Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2007 Dec 15;23(1):58–65. doi: 10.1007/s12264-007-0009-y

Is Glucagon-like peptide-1, an agent treating diabetes, a new hope for Alzheimer’s disease?

胰高血糖素样多肽1 — 治疗糖尿病的多肽, 是治疗阿尔茨海默病的新希望?

Lin Li 1,
PMCID: PMC5550570  PMID: 17592527

Abstract

Glucagon-like peptide-1 (GLP-1) has been endorsed as a promising and attractive agent in the treatment of type 2 diabetes mellitus (T2DM). Both Alzheimer’s disease (AD) and T2DM share some common pathophysiologic hallmarks, such as amyloid β(Aβ), phosphoralation of tau protein, and glycogen synthase kinase-3. GLP-1 possesses neurotropic properties and can reduce amyloid protein levels in the brain. Based on extensive studies during the past decades, the understanding on AD leads us to believe that the primary targets in AD are the Aβ and tau protein. Combine these findings, GLP-1 is probably a promising agent in the therapy of AD. This review was focused on the biochemistry and physiology of GLP-1, communities between T2DM and AD, new progresses of GLP-1 in treating T2MD and improving some pathologic hallmarks of AD.

Keywords: glucagon-like peptide 1, type 2 diabetes mellitus, Alzheimer’s disease

References

  • [1].Holst J.J. Glucagonlike peptide 1: a newly discovered gastrointestinal hormone. Gastroenterology. 1994;107:1848–1855. doi: 10.1016/0016-5085(94)90831-1. [DOI] [PubMed] [Google Scholar]
  • [2].Knudsen L.B. Glucagon-like peptide-1: the basis of a new class of treatment for type 2 diabetes. J Med Chem. 2004;47:4128–4134. doi: 10.1021/jm030630m. [DOI] [PubMed] [Google Scholar]
  • [3].Gutniak M., Orskov C., Holst J.J., Ahren B., Efendic S. Antidiabetogenic effect of glucagon-like peptide-1 (7–36) amide in normal subjects and patients with diabetes mellitus. N Engl J Med. 1992;326:1316–1322. doi: 10.1056/NEJM199205143262003. [DOI] [PubMed] [Google Scholar]
  • [4].Creutzfeldt W. The incretin concept today. Diabetologia. 1979;16:75–85. doi: 10.1007/BF01225454. [DOI] [PubMed] [Google Scholar]
  • [5].Perfetti R., Zhou J., Doyle M.E., Egan J.M. Glucagon-like peptide-1 induces cell proliferation and pancreatic-duodenum homeobox-1 expression and increases endocrine cell mass in the pancreas of old, glucose-intolerant rats. Endocrinology. 2000;141:4600–4605. doi: 10.1210/en.141.12.4600. [DOI] [PubMed] [Google Scholar]
  • [6].Hui H., Zhao X., Perfetti R. Structure and function studies of glucagon-like peptide-1 (GLP-1): the designing of a novel pharmacological agent for the treatment of diabetes. Diabetes Metab Res Rev. 2005;21:313–331. doi: 10.1002/dmrr.553. [DOI] [PubMed] [Google Scholar]
  • [7].Perry T., Lahiri D.K., Sambamurti K., Chen D., Mattson M.P., Egan J.M., et al. Glucagon-like peptide-1 decreases endogenous amyloid β peptide (Aβ) levels and protects hippocampal neurons from death induced by Aβ and iron. J Neurosci Res. 2003;72:603–612. doi: 10.1002/jnr.10611. [DOI] [PubMed] [Google Scholar]
  • [8].Satoh F., Beak S.A., Small C.J., Falzon M., Ghatei M.A., Bloom S.R., et al. Characterization of human and rat glucagon-like peptide-1 receptors in the neurointermediate lobe: lack of coupling to either stimulation or inhibition of adenylyl cyclase. Endocreology. 2000;141:1301–1309. doi: 10.1210/en.141.4.1301. [DOI] [PubMed] [Google Scholar]
  • [9].Perry T., Greig N.H. The glucagon-like peptides: a new genre in therapeautic targets for intervention in Alzheimer’s disease. J Alzheimer Dis. 2002;4:487–496. doi: 10.3233/jad-2002-4605. [DOI] [PubMed] [Google Scholar]
  • [10].Perry T., Greig N.H. A new Alzheimer’s disease interventive strategy: GLP-1. Curr Drug Targets. 2004;5:565–571. doi: 10.2174/1389450043345245. [DOI] [PubMed] [Google Scholar]
  • [11].Perry T., Greig N.H. Enhancing central nervous system endogenous GLP-1 receptor pathways for intervention in Alzheimer’s disease. Curr Alzheimer Res. 2005;2:377–385. doi: 10.2174/1567205054367892. [DOI] [PubMed] [Google Scholar]
  • [12].Bell G.I. The glucagon superfamily: precursor structure and gene organization. Peptides. 1986;7(Suppl1):27–36. doi: 10.1016/0196-9781(86)90160-9. [DOI] [PubMed] [Google Scholar]
  • [13].Suda K., Takahashi H., Fukase N., Manaka H., Tominaga M., Sasaki H. Distribution and molecular forms of glucagon-like peptide in the dog. Life Sci. 1989;45:1793–1798. doi: 10.1016/0024-3205(89)90519-5. [DOI] [PubMed] [Google Scholar]
  • [14].Rouille Y., Martin S., Steiner D.F. Differential Processing of Proglucagon by the Subtilisin-like Prohormone Convertases PC2 and PC3 to Generate either Glucagon or Glucagon-like Peptide. J Biol Chem. 1995;270:26488–26496. doi: 10.1074/jbc.270.44.26488. [DOI] [PubMed] [Google Scholar]
  • [15].Wettergren A., Pridal L., Wojdemann M., Holst J.J. Amidated and non-amidated glucagon-like peptide-1 (GLP-1): non-pancreatic effects (cephalic phase acid secretion) and stability in plasma in humans. Regul Pept. 1998;77:83–87. doi: 10.1016/S0167-0115(98)00044-5. [DOI] [PubMed] [Google Scholar]
  • [16].Nauck M.A. Glucagon-like peptide 1 (GLP-1): a potent gut hormone with a possible therapeutic perspective. Acta Diabetol. 1998;35:117–129. doi: 10.1007/s005920050116. [DOI] [PubMed] [Google Scholar]
  • [17].Demuth H.U., McIntosch C.H., Pederson R.A. Type 2 diabetestherapy with dipeptidyl peptidase IV inhibitors. Biochim Biophys Acta. 2005;1751:33–45. doi: 10.1016/j.bbapap.2005.05.010. [DOI] [PubMed] [Google Scholar]
  • [18].Knudsen L.B., Pridal L. Glucagon-like peptide-1-(9-36) amide is a major metabolite of glucagon-like peptide-1-(7–36) amide after in vivo administration to dogs, and it acts as an antagonist on the pancreatic receptor. Eur J Pharmacol. 1996;318:429–435. doi: 10.1016/S0014-2999(96)00795-9. [DOI] [PubMed] [Google Scholar]
  • [19].Schmidtler J., Schepp W., Janczewska I., Weigert N., Furlinger C., Schusdziarra V., et al. GLP-1-(7–36) amide,-(1-37), and-(1-36) amide: potent cAMP-dependent stimuli of rat parietal cell function. Am J Physiol. 1991;260:G940–G950. doi: 10.1152/ajpgi.1991.260.6.G940. [DOI] [PubMed] [Google Scholar]
  • [20].Nauck M.A., Weber I., Bach I., Richter S., Orskov C., Holst J.J., et al. Normalization of fasting glycaemia by intravenous GLP-1 [(7–36 amide) or (7–37)] in type 2 diabetes patients. Diabet Med. 1988;15:937–945. doi: 10.1002/(SICI)1096-9136(1998110)15:11<937::AID-DIA701>3.0.CO;2-0. [DOI] [PubMed] [Google Scholar]
  • [21].Deacon C.F., Plamboeck A., Moller S., Holst J.J. GLP-1-(9-36) amide reduces blood glucose in anesthetized pigs by a mechanism that does not involve insulin secretion. Am J Physiol Endocrinol Metab. 2002;282:E873–E879. doi: 10.1152/ajpendo.00452.2001. [DOI] [PubMed] [Google Scholar]
  • [22].Rachman J., Gribble F.M., Barrow B.A., Levy J.C., Buchanan K.D., Turner R.C. Normalization of insulin responses to glucose by overnight infusion of glucagon-like peptide 1 (7–36) amide in patients with NIDDM. Diabetes. 1996;45:1524–1530. doi: 10.2337/diabetes.45.11.1524. [DOI] [PubMed] [Google Scholar]
  • [23].Nauck M.A., Kleine N., Orskov C., Holst J.J., Willms B., Creutzfeldt W. Normalization of fasting hyperglycaemia by exogenous glu cagon-like peptide 1 (7–36 amide) in type 2 (non-insulindependent) diabetic patients. Diabetologia. 1993;36:741–744. doi: 10.1007/BF00401145. [DOI] [PubMed] [Google Scholar]
  • [24].Willms B., Werner J., Holst J.J., Orskov C., Creutzfeldt W., Nauck M.A. Gastric emptying, glucose responses, and insulin secretion after a liquid test meal: effects of exogenous glucagon-like peptide-1 (GLP-1)-(7–36) amide in type 2 (noninsulin-dependent) diabetic patients. J Clin Endocrinol Metab. 1996;81:327–332. doi: 10.1210/jc.81.1.327. [DOI] [PubMed] [Google Scholar]
  • [25].Toft-Nielsen M.B., Madsbad S., Holst J.J. Continuous subcutaneous infusion of glucagon-like peptide 1 lowers plasma glucose and reduces appetite in type 2 diabetic patients. Diabetes Care. 1999;22:1137–1143. doi: 10.2337/diacare.22.7.1137. [DOI] [PubMed] [Google Scholar]
  • [26].Zander M., Madsbad S., Madsen J.L., Holst J.J. Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: a parallel-group study. Lancet. 2002;359:824–830. doi: 10.1016/S0140-6736(02)07952-7. [DOI] [PubMed] [Google Scholar]
  • [27].Drucker D.J. Biological actions and therapeutic potential of the glucagon-like peptides. Gastroenterology. 2002;122:531–544. doi: 10.1053/gast.2002.31068. [DOI] [PubMed] [Google Scholar]
  • [28].Ahren B. Gut peptides and type 2 diabetes mellitus treatment. Curr Diab Rep. 2003;3:365–372. doi: 10.1007/s11892-003-0079-9. [DOI] [PubMed] [Google Scholar]
  • [29].Huang T.H.J., Brubaker P.L. Synthesis and secretion of glucagon-like peptide-1 by fetal rat intestinal cells in culture. Endocrine. 1995;3:499–503. doi: 10.1007/BF02738824. [DOI] [PubMed] [Google Scholar]
  • [30].Burcelin R., Da Costa A., Drucker D., Thorens B. Glucose competence of the hepatoportal vein sensor requires the presence of an activated glucagon-like peptide-1 receptor. Diabetes. 2001;50:1720–1728. doi: 10.2337/diabetes.50.8.1720. [DOI] [PubMed] [Google Scholar]
  • [31].Dardevet D., Moore M.C., DiCostanzo C.A., Farmer B., Neal D.W., Snead W., et al. Insulin secretion-independent effects of GLP-1 on canine liver glucose metabolism do not involve portal vein GLP-1 receptors. Am J Physiol Gastrointest Liver Physiol. 2005;289:G806–G814. doi: 10.1152/ajpgi.00121.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [32].Holst J.J., Deacon C.F. Glucagon-like peptide-1 mediates the therapeutic actions of DPP-IV inhibitors. Diabetologia. 2005;48:612–615. doi: 10.1007/s00125-005-1705-7. [DOI] [PubMed] [Google Scholar]
  • [33].Ionut V., Hucking K., Liberty I.F., Bergman R.N. Synergistic effect of portal glucose and glucagon-like peptide-1 to lower systemic glucose and stimulate counter-regulatory hormones. Diabetologia. 2005;48:967–975. doi: 10.1007/s00125-005-1709-3. [DOI] [PubMed] [Google Scholar]
  • [34].Combettes M.M. GLP-1 and type 2 diabetes: physiology and new clinical advances. Current Opin Pharmacol. 2006;6:598–605. doi: 10.1016/j.coph.2006.08.003. [DOI] [PubMed] [Google Scholar]
  • [35].Raufman J.P. Bioactive peptides from lizard venoms. Regul Pept. 1996;61:1–18. doi: 10.1016/0167-0115(96)00135-8. [DOI] [PubMed] [Google Scholar]
  • [36].Stoffel M., Espinosa R., 3rd, Le Beau M.M., Bell G.I. Human glucagon-like peptide-1 receptor gene. Localization to chromosome band 6p21 by fluorescence in situ hybridization and linkage of a highly polymorphic simple tandem repeat DNA polymorphism to other markers on chromosome 6. Diabetes. 1993;42:1215–1218. doi: 10.2337/diabetes.42.8.1215. [DOI] [PubMed] [Google Scholar]
  • [37].Campos R.V., Lee Y.C., Drucker D.J. Divergent tissue-specific and developmental expression of receptors for glucagon and glucagon-like peptide-1 in the mouse. Endocrinology. 1994;134:2156–2164. doi: 10.1210/en.134.5.2156. [DOI] [PubMed] [Google Scholar]
  • [38].Wheeler M.B., Lu M., Dillon J.S., Leng X.H., Chen C., Boyd A.E. Functional expression of the rat glucagon-like peptide-I receptor, evidence for coupling to both adenylyl cyclase and phospholipase-C. Endocrinology. 1993;133:57–62. doi: 10.1210/en.133.1.57. [DOI] [PubMed] [Google Scholar]
  • [39].Wilmen A., Van Eyll B., Goke B., Goke R. Five out of six tryptophan residues in the N-terminal extracellular domain of the rat GLP-1 receptor are essential for its ability to bind GLP-1. Peptides. 1997;18:301–305. doi: 10.1016/S0196-9781(96)00321-X. [DOI] [PubMed] [Google Scholar]
  • [40].Salapatek A.M., MacDonald P.E., Gaisano H.Y., Wheeler M.B. Mutations to the third cytoplasmic domain of the glucagon-like peptide 1 (GLP-1) receptor can functionally uncouple GLP-1-stimulated insulin secretion in HIT-T15 cells. Mol Endocrinol. 1999;13:1305–1317. doi: 10.1210/me.13.8.1305. [DOI] [PubMed] [Google Scholar]
  • [41].Margolis R.U., Altszuler N. Insulin in the cerebrospinal fluid. Nature. 1967;215:1375–1376. doi: 10.1038/2151375a0. [DOI] [PubMed] [Google Scholar]
  • [42].Havrankova J., Schmechel D., Roth J., Brownstein M. Identification of insulin in rat brain. Proc Natl Acad Sci USA. 1978;75:5737–5741. doi: 10.1073/pnas.75.11.5737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [43].Havrankova J., Roth J., Brownstein M. Insulin receptors are widely distributed in the central nervous system of the rat. Nature. 1978;272:827–829. doi: 10.1038/272827a0. [DOI] [PubMed] [Google Scholar]
  • [44].Glabe C.G. Common mechanisms of amyloid oligomer pathogenesis in degenerative disease. Neurobiol Aging. 2006;27:570–575. doi: 10.1016/j.neurobiolaging.2005.04.017. [DOI] [PubMed] [Google Scholar]
  • [45].Churcher I. Tau therapeutic strategies for the treatment of Alzheimer’s disease. Curr Top Med Chem. 2006;6:579–595. doi: 10.2174/156802606776743057. [DOI] [PubMed] [Google Scholar]
  • [46].Roche E., Reig J.A., Campos A., Paredes B., Isaac J.R., Lim S., et al. Insulin-secreting cells derived from stem cells: clinical perspectives, hypes and hopes. Transpl Immunol. 2005;15:113–129. doi: 10.1016/j.trim.2005.09.008. [DOI] [PubMed] [Google Scholar]
  • [47].Mosselman S., Hoppener J.W., Zandberg J., van Mansfeld A.D., Geurts van Kessel A.H., Lips C.J., et al. Islet amyloid polypeptide: identification and chromosomal localization of the human gene. FEBS Lett. 1988;239:227–232. doi: 10.1016/0014-5793(88)80922-0. [DOI] [PubMed] [Google Scholar]
  • [48].Hoppener J.W., Ahren B., Lips C.J. Islet amyloid and type 2 diabetes mellitus. N Engl J Med. 2000;343:411–419. doi: 10.1056/NEJM200008103430607. [DOI] [PubMed] [Google Scholar]
  • [49].Janson J., Laedtke T., Parisi J.E., O’Brien P., Petersen R.C., Butler P.C. Increased risk of type 2 diabetes in Alzheimer disease. Diabetes. 2004;53:474–481. doi: 10.2337/diabetes.53.2.474. [DOI] [PubMed] [Google Scholar]
  • [50].Razay G., Wilcock G.K. Hyperinsulinaemia and Alzheimer’s disease. Age Ageing. 1994;23:396–399. doi: 10.1093/ageing/23.5.396. [DOI] [PubMed] [Google Scholar]
  • [51].Leibson C.L., Rocca W.A., Hanson V.A., Cha R., Kokmen E., O’Brien P.C., et al. Risk of dementia among persons with diabetes mellitus: a population-based cohort study. Am J Epidemiol. 1997;145:301–308. doi: 10.1093/oxfordjournals.aje.a009106. [DOI] [PubMed] [Google Scholar]
  • [52].Ott A., Stolk R.P., van Harskamp F., Pols H.A., Hofman A., Breteler M.M. Diabetes mellitus and the risk of dementia: The Rotterdam Study. Neurology. 1999;53:1937–1942. doi: 10.1212/wnl.53.9.1937. [DOI] [PubMed] [Google Scholar]
  • [53].Stolk R.P., Breteler M.M., Ott A., Pols H.A., Lamberts S.W., Grobbee D.E., et al. Insulin and cognitive function in an elderly population. The Rotterdam Study. Diabetes Care. 1997;20:792–795. doi: 10.2337/diacare.20.5.792. [DOI] [PubMed] [Google Scholar]
  • [54].Watson G.S., Peskind E.R., Asthana S., Purganan K., Wait C., Chapman D., et al. Insulin increases CSF Aâ42 levels in normal older adults. Neurology. 2003;60:1899–1903. doi: 10.1212/01.wnl.0000065916.25128.25. [DOI] [PubMed] [Google Scholar]
  • [55].Wolozin B. Cholesterol and Alzheimer’s disease. Biochem Soc Trans. 2002;30:525–529. doi: 10.1042/BST0300525. [DOI] [PubMed] [Google Scholar]
  • [56].Reaven G.M., Bernstein R., Davis B., Olefsky J.M. Nonketotic diabetes mellitus: insulin deficiency or insulin resistance? Am J Med. 1976;60:80–88. doi: 10.1016/0002-9343(76)90536-2. [DOI] [PubMed] [Google Scholar]
  • [57].Janson J., Soeller W.C., Roche P.C., Nelson R.T., Torchia A.J., Kreutter D.K., et al. Spontaneous diabetes mellitus in transgenic mice expressing human islet amyloid polypeptide. Proc Natl Acad Sci USA. 1996;93:7283–7288. doi: 10.1073/pnas.93.14.7283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [58].Verchere C.B., D’Alessio D.A., Palmiter R.D., Weir G.C., Bonner-Weir S., Baskin D.G., et al. Islet amyloid formation associated with hyperglycemia in transgenic mice with pancreatic beta cell expression of human islet amyloid polypeptide. Proc Natl Acad Sci USA. 1996;93:3492–3496. doi: 10.1073/pnas.93.8.3492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [59].Gebre-Medhin S., Mulder H., Pekny M., Westermark G., Tornell J., Westermark P., et al. Increased insulin secretion and glucose tolerance in mice lacking islet amyloid polypeptide (amylin) Biochem Biophys Res Commun. 1998;250:271–277. doi: 10.1006/bbrc.1998.9308. [DOI] [PubMed] [Google Scholar]
  • [60].Farris W., Mansourian S., Chang Y., Lindsley L., Eckman E.A., Frosch M.P., et al. Insulin-degrading enzyme regulates the levels of insulin, amyloid â-protein, and the â-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci USA. 2003;100:4162–4167. doi: 10.1073/pnas.0230450100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [61].Freude S., Plum L., Schnitker J., Leeser U., Udelhoven M., Krone W., et al. Peripheral hyperinsulinemia promotes tau phosphorylation in vivo. Diabetes. 2005;54:3343–3348. doi: 10.2337/diabetes.54.12.3343. [DOI] [PubMed] [Google Scholar]
  • [62].Sivaprakasam P., Xie A., Doerksen R.J. Probing the physicochemical and structural requirements for glycogen synthase kinase-3α inh ib it ion: 2D-QSAR for 3-ani li no-4-phenylmaleimides. Bioorg Med Chem. 2006;14:8210–8218. doi: 10.1016/j.bmc.2006.09.021. [DOI] [PubMed] [Google Scholar]
  • [63].Phiel C.J., Wilson C.A., Lee V.M., Klein P.S. GSK-3á regulates production of Alzheimer’s disease amyloid-â peptides. Nature. 2003;423:435–439. doi: 10.1038/nature01640. [DOI] [PubMed] [Google Scholar]
  • [64].Bhat R.V., Budd Haeberlein S.L., Avila J. Glycogen synthase kinase 3: a drug target for CNS therapies. J Neurochem. 2004;89:1313–1317. doi: 10.1111/j.1471-4159.2004.02422.x. [DOI] [PubMed] [Google Scholar]
  • [65].Behme M.T., Dupre J., McDonald T.J. Glucagon-like peptide 1 improved glycemic control in type 1 diabetes. BMC Endocr Disord. 2003;3:3–12. doi: 10.1186/1472-6823-3-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [66].Gromada J., Holst J.J., Rorsman P. Cellular regulation of islet hormone secretion by the incretin hormone glucagon-like peptide 1. Pflugers Arch. 1998;435:583–594. doi: 10.1007/s004240050558. [DOI] [PubMed] [Google Scholar]
  • [67].Mattson M.P., Lovell M.A., Furukawa K., Markesbery W.R. Neurotrophic factors attenuate glutamate-induced accumulation of peroxides, elevation of intracellular Ca2+ concentration, and neurotoxicity and increase antioxidant enzyme activities in hippocampal neurons. J Neurochem. 1995;65:1740–1751. doi: 10.1046/j.1471-4159.1995.65041740.x. [DOI] [PubMed] [Google Scholar]
  • [68].Kumar M, Hunag Y, Glinka Y, Prud’homme GJ, Wang Q. Gene therapy of diabetes using a novel GLP-1/IgG1-Fc fusion construct normalizes glucose levels in db/db mice. Gene Therapy 2006, Aug 31. Epub ahead of print. [DOI] [PubMed]
  • [69].Sinclair E.M., Drucker D.J. Glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase IV inhibitors: new therapeutic agents for the treatment of type 2 diabetes. Curr Opin Endocrinol Diabet. 2005;12:146–151. doi: 10.1097/01.med.0000155379.11926.e2. [DOI] [Google Scholar]
  • [70].Holst J.J. Glucagon-like peptide-1: from extract to agent. The Claude Bernard Lecture 2005. Diabetologia. 2006;49:253–260. doi: 10.1007/s00125-005-0107-1. [DOI] [PubMed] [Google Scholar]
  • [71].Gautier J.F., Fetita S., Sobngwi E., Salaun-Martin C. Biological actions of the incretins GIP and GLP-1 and therapeutic perspectives in patients with type 2 diabetes. Diabetes Metab. 2005;31:233–242. doi: 10.1016/S1262-3636(07)70190-8. [DOI] [PubMed] [Google Scholar]
  • [72].Imeryuz N., Yegen B.C., Bozkurt A., Coskun T., Villanueva-Penacarrillo M.L., Ulusoy N.B. Glucagon-like peptide-1 inhibits gastric emptying via vagal afferent-mediated central mechanisms. Am J Physiol. 1997;273:G920–G927. doi: 10.1152/ajpgi.1997.273.4.G920. [DOI] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES