directed (if derived from a suitable invasive anatomical methods) or 

undirected (if derived from e.g., diffusion spectrum imaging). Anatomy cannot tell us how 

regions are coupled dynamically, except perhaps on very slow (e.g., neurodevelopmental) 

time scales.

Functional connectivity is based on the estimation of “temporal correlations between remote 

neurophysiological events” (Friston, 1994). Consequently, the resulting edge matrices are 

undirected (and therefore symmetric, unless time-lagged correlations are considered), but 

not necessarily binary. Correlation, coherence and related measures have been widely used 

in the electrophysiological literature to estimate functional connectivity in the space–

frequency and space–time–frequency domains.

Effective (or more clearly, causal) connectivity is based on the estimation of “the influence 

one neural system exerts on another” (Friston, 1994). From a mathematical standpoint, the 

resulting edge matrices are directed and may be asymmetric, and non-binary. Estimation of 

causal connectivity therefore supports the inference of directional information flow. These 

include methods, such as multivariate autoregressive (MVAR) modeling and conditional 

mutual information measures.

Our focus is on estimating connectivity from EMEG and iEEG measures. This begs the 

question of how the nodes (i.e., brain regions) are defined between which the connectivity is 

measured. A complete discussion of this is beyond the scope of this paper. Nevertheless, it 

may be useful to address this issue, however briefly, at the outset.

One solution is to restrict our estimates to sensor locations, i.e., associate network nodes 

with sensors. While this can work relatively well for local field potentials recorded from 

iEEG, it raises some issues when using extracranial EMEG data. We would like to infer 

brain source locations and time series from the measured data and sensor locations, but here 

we run into the well-known non-uniqueness of the bioelectromagnetic inverse problem. 
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Several methods that address this problem with respect to connectivity estimates are 

described later in this paper. For a more general discussion of the bioelectromagnetic inverse 

problem, see, e.g., Sarvas (1987), Mosher et al. (1999), Michel et al. (2004), and Greenblatt 

et al. (2005). An alternative that may permit us to remain in signal space (defined in Section 

2), but remove some (but not all) of the inherent ambiguity relies on frequency domain 

measures using only the imaginary part of the spectral estimate (Nolte et al., 2004), as we 

describe later in this paper.

A number of approaches have been applied extensively to extracranial data to infer 

topographic patterns from extracranial data. These include principal components analysis 

(Dien and Frishkoff, 2005), with its nonlinear extensions such as varimax (Kaiser, 1958) and 

promax (Dien, 1998), blind source separation techniques (such as independent components 

analysis (Bell and Sejnowski, 1995; Hyvarinen and Oja, 2000) and SOBI (Belouchrani et al., 

1997), and partial least squares (McIntosh et al., 1996). These methods support the 

estimation of signal space topography (i.e., the nodes of a graphical network), but do not by 

themselves provide a measure of connectivity between specific pairs of nodes, and therefore 

lie outside the scope of this paper.

Similar topographic techniques have also been applied to functional magnetic resonance 

data, leading, for example, to the identification of the nodes of default mode network 

(Raichle et al., 2001). A relatively recent review of functional connectivity measures applied 

to fMRI data may be found in (Li et al., 2000). The integration of simultaneously recorded 

fMRI and EEG data is an area of considerable current research interest, but will not be 

discussed here.

Our goal is to review many of the most widely used or most promising methods for the 

estimation of functional and effective connectivity from human brain electrophysiological 

data, unified from the perspective of considering the EMEG data as a multivariate random 

process. We seek to describe these methods both formally and informally. A secondary goal 

is to point to a small subset of the applications in which these methods have been applied 

successfully. We hope this approach will be helpful to scientific investigators who intend to 

apply connectivity measures to the experimental study of brain dynamics from EMEG data.

The structure of the paper is as follows. First we lay out briefly our elementary (and well-

known) mathematical foundation, defining many of the variables that will be used later in 

the paper. Here, we distinguish between signal processing and information theoretic 

measures. Next, we describe connectivity measures in the space–time domain. Then we 

discuss space–frequency and space–time frequency measures that may be used to estimate 

connectivity for rhythmic interactions. In this section, we introduce some novel cross time–

frequency measures. Finally, we consider some approaches that may be used to extend the 

array of measures from signal space to source space. Some of these connectivity estimation 

methods in signal space have been reviewed relatively recently by Kamiński and Liang 

(2005) and Pereda et al. (2005), although new results have been introduced since these 

reviews were published. Dauwels et al. (2010) have also summarized several of these 

methods, with specific application to the early diagnosis of Alzheimer's disease and mild 

cognitive impairment.
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Before proceeding, we should note that the practical implementation of connectivity 

estimation from EMEG data consists of three related parts. First we need to define the 

measure(s) or algorithm(s) that we intend to apply to the data. This derives from an 

understanding of the experimental questions that are to be addressed. Second, once a method 

has been selected, it must, of course, be applied to the data, to obtain the preliminary 

estimates. These are preliminary until the application the third step, which is hypothesis 

testing. This paper is focused principally on the first, or measure-definition step. In some 

cases, such as the estimation of information theoretic measures, we spend some time on the 

estimation problem itself. In order to keep this paper to manageable proportions, however, 

we have little or no discussion of the hypothesis testing problem. The reader is directed to 

the cited references for specific methods for further details on this question. This does not 

mean, of course, that we think that hypothesis testing is not important, but rather that this 

essential step comes into play only after the methods have been defined, and the relevant 

measures have been estimated. For these reasons, we also omit discussion of the powerful 

technique of dynamic causal modeling (DCM) (Friston et al., 2003). DCM supports the 

selection of one of a set of connectivity models using Bayesian methods to select between 

candidate networks.

2. EMEG as a multivariate random process

EMEG data generally results from a discrete time sequence of voltage or magnetic field 

measurements made at a defined set of locations outside (EMEG), on, or sometimes in, the 

brain (iEEG). We identify each individual time series as a channel, which is associated with 

a physical measurement device, or sensor. For a single channel i, we represent the 

measurement at time t as vi(t) for M channels (or equivalently, M sensors). It will be 

convenient to represent the measurement across all channels at time t as an M × 1 column 

vector v(t). It is often therefore convenient to think of the multivariate measurement time 

series as a trajectory in an M-dimensional real linear vector space, the signal space V, v ∈ 
ℝM.

We consider the EMEG signal to be a random process, i.e., its state is indeterminate prior to 

observation. The individual measurements at channel i and time t are random variables. A 

specific sequence v(t) is a realization of the random process.

We adopt the model that our measurements are linear combinations of a finite set of 

underlying brain dynamical systems, each represented by a discrete current dipole time 

series (see e.g., Mosher et al., 1999). We assume that these dipole time series are themselves 

random processes whose trajectories cannot be determined from their initial conditions. The 

dipole time series trajectories may be represented in a finite dimensional linear vector space 

Q, the source space. The mapping Q → V is given by the so-called forward (or gain) matrix 

G, V = GQ. The EMEG connectivity problem then becomes one of estimating the 

interactions between these source dipole dynamical systems, or alternatively the 

measurements that are their mixed surrogates.

The random variables that we encounter in the EMEG connectivity problem are classified by 

convenience as observables (e.g., the signal space measurements), hidden variables (e.g., the 

Greenblatt et al. Page 4

J Neurosci Methods. Author manuscript; available in PMC 2017 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dipole time series), or parameters (e.g., in describing interactions between time series using 

autoregressive models). Sometimes (as in the case of DCM), it may be useful to consider 

models themselves as random variables.

Associated with each random variable x is its probability density function (pdf) p(x). Unless 

otherwise noted, we do not assume a particular parametric form for the pdf's. We assume 

that our random variables of interest have an expected value  and that 

this may be estimated as  when the random variable is a function of discrete 

time (the ergodicity assumption).

Since our goal is to estimate coupling between pairs of nodes, where nodal activity is 

represented by a random process, it is not surprising that many of the measures depend on 

the estimation of random bivariates, 〈x, y〉. When these estimates are obtained directly from 

the (possibly filtered or transformed) data, we refer to them as signal processing measures, 

since they often derive from techniques used elsewhere in signal processing. Coherence is a 

widely used example of a signal processing method. Other methods are based on an 

estimation of a (typically joint) probability density function, e.g., p(x, y). The pdf estimate is 

then used to assess entropy or mutual information. We refer to these as information theoretic 

measures.

For the convenience of the reader, Table 1 groups together some of the symbols we use in 

this paper, along with their definitions.

3. Space–time measures in signal space

3.1. Covariance, correlation, and lagged correlation

Conceptually, the simplest method for estimating functional connectivity from EMEG data 

would appear to be the use of the covariance measure. For two zero-mean random variables 

x and y, their covariance is given by cov(x, y) = 〈xy〉, cov(x, y) ∈ ℝ. The normalized 

covariance, or the Pearson correlation function, is given by ρ(x, y) = 〈xy〉/|〈x〉| · |〈y〉|, ρ ∈ 
(−1, 1), where |·| is the absolute value operator. There are problems with this straightforward 

approach, however. First, volume conduction due to overlapping sensor lead fields will 

generate spuriously high apparent correlations between sensor pairs. Second, instantaneous 

correlation is blind to directional information flow (which we discuss shortly in the context 

of Granger causality). These problems could be overcome to some extent through the use of 

lagged correlations ρ(x, y, τ) = 〈x(t)y(t − τ)〉/|〈x(t)〉| · |〈y(t)〉| for a suitable range of lags τ. 

As we describe below for quasi-causal information, the lagged correlation should also be 

corrected for zero-lag correlations that are propagated forward in time, but we omit the 

details here.

The time domain covariance/correlation approach has been used successfully with EMEG 

and iEEG (e.g., Gevins et al., 1987). Lagged covariance has been applied to EEG data 

(Urbano et al., 1998), and has also been applied to time series derived from near infrared 

functional brain imaging (Rykhlevskaia et al., 2006).
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3.2. Granger causality

The principal interest in time series connectivity estimation lies in its potential for 

identifying and quantifying casual interactions between brain sources. Weiner (1956) 

proposed that a causal influence is detectable if statistical information about the first series 

improves prediction of the second series. An essentially similar and widely used operational 

definition of causality has been provided by Granger (1969), and has come to be known as 

‘Granger causality’. A time series (random process) X is said to Granger-cause Y if X 
provides predictive information about (future) values of Y over and above what may be 

predicted from past values of Y (and, optionally, from past values of other observed time 

series Z1, Z2,…).

Although Granger causality is often identified with MVAR estimation (which we describe 

below), Granger causality refers to the general concept. The MVAR is only one tool to 

measure it. Other methods (such as conditional mutual information) may be used to infer 

Granger causality.

Taken together, methods such as MVAR modeling and mutual information estimation form 

the basis for causal connectivity estimation from physiological data.

3.3. Multivariate autoregressive (MVAR) model

Granger causality estimates between time series were first employed in econometrics using 

autoregressive (AR) models, and were later adapted for use with electrophysiological 

measurements. The econometric methods, in turn, were derived from signal processing 

applications, where a time series may be modeled as a linear combination of its past values 

plus and a random noise (or innovation) term. The AR coefficients are derived such that the 

corresponding linear combination of the past values of the signal provides for the best 

possible (in the least squares sense) linear prediction of the current value. In practice, the 

MVAR method reduces to a method for estimating these coefficients and using those to 

compute various interaction measures.

Since the MVAR method models time series as the output of a linear time-invariant (LTI) 

system, this clearly imposes a limitation when applied to an obviously nonlinear system like 

the brain. In addition, the linearity of the MVAR model also implies that the pdf of the 

output is Gaussian, as we show in Appendix A. Nevertheless, many nonlinear systems have 

linear or quasi-linear domains of applicability, and within this domain, MVAR models are 

able to capture significant properties of the system behavior. We return to this issue later in 

the context of information theoretic measures.

We begin by considering a univariate AR model. Given a scalar random process V such that 

the sequence {v(1), …, v(T)} is a realization of V, then

(1)
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is an order K univariate autoregressive model of the process V, where 

is the delay embedding vector, a = {a(k)} are the AR filter parameters to be estimated, and εt 

∼ N(0, σ2). The multivariate generalization of the AR model is straightforward. Given a 

vector random process V s.t. the sequence {v1, …, vT} is a realization of V. For N channels, 

let the single time slice vector be vt−1 = (v1(t − 1), …, vN(t − 1))T. Define the delay 

embedding vector . Then

(2)

is a multivariate autoregressive (MVAR) model of the random process V, where 

 is a vector of concatenated channel readings, εt ∼ N(0, σ2I) 

Gaussian (white) noise and A = [A1, …, AK] is the matrix of filter parameters (to be 

estimated).

Since Eq. (2) models the dynamics of a random process we need to have a sufficiently long 

and stationary realization in order to make inference about the underlying matrix of the AR 

coefficients. The maximum likelihood estimate for A is given by

(3)

where .

Two practical approaches have been used in the literature for the estimation of 

autoregressive model parameters. A recursive filter parameter estimation technique (the 

LWR algorithm, Morf et al., 1978) may be combined with an information theoretic measure 

(Akaike, 1976). This approach is used typically (e.g., Ding et al., 2000) with 

electrophysiological data. Penny and Harrison (2006) describe an MVAR parameter 

estimation method based on Bayesian estimation of model order, and argue for advantages 

of the Bayesian approach. Regardless of approach one has to keep in mind that if the 

original data are passed through a temporal convolution filter (e.g., FIR or IIR), in most 

cases they will not follow an autoregressive model because of the moving average term 

introduced by such filtering (Kurgansky, 2010). Therefore, attempts of order estimation may 

fail as, for instance, the graph of Akaike criterion will not exhibit a local minimum 

corresponding to the process order. We also note that the MVAR coefficients depend on the 

physical units in which the data are recorded. To overcome this restriction, the coefficients 

may be transformed by use of the F-statistic (Seth, 2007).

The directed transfer function (DTF) method (Kamiński and Blinkowska, 1991; Kamiński et 

al., 2001) is the frequency domain representation of the MVAR model (Eq. (2)), and will be 

discussed in Section 4.9.
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3.4. Applications of MVAR to EEG connectivity

MVAR estimation may be the first step for a variety of different connectivity measures, in 

both the time and frequency domains (Schlogl and Supp, 2006). As a result of well-

developed and validated algorithms, the MVAR-based methods appear to be the most widely 

used techniques for EMEG causality estimation. A comprehensive review of these 

applications would far exceed the scope of this paper. We will simply point to several 

relatively recent examples where the MVAR approach has been applied with apparent 

success. Potential clinical applications include seizure focus and epileptogenic network 

identification (Ding et al., 2007), as well as early diagnosis of Alzheimer's disease (Dauwels 

et al., 2010). It has been applied both to continuous (Zhao et al., 2011) and event-related 

(Ding et al., 2000; Schlogl and Supp, 2006) data, in both signal and source space (Ding et 

al., 2007). The MVAR approach has also been used to study the coupling between EEG and 

EMG (electromyelographic) signals (Shibata et al., 2004).

Additional applications of the MVAR approach in the frequency domain, including use of 

the directed transfer function, may be found in Section 4.9.

3.5. Information theoretic approaches to causality estimation

Although MVAR approaches in the time and frequency domains have been widely used for 

causality estimation from EMEG signals, they are limited to modeling only the linear (i.e., 

Gaussian) component of the interactions. It is known, however, that significant physiological 

processes such as epilepsy (Pijn, 1990; Le Van Quyen et al., 1998, 1999) violate the 

Gaussianity assumption. In these cases, MVAR may either misallocate the nonlinearities, or 

ignore them entirely.

Information theoretic measures of connectivity may identify both linear and nonlinear 

components, and these may be separated, as we show below. Before describing some of the 

information theoretic measures that may be applied in the time domain, we first provide a 

brief background on the key concepts that underlie the specific information theoretic 

measures of interest. We then discuss methods for estimating nonlinear (non-Gaussian) 

interactions.

3.6. Entropy and information

First we will consider discrete random processes before generalizing to continuous random 

processes. Given random process X, with finite states xi ∈ A distributed as p(xi), the 

Shannon entropy (Shannon and Weaver, 1949) is defined as

(4)

−log p(xi) measures the uncertainty that the process X is in the state xi, so H(Xi) = 〈−log 

p(xi)〉. The Shannon entropy is interpreted conventionally as a measure of the number of bits 

(using the base 2 logarithm) required to specify the sequence Xi, i ∈ I.
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When x is a continuous variable, the equivalent expression for Eq. (4) is given by the 

differential entropy

(5)

We note that, unlike the discrete entropy of Eq. (4), the differential entropy as defined by Eq. 

(5) depends on the physical units of x.

The Kullback–Liebler (K–L) divergence (Kullback and Liebler, 1951) is defined as

(6)

K–L divergence is an extension of the Shannon entropy that is critical for the development 

of mutual information. Intuitively, the K–L divergence measures the excess number of bits 

required to specify p(xi) with respect to a reference distribution q(xi) for Xi. In other words, 

Kp|q(Xi) is zero if p = q.

Then for two random processes X and Y, we can define the mutual information as

(7)

Intuitively, the mutual information M(Xi, Yj) is the K–L divergence which measures how the 

joint distribution differs from the independent distribution of x and y, i.e., the excess number 

of bits required by assuming distributions p and q are independent.

For continuous random variables x and y, the differential form of mutual information is 

given by

(8)

Two properties of mutual information are worth noting (writing M(Xi, Yj) as MI,J, etc.):

• MI,J = HI + HJ−HI,J ≥ 0

• MI,J provides no information regarding temporal ordering (i.e., it is symmetric 

under exchange of i and j).
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3.7. Time-lagged mutual information

To overcome the symmetry inherent in Eq. (7), we can measure the mutual information 

between two time series, one of which has been shifted in time with respect to the other. 

Then the time-lagged mutual information is defined as

(9)

Eq. (9) measures the reduction in uncertainty in Xi given Yi−τ. By using a set of shifts, it is 

possible to build up a picture of the influence of one process on another as a function of lag 

between the two processes. Time-lagged MI thus has the essential asymmetric property that 

we are looking for. However, there may be practical problems when applying this measure to 

extracranial data, as we discuss next.

3.8. Lead fields, conditional mutual information, and quasi-causal information

When we make extracranial EMEG measurements, the overlapping sensor lead fields result 

in linear combinations of sources in the individual signal space measurements (Mosher et 

al., 1999). This implies high instantaneous correlation between signals that do not 

necessarily reflect the true instantaneous source correlations. In addition, since a source at 

time i − τ is typically correlated with itself at i, we would like a method that factors out the 

predictive self-information from the time-lagged mutual information, leaving the predictive 

time-lagged cross information. This is illustrated diagrammatically in Fig. 1.

This problem has been addressed by Pflieger and Greenblatt (2005), using the quasi-causal 

information (QCI) method for estimating predictive cross information. QCI is an asymmetric 

measure which combines time-lagged mutual information (Eq. (9)) with conditional mutual 

information.

To understand QCI, we first need to define conditional mutual information. Given random 

processes X, Y, Z, with finite states xi ∈ A, yj ∈ A, zk ∈ A define the conditional mutual 

information as

(10)

M(Xi, Yj|Zk) measures the amount of information needed to distinguish the joint distribution 

of x and y, conditioned on z, from the conditionally independent distribution of x and y.

Now we combine time-lagged MI (Eq. (9)) with conditional MI (Eq. (10)) to obtain quasi-

causal MI
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(11)

We are not aware of any publications using QCI for the analysis of EMEG data, except for 

some preliminary reports (e.g., Pflieger and Assaf, 2004).

3.9. Transfer entropy

Transfer entropy was introduced by Schreiber (2000) and Kaiser and Schreiber (2002) to 

overcome the symmetry limitation of mutual information by using a Markov process to 

model the random processes X and Y.

First consider a Markov process of order k. The conditional probability to find X in state xt+1 

given  is , where  is the delay embedding vector. Then 

the entropy rate is given by , i.e., hX 

measures the number of additional bits required to specify xt+1, given . If X is obtained 

from the discretization of a continuous ergodic dynamical system then the transfer entropy 

approaches the Kolmogorov–Sinai entropy (Schreiber, 2000).

Transfer entropy is a generalization of the entropy rate to two processes X and Y. The K–L 

divergence provides a measure of the influence of state Y on the transition probabilities of 

state X:

(12)

Transfer entropy measures the influence of process Y on the transition probabilities of 

process X. For continuous random variables x and y, Eq. (12) takes the form

(13)

Transfer entropy has been applied to TE estimates from ERP data in Martini et al. (2011).

3.10. Factoring linear and non-linear entropy with sphering

Given an N-dimensional multivariate continuous zero-mean Gaussian random variable with 

covariance Σ, x ∼ N(0, Σ), its density function g(x) is given by g(x) = (2π)N/2|
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Σ|1/2e−xTΣ−1x/z, where |Σ| is the determinant of the covariance matrix. We assume zero-mean 

with no loss of generality, since entropy does not depend on the mean.

Then by applying Eq. (5) to the normal distribution function g(x), the Gaussian differential 

entropy, Hg(x) is found to be (Shannon and Weaver, 1949; Ahmed and Gokhale, 1989)

(14)

If we ignore the first term in Eq. (14), which depends only on the dimension of the sample 

space, the Gaussian differential entropy depends on the covariance. In other words if we 

have estimated the covariance from the data, we can use this directly to estimate the entropy 

of a Gaussian process. Note that the Gaussian entropy depends in a linear manner on log|Σ|.

In addition, note that log|Σ| =0 for |Σ| = 1. This leads us to the useful result that by sphering 

the data, yielding a derived random variable x̃ = Σ−1/2 x, where x̃ ∼ N(0, I), we can estimate 

the linear (Gaussian) and nonlinear (non-Gaussian) entropies independently (Pflieger and 

Greenblatt, 2005). A similar approach is used for independent components analysis, whose 

algorithms depend on non-Gaussianity for component separation (Hyvarinen and Oja, 2000).

Sphering and pre-whitening both normalize the data by pre-multiplication by Σ−1/2. They 

differ, however, in the way the covariance is estimated. Typically, pre-whitening estimates 

the covariance from a data segment thought not to contain the signal(s) of interest. Sphering, 

on the other hand, may typically use the same data segment both to estimate the covariance, 

and then to normalize for subsequent analysis.

We note that unlike discrete entropy, differential entropy depends on the physical units 

(Shannon and Weaver, 1949), i.e., it is not invariant under diffeomorphism. Sphering 

rescales and normalizes the data by removing the Gaussian entropy. Thus, the remaining 

entropy is strictly nonlinear. However, it is not commensurate with the linear part (and thus 

cannot be added to form a total). However, strictly nonlinear entropies are commensurate 

with each other, due to the sphering normalization.

3.11. Correntropy-based Granger causality

Correntropy (Santamaria et al., 2006) is a recently developed second order statistic that is 

well-adapted by virtue of computational efficiency for estimation of non-Gaussian 

processes, including Granger causality (Park and Principe, 2008). For two discrete random 

processes X and Y, and lag τ, the cross correntropy (Santamaria et al., 2006; Liu et al., 2007) 

is defined as

(15)
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where E(·)1 is the expectation operator, and G is the Gaussian kernel G(x, y) = 1/

((2π)1/2σ)e−(x−y)2/2σ2
 with kernel size σ (a free parameter). Since VXY(τ) is not zero-mean, 

we may define the centered correntropy (Park and Principe, 2008) as

(16)

A normalized version of UXY(τ), the correntropy coefficient (Xu et al., 2008), is given by

(17)

rCE ∈ [−1, 1] is a nonlinear extension of the correlation coefficient.

One motivation for interest in the correntropy function lies in the relative efficiency with the 

Gaussian kernels may be computed. However, to the best of knowledge, correntropy has not 

been extended to address the overlapping lead field problem, illustrated in Fig. 1, although 

this should be straightforward.

The motivation for the definition of correntropy flows from the theory of reproducing kernel 

Hilbert spaces (RKHS). However the details of the motivation go beyond the limited purpose 

of this paper. The interested reader is directed to Santamaria et al. (2006), Liu et al. (2007), 

and Park and Principe (2008). A relatively clear and accessible introduction to RKHS theory 

may be found in Daumé (2004). We also note the close relation between correntropy and 

Renyi entropy (Santamaria et al., 2006).

3.12. Estimation for information theoretic measure

Information theoretic measures based on continuous processes give rise to estimation 

problems different from those encountered with signal processing approaches, such as 

MVAR. This is due to the need to estimate the probability density function needed for 

computation of mutual information (MI) and transfer entropy (TE), and a similar problem 

arises with Gaussian kernel bandwidth using correntropy.

For MI and TE, two alternatives are available, coarse graining and binning (kernel 

estimation).

1We use E() rather than 〈 〉 to avoid confusion with the Hilbert space inner product, which arises in the derivation of correntropy.
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Coarse-graining converts a continuous process into discrete states (i.e., a discrete alphabet). 

For MI, coarse-graining converges to the continuous case monotonically from below, but this 

is not generally true for TE (Kaiser and Schreiber, 2002). Transformation invariance (under 

a diffeomorphism, e.g., change of physical units) holds for continuous densities but not for 

discrete probabilities (Kaiser and Schreiber, 2002). However, this should not be a problem 

for EMEG, where all time series have the same physical units. Coarse-graining has been 

applied to TE estimates from ERP data in Martini et al. (2011). Plausible results were 

obtained from group analysis (n = 12, 4 × 100 trials each) of the Simon task using scalp 

EEG data.

For continuous multivariate processes, density function estimation typically requires a non-

parametric approach, since the form of the pdf is not known in advance. This suggests the 

use of kernel estimation methods (typically, but not necessarily using Gaussian kernels), e.g., 

Ivanov and Rozhkova (1981). The problem here is that one needs to estimate the minimum 

kernel bandwidth. This can introduce a serious problem, since different bandwidth choices 

yield different estimates, sometimes even reversing the direction of estimated information 

flow (Kaiser and Schreiber, 2002). Pflieger and Greenblatt (2005) have found empirically 

that a Gaussian kernel with standard deviation of 1 works well for sphered (i.e., normalized) 

data. As an additional difficulty, kernel estimation methods become more problematic as the 

number of dimensions increase, since the sampled data typically become increasingly sparse 

with increasing dimension.

Robust estimation of information theoretic parameters generally requires a relatively large 

number of data points (hundreds to thousands of time samples) recorded during the periods 

of relative stationarity. As a result, their application to real-time problems, such as those 

involved in the design of brain–computer interfaces, is probably of limited value (Quiroga et 

al., 2002; Gysels and Celka, 2004).

4. Space–frequency and space–time–frequency measures in signal space

Rhythmic brain activity often depends on transient oscillations (that is, intervals of rhythmic 

activity that persists for a relatively small number of cycles). These may be identified by 

using filters matched to the frequencies of interest. There are several widely used methods 

for studying oscillatory EMEG activity, the Fourier transform (and its closely related short 

time Fourier transform, or STFT), the wavelet transform, the Hilbert transform, and complex 

demodulation. Since the choice of transform method influences the connectivity measures 

that may be used, we will briefly discuss some properties of each of these methods before 

considering connectivity measures in the frequency and time frequency domains.

Frequency domain measures and time–frequency domain measures are essentially similar 

once the appropriate transforms from the time domain have been calculated. Therefore, we 

will consider these measures in the more general context of the space–time–frequency 

domain. However, we would like to point to the physiological plausibility of using time–

frequency decomposition methods, based on the nature and inherent non-stationarity of the 

brain's oscillatory activity. When not described explicitly, the space–frequency measures 
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may be obtained from the space–time–frequency measures by omitting the time variable 

from the expressions of interest.

After discussing briefly several commonly used transform methods, we consider those 

bivariate measures that are sensitive to linear coupling (coherence, phase variance, and 

amplitude correlation), including the linear component of a nonlinear interaction. Next, we 

describe frequency domain measures that can be computed from the MVAR coefficients. 

Then, we consider cross-time frequency measures. These are measures that are sensitive to 

interactions between the same frequency at different times, different frequencies at the same 

time, or different frequencies at the different times. Last, we look at methods that are 

sensitive to non-linear (specifically quadratic) coupling.

To some degree, the distinction between space–time and space–frequency measures is 

arbitrary. For example, if the original time series data are narrow-band filtered, the measures 

described for space–time connectivity in Section 3 may be used to make inferences 

regarding coupled oscillatory interactions. In addition, the Hilbert transform and complex 

demodulation (described below) are both well suited to inferring time-domain estimates of 

oscillatory activity. These estimates may then be analyzed using the methods described in 

Section 3. In spite of these ambiguities, however, in most cases the distinction between 

space–time and space–time–frequency measures is widely used and retains its value.

4.1. Fourier transform

The Fourier transform is a mapping from time domain to the frequency domain, given by 

, where x(t) is the time domain signal, X(ω) is its Fourier transform, 

and ω is the angular frequency. Although the properties of the Fourier transform are well 

known (e.g., Oppenheim and Schafer, 2010), we address two points of special relevance to 

connectivity estimation.

First, the Fourier transform is linear. This has an important implication for network 

identification. For linear time-invariant systems, such as those described by Eq. (1), there 

can be no cross-frequency interactions. For example, if there is 10 Hz activity in the input, 

then, in the ideal case, all of that will be mapped to 10 Hz activity in the output (although 

power and phase may vary). Cross-spectral interactions are therefore a signature of non-

linear interactions.

Second, the practical application of Fourier transform methods entail using a discrete (rather 

than continuous) transform, combined with a windowing function to limit the transform to 

finite bounds and minimize the leakage of the high frequency components due to the finite 

bounds. Since the window width is typically fixed, the Fourier transform does not provide 

time domain resolution at a scale less than the window width. It is therefore of limited use 

for time–frequency analysis.

The short time Fourier transform (STFT) is probably the earliest method for time–frequency 

analysis, and is still used (e.g., de Lange et al., 2008). It is estimated by moving a sliding 

window through the data and computing the FT separately for each window. If a Gaussian 

window is used, the results are equivalent to convolution with a Gabor wavelet (Gabor, 
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1946). Unlike Morlet wavelet-based methods (described below), the Gabor wavelet does not 

entail an automatic window rescaling as a function of frequency of interest. Rescaling allows 

for a deterministic tradeoff between the time and frequency resolution.

4.2. Wavelet transform

A wavelet is a zero mean function that is localized in both time and frequency. A Morlet 

wavelet (Kronland-Martinet et al., 1987) is a complex valued wavelet that is Gaussian in 

both time and frequency.

(18)

By shifting and scaling the mother wavelet function, then convolving with a time series, it 

may be used as a matched filter to identify episodes of transient oscillatory dynamics in the 

time–frequency plane. The continuous wavelet transform of a discrete scalar time series x(t) 
with sample period δt is the convolution of x(t) with a scaled shifted and normalized wavelet 

ψ0. Then for time series x(t), the wavelet transform at time t and scale a, s(t, a) is given by

(19)

s(t, a) ∈ ℂ. To convert from scale to center frequency, use the relation fc = a/Tδt, a ≤ T/2 

(note that T is a dimensionless index, while δt is a time interval with units e.g., seconds).

The wavelet transform may be applied to continuous EMEG data, but it is especially useful 

for the analysis of event-related data, where it may be used to extract phase-specific 

information relative to the event marker, as discussed below. Torrence and Campo (1998) 

provide a useful introduction to efficient methods for computing wavelet transforms. 

Wavelet transforms of event-related data as particularly useful, since they also permit the 

characterization of phase-locked and non-phase-locked components of the response (Tallon-

Baudry et al., 1996).

4.3. Hilbert transform

The analytic signal was introduced into signal processing by Gabor (1946) as a method for 

estimating instantaneous frequency and phase from real-valued time series data (Cohen, 

1995). Given a real-valued scalar time series x(t), its complex-valued analytic signal z(t) has 

a spectrum equal to that of x(t) for positive frequencies, and is zero for negative frequencies.

The analytic signal may be represented as z(t) = x(t) + ix̂(t), where x̂(t) is the Hilbert 

transform of  (Zygmund, 1988).

Vector-valued time series generalize in a straightforward way from the scalar case.
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The important point for our discussion that we can now represent the instantaneous phase as

(20)

The principal utility of the Hilbert transform approach to time–frequency analysis of 

electrophysiological data lies in its application to continuous (i.e., not event related) data, 

such as EEG ictal and peri-ictal time series. For event-related data, wavelet-based methods 

tend to be more suitable, although Hilbert transform methods may be used with comparable 

results (Le Van Quyen et al., 2001a; Bruns, 2004). In addition, the Hilbert transform may be 

used with broadband data, or, with appropriate pre-filtering, with narrow-band data. While 

broadband phase is well-defined mathematically, its physical interpretation raises some 

questions (Cohen, 1995). The choice between Hilbert transform and wavelet transform 

depends on computational convenience and applicability to the experimental data 

requirements, not mathematical fundamentals.

4.4. Complex demodulation

Complex demodulation is a method of harmonic analysis that permits estimation from a time 

series of the amplitude and phase at a selected frequency (Walter, 1968). As such, the results 

are essentially equivalent to bandpass filtering the time series, and then applying the Hilbert 

transform. However, since the method has been, and continues to be used for many years in 

EEG harmonic analysis (e.g., Hoechstetter et al., 2004), we describe it here briefly, 

following the approach of Draganova and Popiavanov (1999).

Assume a model for the time series as x(t) = A(t)cos(f0t + ϕ(t)) +x̄(t), i.e., the time series is a 

narrow band process and consists of a (possibly amplitude and phase modulated) cosine 

wave at frequency f0 and phase ϕ(t) as well as residual signal x̄(t). The problem is to 

estimate A(t) and ϕ(t).

Since eiθ = cos(θ) + i sin(θ), we can write x(t) = 1/2A(t)(ei(f0t+ϕ(t) + e−if0t+ϕ(t))) + x̄(t). 
Multiplying by e−if0t we obtain

(21)

Then applying a zero-phase-shift low pass filter f↓, we obtain the complex demodulation 

function for frequency f0 as

(22)
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CDf0(t) ∈ ℂ. Then the time-varying amplitude of our hypothesized cosine function is A(t) = 

2|CDf0(t)| and the time-varying phase is ϕ(t) = tan−1([ℑ(χ(t))]/[ℜ(χ(t))]) where χ(t) = 

CDf0(t)/|CDf0(t)|.

Now that we have considered the most widely used transform methods, we proceed to 

consideration of bivariate measures for connectivity estimation.

4.5. Coherence

Given two zero-mean time series x(t) and y(t) for channels X and Y respectively and their 

wavelet transforms sX(t, f) and sY(t, f) as defined in Eq. (19). Then we may define the cross 

spectrum as , where 〈·〉 is the expectation operator. Then the 

coherency is defined as the normalized cross spectrum

(23)

Note that CXY(t, f) ∈ ℂ, i.e., coherency is complex valued. Coherence is then defined as the 

real-valued bivariate measure of the correlation between complex valued signals, as defined 

in Eq. (24).

(24)

There is some inconsistency in the literature, since coherence is sometimes defined as the 

square of the number defined in Eq. (24).

For event-related data, the expectation may be estimated by averaging across trials.

Although coherence has been used widely in the experimental literature, it is important to 

note that there are some significant problems inherent in the interpretation of coherence 

estimates for connectivity analysis.

First, coherence confounds amplitude and phase correlations because it depends on 

complex-valued wavelet or Fourier coefficients. Changes in either phase or amplitude 

correlation may give rise to changes in coherence.

Second, volume conduction (e.g., when analyzing scalp-recorded EEG data) can give rise to 

spurious correlations that do not reflect real patterns of underlying connectivity. This is 

discussed below, where we describe the phase slope index. Coherence has been used widely 

for estimation of connectivity from EMEG (e.g., Payne and Kounios, 2009) and iEEG 

(Towle et al., 1999; Sehatpour et al., 2008) data. However, the disambiguation of amplitude 

and phase correlation is seldom considered in the experimental literature. This may be 
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addressed by estimating separately the amplitude and phase contributions to the coherence, 

as described below.

4.6. Amplitude correlation

In order to determine the amplitude correlation between channels, we may use the cross-

spectral amplitude correlation for channels X and Y, ACX,Y, defined in Eq. (25).

(25)

ACXY(t, f) ∈ [0, 1]. Sello and Bellazzini (2000) have introduced the cross-wavelet coherence 

function (CWCF), which measures a property essentially similar to the amplitude coherence, 

as defined in Eq. (26).

(26)

While Eqs. (27) and (28) measure essentially the same physical value, CWCF may have an 

advantage of numerical stability compared with AC, when one of the signals has a very 

small mean amplitude.

4.7. Phase synchronization

Once the time-dependent phase has been estimated on a channel-by-channel basis (e.g., by 

using the Hilbert transform or wavelet decomposition), phase synchronization between 

channel pairs may be measured using phase coherence (Hoke et al., 1989), or the phase-

locking value (Lachaux et al., 1999), defined in (27).

(27)

PLV() ∈ [0, 1]. Theoretically, if two channels are completely synchronized, PLV = 1; if 

completely random, PLV = 0.

For continuous data, PLV is estimated over windows, typically from tens to hundreds of 

milliseconds in duration. For event-related data, PLV may be estimated sample point by 

sample point using wavelet transforms, averaged over a set of trials.

Kralemann et al. (2007, 2008, 2011) have shown that a coordinate transformation is required 

if Eq. (27) is to be used for the characterization of the dynamics of coupled nonlinear 

oscillators. While this is the case, however, Eq. (27) (which Kralemann et al. refer to as 
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‘protophase’) may still be used with relatively small error if the goal is simply to estimate 

connectivity between channels.

Since the PLV statistic was introduced to physiology in 1989 (Hoke et al., 1989), and 

following the influential 1999 paper of Varela et al. (1999), phase synchronization has 

become a significant tool for the study EMEG connectivity. This has been true especially in 

the study of epilepsy (e.g., Mormann et al., 2000; Le Van Quyen et al., 2001b; Nolte et al., 

2008). Perhaps counter intuitively, it has been observed that seizure onset is preceded by a 

decrease in synchrony (Schindler et al., 2007). Ossadtchi et al. (2010) have combined PLV 

with a deterministic clustering algorithm, which has been successful in automatically 

identifying ictal networks from iEEG data.

Increased phase synchronization has also been observed during cognitive tasks (e.g., 

Lachaux et al., 2000; Bhattacharya et al., 2001; Bhattacharya and Petsche, 2002; Allefeld et 

al., 2005; Doesberg et al., 2008). Phase synchronization has also been studied as a measure 

for BCI design. For example, Gysels and Celka (2004) found that the sensitivity using phase 

synchrony alone was significant, but inadequate to serve as a classifier.

The wavelet local correlation coefficient (Buresti and Lombardi, 1999; Sello and Bellazzini, 

2000), defined in Eq. (28) is an alternative measure of phase correlation. It has been used 

only to limited extent with EMEG data (Li et al., 2007).

(28)

4.8. Imaginary coherence and the phase slope index

The presence of volume conduction, with its consequent mixing of sources in the scalp-

recoded EMEG, has long been recognized as a serious confound in the analysis of EMEG 

data. In the present context, this may cause significant problems for the interpretation of 

scalp coherence data (see Nolte (2007) for a good example, using simulated EEG data). 

Nolte et al. (2004; see also Ewald et al., 2012) have shown that, under a reasonable set of 

simplifying assumptions, the volume conduction effect may be factored out by considering 

only the imaginary part of the coherence. In Appendix A, we specify these assumptions, and 

provide a proof of this.

This result was then extended in Nolte et al. (2008) with the definition of the phase slope 

index, PSI. The method is based on the idea that interacting systems may be characterized 

by approximately fixed time delays, at least within a time window of interest. In the 

frequency domain, a fixed time delay corresponds to a linear shift in phase as a function of 

frequency. Using the imaginary component of the coherency to isolate interacting sources 

from volume conduction effects and using the definition of the (complex-valued) coherency 

(Eq. (23)) the phase slope index is defined as
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(29)

Here we have limited our definition to the frequency domain. To the best of our knowledge, 

SI has not been implemented in the time frequency domain, which would require some 

methodological extensions.

For details that phase slope index is a weighted average measure of the change of phase as a 

function of frequency, see Nolte et al. (2008), in particular, their Eq. (5). The phase slope 

index has been applied to simulated and, to a limited extent, to experimental data, as 

described in Nolte et al. (2008). After normalizing with respect to the standard deviation, 

they show that the PSI has improved specificity (fewer false positives), when compared to 

MVAR measures using the same simulated datasets.

4.9. Directed transfer function (DTF)

The directed transfer function (DTF) method (Kamiński and Blinkowska, 1991) is the 

frequency domain representation of MVAR. Using the form found in the DTF literature 

(e.g., Kamiński et al., 2001), we rewrite Eq. (2) as

(30)

or

where A(k) is the filter parameter matrix for lag k, A(0) = −I, v(t − k) = (v1(i − k), …, vN(t − 

k))T for N channels, and εt ∼ N(0, σ2I). Then we can represent Eq. (30) in the frequency 

domain as

(31)

where . We define the transfer matrix T(f) from the relation

(32)
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For a pair of channels i, j, the normalized directed transfer function from i → j at frequency 

f is defined as  (Kamiński and Blinkowska, 1991). Thus 

 measures the relative influence of channel j on channel i for frequency f, 
relative to the influence of all channels on channel i at that frequency, given the 

autoregressive model.

The full frequency directed transfer function (ffDTF), 

 is similar to , except that it is normalized over 

all frequencies (Kamiński and Liang, 2005).

To estimate the DTF in practice, first the filter parameters are estimated in the time domain. 

Then, the discrete time Fourier transform may be used to estimate the transfer matrix.

Applications of DTF to EEG connectivity—DTF has been used relatively widely for 

effective connectivity estimation from EMEG data. We cite only a few examples here, 

including its application to sleep (Bertini et al., 2009), fMRI-EEG (Babiloni et al., 2005), 

and Alzheimer's disease (Dauwels et al., 2010). Based on simulation studies, Kus et al. 

(2004) conclude that simultaneous multichannel estimates are superior to pairwise estimates 

when using DTF and related measures. DTF has also been applied successfully in BCI 

applications (Shoker et al., 2006). A recent review of these and additional MVAR based 

frequency domain measures of connectivity may be found in Kurgansky (2010).

4.10. Cross time–frequency measures

Coherence and related measures look at interactions between differing spatial locations at 

the same time and frequency. These measures may be generalized in a straightforward way 

to consider time lags as well as interactions between differing frequency bands, as we 

discuss next.

Eq. (24) is defined for coherence between channel pairs at the same latency and center 

frequency. This implies that coherence cannot provide information on the direction of 

coupling (i.e., it may be used to infer functional but not effective connectivity). In this 

section, we define three bivariate cross-time–frequency measures, the cross time–frequency 

coherence, the cross time–frequency amplitude correlation, and the cross time–frequency 

phase locking value. To the best of our knowledge, these measures have not been described 

previously, and have not yet been applied to EMEG data.

We define the cross spectral coherence, cross time–frequency amplitude correlation, and 

cross time–frequency phase locking value as:

(33)
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(34)

(35)

Since Eqs. (35)–(37) take time delays into account explicitly, they are suitable for estimating 

effective connectivity in the space–time–frequency domain.

If we are analyzing event-related data, e.g., with a Morlet wavelet transform, then each trial 

has a time marker. This permits the unambiguous definition of cross-spectral phase locking 

value, defined in Eq. (35).

To the best of our knowledge these measures have not been reported in the scientific 

literature. We are not aware of any applications of these cross time–frequency measures to 

electrophysiological data. However, a closely related cross-spectral amplitude correlation 

has been used by Schutter et al. (2006) to estimate interactions between canonical frequency 

bands (δ, θ, β) for a single electrode site (Fz). The bispectral bPLV (Darvas et al., 2009), 

described below, is a related cross frequency phase measure specific to non-linear 

interactions.

4.11. Modulation index

For some physiological applications, we would like to know if the amplitude at one 

frequency is coupled to the phase at another frequency. This is true of hippocampal theta/

gamma coupling, for example (Lisman and Buzsáki, 2008). Canolty et al. (2006) have 

developed the modulation index to measure such coupling. Penny et al. (2008) describe a 

related method for estimating amplitude/phase coupling using a General Linear Modeling 

approach.

To compute the modulation index, first bandpass filter the time series data at each of the two 

center frequencies of interest, f1 and f2, then compute the analytic signal, via the Hilbert 

transform. Now construct the composite analytic signal as z(t) = Af2(t)eiϕf2(t) where Af2(t) is 

the amplitude of the f1 analytic signal, and ϕf2(t) is the phase of the f2 analytic signal. If the 

amplitude of f1 is statistically independent of the phase of f2, then the pdf of z(t) will be 

radially symmetric in the complex plane.

The modulation index has been used successfully by its developers to identify and 

characterize theta/gamma coupling in the human brain from iEEG data (Canolty et al., 

2006).

4.12. Stochastic event synchrony

Stochastic event synchrony (SES) (Dauwels et al., 2008) is an algorithm that may be applied 

to wavelet transformed EMEG data to quantify the synchrony between channel pairs. As an 
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algorithm, it is embodied by a set of rules for computing the similarity measure, rather than 

having a representation as a mathematical expression. Briefly, the algorithm reduces the 

time–frequency representation of the EMEG data to a set of parameterized half-ellipses (or 

“bumps”), and then measures the similarity between the bump patterns. For details on the 

algorithm, see (Dauwels et al., 2010), where the method has been applied to EEG data in a 

mild cognitive impairment study. Vialatte et al. (2009) applied the SES method to EEG data 

obtained from a steady state visual evoked potential paradigm.

4.13. Nonlinear measures in the space–frequency domain

Linear systems, such as those described by the MVAR model, input frequencies map to 

identical output frequencies with changes only in phase and amplitude; in other words, no 

new frequency oscillations may appear in the output that are not in the input. Nonlinear 

systems, however, may entail frequency shifts. This implies that methods sensitive to 

frequency shifts between input and output are therefore able to measures the corresponding 

non-linearities, both within and between channels. In particular, the bispectrum is a measure 

of quadratic nonlinearities in the frequency domain. For the quadratic case, input frequencies 

f1 and f2 result in an output at f1 + f2 (Nikias and Mendel, 1993). If the nonlinear system is 

analytic (i.e., has a Taylor series expansion), and if the expansion is not purely 

antisymmetric, then such a system will generally have a quadratic term that will generate 

frequency summed signals at the output.

For channels X, Y, and Z, define the wavelet bispectrum, BiSXYZ(t, f1, f2), as

(36)

where s{}(t, f) is defined in Eq. (19). Eq. (36) is a straightforward generalization from the 

frequency domain bispectrum definition given in Nikias and Mendel (1993).

Once the bispectrum has been defined, bicoherence and biphase-locking value may be 

defined. The wavelet bicoherence, bCohXYZ(t, f1, f2), is the expected value of the squared 

normalized wavelet bispectrum (van Milligen et al., 1996; Li et al., 2007) is given by

(37)

Darvas et al. (2009) have generalized PLV (Eq. (27)) to the bispectral case as

(38)
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The bPLV measure has been applied successfully to iEEG data (Darvas et al., 2009), but 

successful applications to scalp EEG data have not yet been reported (Darvas, personal 

communication).

Tass et al. (1998) describe two methods for the identification of n:m phase locking from 

MEG data, where n and m are integers. These related approaches are based on estimation of 

Shannon entropy or conditional probability.

5. Source space extensions

The methods we have described may be applied to time series in general, although we have 

so far restricted their application to the measured EMEG data in signal space. To extend the 

analysis to source space, we need to apply inverse methods, collectively known as source 

estimation, that allow us to infer source time series from the signals. It is well-known that 

these methods are inherently ill-posed, but may nevertheless provide useful information.

In theory, there are two possible avenues to approach brain connectivity measures in source 

space. First, we might use a conventional inverse method to estimate source time series, and 

then apply a connectivity measure to the source space time series estimates. Second, in 

theory, we might modify existing methods to incorporate connectivity directly into the 

inverse estimate, but this second approach has not yet matured to point of successful 

application.

Conventional inverse methods are either overdetermined (dipole fitting) or underdetermined 

(e.g., minimum norm or beamformers). Both of these have been applied to the connectivity 

problem in source space in a limited number of studies.

Dipole coherence, described by Hoechstetter et al. (2004), is a straightforward application of 

the bivariate coherence measure to time series estimates obtained from a simple dipole 

model using complex demodulation. As such, it has the confounding of phase and amplitude 

correlation inherent in coherence estimates.

DICS (Gross et al., 2001) is a frequency or time–frequency (Greenblatt et al., 2010) domain 

beamformer that is well suited for source space coherence estimation. In this approach, the 

frequency-specific signal space covariance is used to construct a beamformer. The resulting 

source space estimates may then be combined pair-wise to obtain source space coherence 

estimates. Palva et al. (2010) have combined minimum norm estimation techniques applied 

to EMEG data with bivariate phase synchrony measures to map connectivity over the entire 

cortical surface. They were able to derive a number of network graph measures in differing 

canonical frequency bands using this approach.

6. Some practical guidelines

In this section, we address some possible obstacles that researchers may encounter in the 

interpretation of synchrony estimates from experimental data. While by no means 

comprehensive, we hope to describe some problematic issues of recognized significance, 

with the goals of adding to the readers' intuition, suggesting possible solutions, pointing the 
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reader to relevant literature, and reflecting on the challenge of studying synchrony based on 

electrophysiological measurements. In particular, we address temporal filtering, temporal 

resolution, the EEG reference problem, and volume conduction.

6.1. Temporal filtering

Kurgansky (2010) and Barnett and Seth (2011) have recently addressed the problem of 

temporal filtering in the context of MVAR based estimation of Granger causality. Such 

temporal filtering may lead to a theoretically infinite AR model order of the filtered data. 

This problem arises because even if the original process is purely autoregressive and of finite 

order, any temporal filtering turns it into a moving average autoregressive (ARMA) process. 

In theory, an ARMA process can also be modeled by an AR process but with the infinite 

order. Therefore, practical order determination is problematic in this case. Because a higher 

order model will be needed after filtering, the accuracy of the underlying parameter 

estimates is affected adversely. Therefore it is preferable to temporally filter the data as little 

as possible. If it is necessary to remove low frequency trends, we recommend using a 

polynomial de-trend procedure. If filtering is unavoidable, the care must be taken (especially 

in case of IIR filters) to ensure that the poles of filter transfer function do not appear closer 

to the unit circle than those of the VAR model transfer function. This will ensure that the 

spectral radius of the filtered process is not increased.

We also note that in the case of AR-model-based Granger causality analysis, temporal 

filtering has sometimes been used in an attempt to emphasize certain band of interest. 

However, this is problematic, since it not only fails to emphasize the bands of interest, it 

may, in addition, introduce artifactual noise in the causality frequency profile in the interval 

corresponding to the filter stopband (Barnett and Seth, 2011).

Care must also be used when temporal filtering is used prior to phase synchrony estimation. 

Observed synchrony between brain assemblies is typically transient and often persists for 

100–300 ms (Friston, 1997). Temporal filters with non-zero length impulse response may 

artifactually blend two adjacent time segments with distinct synchronization patterns, 

thereby adversely affecting the estimates of phase synchrony.

6.2. Temporal resolution of synchrony measures

It takes time to estimate the synchrony between two oscillations, and this obviously depends 

on the period of the oscillations of interest. The shorter the time interval (relative to the 

period of interest), the broader confidence intervals of the estimated synchrony indices are. 

For continuous (e.g., ictal or interictal) data, the recordings must be averaged over time. This 

requires confidence in the stationarity of the signal throughout the averaging interval. The 

problem is less severe when dealing with data recorded with an event related paradigm, 

where averaging over time may be replaced by averaging across trials, assuming stationarity 

over trials. Lachaux et al. (1999) describe a simulation example illustrating the relation 

between the imposed and estimated dynamics of phase synchrony measured by the phase-

locking statistics which illustrates this problem. When feasible, the investigator should 

consider combining temporal and across-trial averaging to achieve a trade-off between the 

reliability of phase estimates and its temporal resolution.
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6.3. EEG reference electrode

EEG recordings measure the potential difference at one or more scalp locations with respect 

to a reference location. The choice of reference should be very carefully considered when 

collecting the EEG data to be used for coupling estimates using coherence, phase-locking 

value or any measure of synchrony.

Fein et al. (1988) and Guevara et al. (2005) show that the use of common average in most 

cases will produce potentially misleading conclusions when estimating coherence and 

phase-locking values. One possible solution is to use differential montage. Differential (or 

bipolar) montages are obtained by subtraction of signals in neighboring sites to cancel the 

common reference signal. However, one has to keep in mind that such a differential montage 

is in fact a spatial filter that leaves in the data only the contributions of a small subset of 

superficial dipolar sources (Nunez, 1981) with specific orientations. Schiff (2005) proposes 

using a “double banana” montage to reduce the information removal effect of differential 

montages. If, however, it is necessary to use a common average montage, errors will be 

reduced by increasing the number of electrodes, and by extending the coverage to as much 

of the head as possible (Guevara et al., 2005).

Given an adequate spatial density of electrodes with known locations, the Laplacian operator 

with respect to the scalp surface (Nunez et al., 1997; Lachaux et al., 1999), or, equivalently, 

the scalp current density (SCD) transform (Pernier et al., 1988) are the (essentially 

equivalent) reference-free derivations of choice. They should be applied to the data prior to 

computing the synchrony measures. These methods compute an approximation to the second 

spatial derivative of scalp potential distribution. Thus, the result is proportional to the scalp 

current source/sink distribution. In general, deblurring methods, like the Laplacian and the 

SCD, have a diminished sensitivity to deeper sources, compared to average or physical 

references.

6.4. Volume conduction

The problem of volume conduction arises because source signals are mixed before detection 

by EMEG sensors (see Section 2, and e.g. Nunez, 1981; Lachaux et al., 1999). In addition to 

source estimation methods (described in Section 5) and imaginary coherence (described in 

Section 4.8), additional tools may reduce the effects of volume conduction on signal space 

connectivity measures. One good place to start is with a suitable choice of experimental 

design. If an event-related paradigm can be developed that has a contrast between 

conditions, it may be possible to show that there is a statistically significant change in 

connectivity as a function of the design contrast. While this does not reduce cross-talk per 

se, it does allow for functionally specific inferences. When analyzing EEG data, deblurring 

techniques, such as those described in Section 6.3, will tend to reduce cross-talk. Dipole 

simulations may also be used to obtain a measure of possible volume conduction effects. 

Lastly, MEG planar gradiometers have narrower lead fields than do EEG electrodes or MEG 

magnetometers or coaxial gradiometers, and may therefore be preferable for signal space 

estimates, when available (Winter et al., 2007). However, Palva et al. (2010) report 

significant differences between synchrony measures obtained from MEG signal space and 

source space estimates.
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Volume conduction effects due to the addition of ‘brain noise’ (that is, signals from brain 

regions other than those of interest) may yield erroneous results at low signal/noise ratios. 

Haufe et al. (2011), using simulated data, have shown that several measures of causality 

connectivity may yield erroneous estimates of information flow, and that the phase slope 

index is relatively robust under these conditions.

7. Discussion

The principal goal of this paper has been to develop a comprehensive and unified 

description, both formal and informal, of methods that have shown promise for the 

characterization of brain connectivity from EMEG data. The motivation for this work is 

based on both a scientific and a technological foundation.

Starting from a neurobiological perspective, we hypothesize that transiently stable, 

macroscopic neural networks self-organize as the physical substrate for behavior (e.g., 

Mesulam, 1990; Friston, 1994; McIntosh et al., 1996; Sporns, 2011), and that this self-

organization may be characterized in a statistically consistent fashion. Since it is likely that 

such transiently stable networks form the core of much, if not all, of the cognitive life of 

mammals, including humans, improved means of studying them and describing their 

properties in humans would represent a significant contribution to empirical and theoretical 

neuroscience. Furthermore, it seems likely that significant neurological disorders, most 

prominently epilepsy (e.g., Bartolome et al., 2000; Spencer, 2002; Chaovalitwongse et al., 

2008; Ossadtchi et al., 2010) and Alzheimer's disease (Dauwels et al., 2010), as well as 

psychiatric disorders, such as schizophrenia (Clementz et al., 2004; Roach and Mathalon, 

2008), affective disorders (Rockstroh et al., 2007) and autism spectrum disorder (Just et al., 

2004; Koshino et al., 2005), may be due to disruptions of the normal ability to create and 

maintain such adaptive functional networks.

Although these views may be held widely in the neuroscience community, as yet there is 

relatively little direct experimental evidence to describe how specific networks organize 

during human behaviors. Existing brain imaging analysis methods using fMRI data typically 

view the brain as a single pattern of activity corresponding to a particular brain state. The 

‘default network’ (Raichle et al., 2001) is one well-known example. What has been largely 

lacking, so far, is the ability to provide a dynamic picture of the interactions between brain 

regions, and their evolution over time, although the results we cite in this paper, as well as 

numerous other studies suggest that productive research is developing in this direction. 

Novel methods to integrate fMRI with simultaneously recorded EEG will certainly advance 

this frontier. Dynamic causal modeling, when applied to fMRI data, has been used to 

estimate a probabilistic deconvolution with the hemodynamic response function in order to 

indirectly assess the underlying electrical activity and use it for causal modeling (Marreiros 

et al., 2008).

From a technical perspective, we further hypothesize that these networks are accessible to 

study by combining electromagnetic recordings with structural and functional MRI. In fact, 

significant progress has been made in this area, as numerous citations in this paper bear 

witness. The use of these methods in the development of brain computer interfaces and 
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neurofeedback seems particularly promising in the relatively near future. In our view, 

however, there are some obstacles that stand in way of more widespread application of these 

methods to experimental data.

Most importantly, we need to move these methods out of the hands of developers and other 

experts in signal processing, and into the hands of scientific investigators. A large variety of 

connectivity measures have been proposed and validated, typically by their developers. 

However, what seems to be lacking is a comprehensive connectivity toolkit, easily accessible 

to the cognitive and clinical electrophysiology communities, one that can be used by 

scientists who are not necessarily signal processing experts. To some extent this has been 

taking place, with the availability of various freeware (e.g., Fieldtrip, eConnectome, GCCA 

(Seth, 2010)) and commercial (e.g., ASA, BESA, EMSE) software packages. It seems, 

however, that these packages are still relatively immature in this regard, both in terms of 

their comprehensiveness, and also in terms of their ease of use. Comprehensiveness, in this 

case, means not only a suitable breadth of methods in both signal and source space, but also 

appropriate hypothesis testing and visualization features, as well as support for a variety of 

EMEG vendor formats.

It may seem to someone entering the field, that there is a bewildering array of connectivity 

measures, and there are no clear guidelines for their use. In fact, there appears to be some 

justification for this view. We lack a systematic comparison of measures and algorithms that 

would a permit an investigator who is not an expert in signal processing to choose the 

appropriate approach, given the scientific question to be answered. Dauwels et al. (2010) 

have addressed this issue in the study of mild cognitive impairment and Alzheimer's disease. 

However imperfectly, the current paper has attempted to be of some use in this context, as 

well.
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Appendix A

A.1. MVAR and Gaussianity

In this section, we show that the time series output of an MVAR model has a multivariate 

Gaussian probability density function.

We begin by restating Eq. (2), which defines the MVAR model.

(A.1)

where ε ∼ N(0, σ2I).
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Now we introduce a new set of variables that facilitate the expression of a sequence vt+1, …, 

vt+M. For N channels, vt = (v1(t), v2(t), …, vN(t))T. We define the delay embedding vector 

for N channels and K delays as , .

Now define two new variables.

First, let , dim(A) = N × NK, dim(I) = N × N, and 

dim(Ã) = NK × NK.

Second, define , dim(Et+1) = NK × 1.

In words, Ã computes the new vt+1 and shifts the remaining vt, vt−1,… into the updated delay 

embedding vector . Because it is square, we can apply it sequentially, obtaining a valid 

product.

Using our new variables, we rewrite Eq. (A.1) as

This change of variables permits us to write 

. Continuing 

forward in time for P samples, we find that

Then assuming the determinant det(Ã) < 1, for large P, we find that

This tells us that if we wait a sufficiently long time,  will depend only on the noise 

process E, and therefore v(t) will depend only on the noise process ε(t). If ε(t) is multivariate 

Gaussian, then sums of ε(t), and thus v(t), will be multivariate Gaussian as well. 

Furthermore, by the central limit theorem, if the ε(t) are independently distributed random 

processes, then in the limit, their sum will be Gaussian-distributed. This result may seem 
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counter intuitive if one refers to an MVAR model that produces very narrow-band 

oscillations whose pdf is far from Gaussian (compare with Eq. (32), where T(f) would 

approach a delta function). We would like to note here that in this case, det(Ã) approaches 

unity and the model approaches the border of stability. However, in our experience working 

with the real data we have never encountered such narrow-band signals that are modeled 

with an MVAR model whose matrix would not meet the det(Ã) < 1 condition.

Thus we have shown that under a reasonable set of assumptions, the output of an MVAR 

process will have a multivariate Gaussian probability density function.

A.2. Imaginary coherence and volume conduction

In this section, we show that, given a set of assumptions, the imaginary part of the cross-

spectrum (and therefore the imaginary part of the coherence) estimated from extracranial 

(EMEG) measurements, depends only on the correlation between underlying brain sources.

Assume the following statistical model:

• Q = {Qk} is a set of K zero-mean, independent, complex-valued random 

processes with realizations qk(t), 0 ≤ k ≤ K. For a complex-valued number to 

have zero mean, we require that both the real and the imaginary parts have zero 

mean.

• V = {vi, vj} are complex-valued random processes defined by vi(t) = 

Σk<Kgikqk(t) and vj(t) = Σk<Kgjkqk(t) where all of the lead field parameters gik 

and gjk are real-valued, i.e., there is no phase shift in going from q to v.

Physically, we interpret Q to be a set of dipole time series in the brain, V set set of (two 

scalp-measured EEG) time series, and each gik, gjk are the forward solutions from the kth 

dipole to the ith (resp.jth) sensor. The assumptions of linearity and zero-phase shift are made 

routinely when considering the EMEG forward problem. These derive from solving 

Maxwell's equations in the quasi-static case, which introduces errors of <1% for a frequency 

range below 1 kHz (Malmivuo and Plonsey, 1995).

Define the cross-spectrum for channels i and j as , where 〈·〉 represents the 

expectation operator, and * represents complex conjugation. If we write qk in terms of its 

real and imaginary parts as qk = ak + ibk, then 〈qk〉 = ∫ p(ak)ak dak + i ∫ p(bk)bk dbk where 

p(·k) is the probability density of ·k and the integration is assumed to span the entire range of 

values.

We want to show that, under the assumptions of the model, sij is real-valued.

In step 1, we show for complex-valued random variables x, y, where x is statistically 

independent of y (symbolically, x ⊥ y), this implies 〈xy*〉 = 〈x〉〈y*〉. Then, in step 2, we 

combine this result with the zero-mean, zero-phase-shift, linearity and independence 

assumptions of the model to obtain the desired result.

Step 1: Write 〈x〉 = ∫ p(ax)ax dax + i ∫ p(bx)bx dbx and 〈y*〉 = ∫ p(ay)ay day − i ∫ p(by)by 

dby.
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Then

After multiplying the terms and writing the real and imaginary parts separately, we find that

Then since p(ax) ⊥ p(ay) ⇒ p(ax)p(ay) = (ax, ay), and similarly for the other variables, we 

get

or

(A.2)

Now consider 〈x, y*〉 = 〈[ax + ibx][ay − iby]〉. After cross multiplying and using the fact that 

the expectation of a sum is always equal to the sum of expectations, we obtain

(A.3)

Since Eq. (A.2) equals Eq. (A.3), we obtain

(A.4)

Note that 〈x〉 = 0 or 〈y*〉 = 0 implies 〈xy*〉 = 0.

Step 2: From the statistical model we have 

 or
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From the assumptions that the qk are zero-mean and qk ⊥ qk′, ∀k ≠ k′, combined with the 

result shown in Eq. (A.4), we find that

Thus, under the assumptions of the model, Sij is real-valued. As a corollary, we find that the 

imaginary part of Sij carries information about the correlation between sources. In other 

words, when the dipole time series are correlated, both real and imaginary parts of 

coherence change. For uncorrelated sources, however, the imaginary part of coherence is 

zero. Thus, we may use the imaginary part to estimate source space correlations. As with 

any correlation measure, imaginary coherence changes do not by themselves provide us with 

any direct information regarding causal interactions.
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Fig. 1. 
Zero-lag cross information (a function of overlapping lead fields) and predictive self-

information should be factored out to obtain an improved estimate of the true predictive 

cross-information.
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Table 1

Some of the more commonly used symbols in the paper are described here. In this paper, we use the 

typographic convention that scalars and functions are represented in lower case italics (e.g., v, f(v)), or upper 

case italics (e.g., M) when the scalar represents a range limit, vectors are shown in lower case bold italics (v), 

and matrices in upper case bold italics (V). Unless otherwise noted, we assume that vectors have column 

vector matrix representation.

Symbol Description

X, Y, V Random processes (where we use V when we wish to emphasize the connection between the random process and the data time 
series)

x, y, v Random variables

〈x〉, 〈y〉, 〈v〉 Expected values of random variables

N(μ, σ2) Univariate normal distribution with mean μ and variance σ2

N(μ, Σ) Multivariate normal distribution with mean μ and covariance Σ

h(τ), α, A, (f) Impulse response of LTI system, vector of AR model coefficients and its associated frequency-domain transfer function

pdf Probability density function

ℜ(), ℑ() Real, imaginary parts of a complex number

ℝ, ℂ Set of real numbers, set of complex numbers

J Neurosci Methods. Author manuscript; available in PMC 2017 August 09.


	Abstract
	1. Introduction
	2. EMEG as a multivariate random process
	3. Space–time measures in signal space
	3.1. Covariance, correlation, and lagged correlation
	3.2. Granger causality
	3.3. Multivariate autoregressive (MVAR) model
	3.4. Applications of MVAR to EEG connectivity
	3.5. Information theoretic approaches to causality estimation
	3.6. Entropy and information
	3.7. Time-lagged mutual information
	3.8. Lead fields, conditional mutual information, and quasi-causal information
	3.9. Transfer entropy
	3.10. Factoring linear and non-linear entropy with sphering
	3.11. Correntropy-based Granger causality
	3.12. Estimation for information theoretic measure

	4. Space–frequency and space–time–frequency measures in signal space
	4.1. Fourier transform
	4.2. Wavelet transform
	4.3. Hilbert transform
	4.4. Complex demodulation
	4.5. Coherence
	4.6. Amplitude correlation
	4.7. Phase synchronization
	4.8. Imaginary coherence and the phase slope index
	4.9. Directed transfer function (DTF)
	Applications of DTF to EEG connectivity

	4.10. Cross time–frequency measures
	4.11. Modulation index
	4.12. Stochastic event synchrony
	4.13. Nonlinear measures in the space–frequency domain

	5. Source space extensions
	6. Some practical guidelines
	6.1. Temporal filtering
	6.2. Temporal resolution of synchrony measures
	6.3. EEG reference electrode
	6.4. Volume conduction

	7. Discussion
	Appendix A
	References
	Fig. 1
	Table 1

