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Leveraging Transcriptomics to Disentangle Sepsis Heterogeneity

Critical illness is not a discrete disease but a matrix of heterogeneous
and overlapping syndromes. This heterogeneity presents
impediments to both research and clinical practice. Nowhere is this
more evident than in sepsis (1), and identifying robust models to
improve clinical and biologic stratification has become a research
priority (2, 3). The field of oncology has provided insight into
how this might be accomplished (4); however, sepsis presents
unique and complex challenges.

Transcriptomics, assay of global differential gene expression
within a cell population, provides a potential approach to sepsis
stratification, using clustering algorithms to identify discrete
patterns of cellular response (5). This clustering is ideally conducted
in an unsupervised manner, without reference to clinical outcomes
and response to therapy. The resultant groupings are then assessed
for their correlation with outcome or response to treatment.

In this issue of the Journal, Burnham and colleagues (pp.
328–339) provide an example of a transcriptomic approach to sepsis
stratification (6). Earlier work by this group identified two distinct
sepsis response signatures, designated SRS1 and SRS2, among
patients with sepsis secondary to community-acquired pneumonia
(CAP) (7). Patients expressing the first pattern, characterized
by a gene expression signature reflecting immune suppression,
had increased mortality compared with those in the second
group. The current study was undertaken to determine
whether the stratification strategy also applies to patients with sepsis
secondary to fecal peritonitis (FP) and to determine whether the
transcriptomic response of patients with FP differs from that of
patients with CAP.

The investigators used two complementary approaches to
determine the relevance of the SRS1/2 classification in the FP cohort.
After unsupervised clustering of the FP cohort and subsequent
assignment to SRS1/2, they compared differential gene expression in

the FP and CAP groups, according to SRS assignment, and
found a modestly high correlation. They subsequently applied a
previously reported seven-gene set (7), a priori, to assign SRS1/2
membership among the FP cohort subjects. This model showed
excellent agreement with the results obtained by unsupervised
clustering, but, more importantly, the subjects allocated to SRS1
had higher mortality than those allocated to SRS2, consistent with
previous findings (7).

The authors found a relatively small number of genes
differentially regulated between the CAP and FP cohorts. It is
entirely possible this particular finding reflects the statistical noise
inherent in such analyses, because the number of gene probes
analyzed greatly exceeds the number of study subjects. There is little
reason to believe that the transcriptomic response reflected in whole
blood–derived RNA should vary with the anatomic site of
infection. In the absence of a control cohort undergoing major
laparotomies for indications unrelated to sepsis, it is unclear
whether the differentially expressed genes reflect the anatomical
source of infection, or a generic response to major abdominal
surgery.

Previous stratification studies in pediatric septic shock revealed
endotypes A and B, based on a gene signature reflecting adaptive
immunity and glucocorticoid receptor signaling (8, 9). These genes
are repressed among the endotype A subjects, and this group
has higher mortality and organ failure burden than endotype B
subjects. This pattern is reminiscent of the SRS1 grouping with
respect to biology and outcome, but the current analysis revealed
minimal overlap between the pediatric and adult gene expression
data sets. Whether this reflects age-related differences in the host
response or the statistical approach requires further exploration.
It is recognized in oncology that widely variable gene signatures
can yield very similar clinical and prognostic stratification
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models, likely because the component variables in these complex
datasets are highly related (10).

There are four critical considerations that must be addressed in
moving the insights from unsupervised transcriptomics toward
clinical or research utility (Table 1):

1. What is the most relevant cell population to study?
2. What is the study population, and what is the comparator?
3. What is the outcome that is being predicted?
4. How can the information be used to inform a clinical decision?

The lessons of oncology are instructive. Transcriptomic studies
in oncology evaluate cells from the cancer itself. They compare the
results to those of healthy cells and assess the capacity of these
alterations to predict recurrence, the expression of tumor markers,
and response to specific therapy. Thus, the information is readily
used to identify a subgroup of patients at increased risk of recurrence
and to guide a decision for a specific adjuvant therapy (11).

The optimal approach to transcriptomic studies in sepsis is less
clear. Investigators typically evaluate gene expression in circulating
blood leukocytes, although cells from the organs that are
dysfunctional or fixed cells such as macrophages or endothelial cells
might be more appropriate. An assumption implicit in the study of
leukocytes is that the altered transcriptome is causally related to the
development of organ dysfunction. It is plausible, however, that the
clinical sequelae of sepsis result from the potentially modifiable
alterations in gene transcription in target tissues. Circulating
leukocytes are a mixture of cell populations having different roles in
innate and adaptive immunity. Differential responses may reflect
different patient responses but may also reflect relative differences in
the percentage of blood leukocytes.

The study population is patients who meet physiologic criteria
for sepsis and have evidence of infection as the cause. The
comparator may be healthy control subjects, patients who do not

meet sepsis criteria, patients who do not have infection, or, as in the
present study, patients whose septic episode arises from different
sites or causes of infection. The conclusions of the study and the
utility of the resultant signature are entirely dependent on the
control population selected.

Most studies of transcriptomics in sepsis use survival as
an outcome; in consequence, they emphasize the prognostic
implications of the findings. Mortality is an imminent and
unquestionably relevant consequence of sepsis. Moreover, although
there are multiple interventions that effectively alter the course of
specific cancers by targeting specific gene products, no such
treatments are available for sepsis. But mortality is also impacted by
factors not directly related to the episode of sepsis, including
preexisting comorbidities and patient preferences for end-of-life
care. It is further influenced by events occurring over the course of
the intensive care unit stay, for example, the approach used to
provide mechanical ventilator support. Finally, its timing is usually the
consequence of a clinical decision to terminate support, and so it reflects
a clinical decision as much as a clinical characteristic of the patient.

Transcriptomic and other high-dimensional data hold the
promise of informing stratification strategies for sepsis and
other forms of critical illness (12, 13). Publically available datasets
provide powerful opportunities for multicohort analyses and the
important validation studies (14, 15). The critical care community
is likely to be cautiously skeptical of these approaches, because of
unfamiliarity with the complex computational methods they use. It
is therefore incumbent on the bioinformatics field to present these
complex data in a clinician-friendly manner; conversely, it is
incumbent on clinicians to become more familiar with these
complex approaches. This convergence of disciplines can enable
the promise of precision critical care medicine. n
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More Than Meets the Eye: Cigarette Smoke Induces Genomic
Changes in the Small Airway Epithelium Independent of
Histologic Changes

Cigarette smoke–induced lung diseases, including lung cancer and
chronic obstructive pulmonary disease (COPD), are leading causes
of morbidity and mortality. The airway “field of injury” hypothesis
suggests that exposure to a disease or environmental insult, such
as cigarette smoke, leads to molecular alterations throughout the
whole respiratory system, and that these alterations occur even in
the absence of histologic changes. This concept, well developed
in the cancer literature, suggests exposure-associated molecular
alterations can be measured in histologically normal airway
epithelium by gene expression profiling (1). These genomic
signatures can then be used both to gain insights into disease
mechanisms and to generate biomarkers for disease onset,
progression, prognosis, and treatment.

In COPD, the earliest pathological changes appear to occur in
the small airways (2–4). Cigarette smoke induces squamous cell
metaplasia and mucous cell hyperplasia in the small airway
epithelium (SAE) (5, 6). Further, there is evidence of decreased SAE
repair (7), suggesting a detrimental effect of cigarette smoke on
basal cells (BCs), the airway stem or progenitor cells (8). Although
cigarette smoke–induced, SAE-specific molecular alterations have
been identified (9–11), whether these molecular alterations precede
these early pathologic changes is less well studied. The progression
of this early injury to the heterogeneous pathologic changes in
COPD, including emphysema and bronchitis, is also poorly
understood, especially in former smokers.

In this issue of the Journal, Yang and colleagues (pp. 340–352)
advance our understanding of the cigarette smoke–induced airway
field of injury (12). They focus on molecular alterations induced in
the SAE compared with the larger bronchi, leveraging the group’s
small airway brushing collection technique. By comparing global

gene expression profiles of the large and small airway epithelium
from healthy control patients, they developed proximal and distal
airway transcriptome signatures (P- or D-signatures). Using
immunohistochemistry, the authors established that the genomic
differences between regions was not simply a result of distinct
compositions of known cell types by demonstrating that certain
proximal gene expression markers are expressed by ciliated cells, a
cell type also abundant in the distal airways in which these genes
have lower expression. They next compared the SAE gene
expression of smokers with and without COPD with that of
nonsmokers. Smokers exhibited a down-regulation of z50% of
D-signature genes compared with nonsmokers, whereas P-signature
genes were up-regulated. These smoking-induced SAE molecular
alterations were termed “distal-to-proximal repatterning.” The
study further shows that the degree of proximalization was
associated with lung function (FEV1/FVC ratio) and age in healthy
smokers, suggesting these genomic lesions have functionally
measurable consequences.

As pathway analysis revealed EGFR as a major upstream
regulator of the P-signature genes, the authors demonstrated
evidence for its relevance in vitro by culturing primary human BCs
at an air–liquid interface. Treatment of proximal airway BC
cultures with an EGFR inhibitor decreased the expression of
P-signature genes and increased D-signature genes. SAE BC
cultures exhibited opposite changes when treated with EGF. EGF
was further found to be up-regulated in the SAE of smokers,
a finding reproduced by exposing cultures to cigarette smoke
extract.

The changes induced in vitro by cigarette smoke extract
support the concept that SAE proximalization represents early
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