Skip to main content
. 2017 Jan 24;14(1):49–61. doi: 10.1007/s10433-016-0407-y

Table 5.

Models of logistic regression for variable “hard discrimination”

Variables Categories Model 1: soft discrimination Model 2: hard discrimination Model 3: hard discrimination (+ soft discr. as predictor)
Gender (R = men) 1.00 1.00 1.00
Women 1.19 1.63* 1.64*
Age (R = 45–49) 1.00 1.00 1.00
50–54 1.12 1.28 1.19
55–59 0.97 1.09 0.99
60–64 0.81 0.80 0.76
Education level (R = primary) 1.00 1.00
Vocational 1.07 0.93 0.79
Secondary 1.48 1.27 0.98
Tertiary 1.36 1.34 1.15
Place of residence (R = rural area) 1.00 1.00 1.00
Big city, suburbs 1.25 1.86* 2.24**
Small and medium sized city 1.24 1.61 1.65
Occupational status (R = working) 1.00 1.00 1.00
Unemployed 3.30*** 14.32*** 13.86***
Retired but still working 1.19 1.35 1.31
Non-active 2.46*** 7.29*** 6.90***
Occupational group (R = professionals, managers) 1.00 1.00 1.00
Services, technicians, office clerks 1.21 1.57 1.65
Manual and agriculture workers 1.34 1.14 1.06
Type of sector (R = non-profit or mixed) 1.00 1.00 1.00
Public 0.59* 0.58 0.64
Private 0.65 0.55 0.60
Sector of economy (R = production) 1.00 1.00 1.00
Services 1.06 0.64 0.56*
Public services 1.36 0.80 0.63
Soft discrimination (0 = no discrimination) 1.00
Occurs (1) 11.53***
Constant 0.22*** 0.06*** 0.02***
Model fit Nagelkerke R 2 0.074 0.274 0.455
Cox & Snell R 2 0.052 0.159 0.264

*** p < 0.001; ** p < 0.01; * p < 0.05; N = 1000