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Abstract

Concordance measures are frequently used for assessing the discriminative ability of risk 

prediction models. The interpretation of estimated concordance at external validation is difficult if 

the case-mix differs from the model development setting. We aimed to develop a concordance 

measure that provides insight into the influence of case-mix heterogeneity and is robust to 

censoring of time-to-event data.

We first derived a model-based concordance measure (mbc) that allows for quantification of the 

influence of case-mix heterogeneity on discriminative ability of proportional hazards and logistic 

regression models. This mbc can also be calculated including a regression slope that calibrates the 

predictions at external validation (c-mbc), hence assessing the influence of overall regression 

coefficient validity on discriminative ability. We derived variance formulas for both mbc and c-
mbc. We compared the mbc and the c-mbc with commonly used concordance measures in a 

simulation study and in two external validation settings.

The mbc was asymptotically equivalent to a previously proposed resampling-based case-mix 

corrected c-index. The c-mbc remained stable at the true value with increasing proportions of 

censoring, while Harrell’s c-index and to a lesser extent Uno’s concordance measure increased 

unfavorably. Variance estimates of mbc and c-mbc were well in agreement with the simulated 

empirical variances.

We conclude that the mbc is an attractive closed-form measure that allows for a straightforward 

quantification of the expected change in a model’s discriminative ability due to case-mix 

heterogeneity. The c-mbc also reflects regression coefficient validity, and is a censoring-robust 

alternative for the c-index when the proportional hazards assumption holds.
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BACKGROUND

Assessing the performance of a clinical prediction model is of great practical importance to 

learn about the potential clinical value. An essential aspect of model performance is 

separating subjects with good outcome from subjects with poor outcome (discrimination) 

[1]. Concordance measures, also called concordance-statistics or c-statistics, are commonly 

used to assess the discriminative ability of risk prediction models. A c-statistic estimates for 

two randomly chosen subjects the probability that the model predicts a higher risk for the 

subject with poorer outcome (concordance probability) [2, 3]. The observed c-statistic of a 

risk prediction model in external validation data depends on the validity of the regression 

coefficients, but also on the heterogeneity of the case-mix [4–6]. Case-mix heterogeneity 

refers to the variation in subject characteristics and can readily be quantified by the standard 

deviation of the linear predictor [5].

Harrell’s concordance-index (c-index) is the most frequently used c-statistic for binary and 

for time-to-event outcomes, but is sensitive to censoring of time-to-event outcomes [7, 8]. 

An inverse probability weighting technique was proposed by Uno et al. to offset the 

dependence of the c-index on censoring [8]. For validation of proportional hazards 

regression models within model development data, Gönen and Heller proposed a censoring-

robust concordance measure [7]. This model-based concordance measure, which was also 

suggested by Korn and Simon as a measure of explained variation [9], is a function of the 

regression coefficients and the covariate distribution and does not use observed event and 

censoring times. Consequently, in an external validation population it merely assesses the 

expected discriminative ability of the model, similar to a previously proposed case-mix 

corrected c-index [10]. This case-mix corrected c-index – based on resampling outcomes 

under the assumption of correct regression coefficients – was suggested to disentangle the 

effect of a different case-mix from incorrect regression coefficients on discrimination [4]. 

Such disentangling is relevant to the interpretation of a difference between the c-statistic at 

model development versus the observed c-statistic at external validation. We hereto calculate 

the difference between the c-statistic at model development and the case-mix corrected c-

statistic at external validation to indicate the change in discriminative ability attributable to 

the difference in case-mix heterogeneity. Next, the difference between the observed c-

statistic and the case-mix corrected c-statistic in external validation data expresses the 

change in discriminative ability due to the (in)correctness of the regression coefficients.

We aimed to develop a model-based concordance measure (mbc) to assess the discriminative 

ability of risk prediction models in external data. Since the most commonly used 

concordance measures all have their restrictions (Table 1), the new measure should be a 

valuable addition for: (1) assessment of the influence of case-mix heterogeneity on 

concordance of both logistic regression and proportional hazards regression models; and (2) 

censoring-robust measurement of a proportional hazards regression model’s concordance in 

external validation data. We studied the behavior of the newly developed concordance 

measure in external validation settings with simulation and two case studies.
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THE MODEL-BASED CONCORDANCE

Notation

We will assess the discriminative ability of previously developed logistic regression models 

and proportional hazards regression models in new patient populations. Both regression 

models predict patient outcome Y based on a linear predictor , which is a linear 

combination of the patient’s baseline characteristics vector x and regression coefficient 

vector β. The random outcome variable  and its realization  for patient i of n patients in 

the validation population takes values of 0 or 1 in case of a logistic regression model, and 

positive time-to-event values in case of a proportional hazards regression model. For a time-

to-event realization of patient i we use the indicator  to denote an observed event time 

 or a censored event time . When the  row of a population’s design matrix X 

is the baseline characteristics vector , the linear predictor  of patient i is the  element 

of the vector Xβ. Note that an additional first element of  is set to 1 for multiplication with 

a logistic regression model’s intercept. A linear predictor  of a logistic regression model 

is transformed by the logistic function to obtain prediction . A linear predictor of a 

proportional hazards regression models is transformed into a prediction  by the survival 

function , with  the baseline hazard function of 

the proportional hazards regression model’s. Although the baseline hazard function is 

necessary to obtain absolute risk predictions, we will not need it in the remainder of this 

paper.

Derivation of the model-based concordance

The concordance probability is defined as the probability that a model predicts for two 

randomly chosen patients a higher risk for the patient with poorer outcome.

For a given patient population it is the probability that a randomly selected patient pair has 

concordant predictions and outcomes, divided by the probability that their outcomes are 

different (not “tied”). The probability that a randomly selected patient pair has concordant 

predictions and outcomes is [9]:

(1)

Similarly, the probability that a randomly selected patient pair has unequal outcomes is:

(2)

Thus, the concordance probability CP in a patient population is obtained by dividing the 

probabilities of equation 1 and 2:
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(3)

With  equation 3 returns Harrell’s c-index, but to obtain a model-

based estimator we derive  from a regression model. For a logistic regression 

model the model-based probabilities  are:

(4)

Combining equations 3 and 4, and replacing  by  because the 

predictions are an increasing function of the linear predictor, results in the model-based 

concordance (mbc) for logistic regression models:

(5)

For a proportional hazards regression model the model-based probabilities  are 

[7]:

(6)

Combining equations 3 and 6, and replacing  by  because the time-

to-event predictions are a decreasing function of the linear predictor, results in the model-

based concordance (mbc) for proportional hazards regression models:

(7)
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The denominator of equation 7 is equal to  since 

.

Equation 3 assumes that model predictions  and  are different for every combination of i 
and j. Since model predictions may be equal for some combinations of i and j, e.g. when x is 

a binary marker, we can generalize equation 3, and similarly equations 5 and 7, by using 

 instead of . Hence equation 3 can also be written in the familiar c-

statistic format:

(3’)

In an apparent validation of a model with regression coefficient estimates  the 

gives an estimate of the concordance probability. For proportional hazards regression models 

the  is identical to the censoring-robust estimator proposed before by Gönen and 

Heller [7]. Gönen and Heller derived their model-based concordance measure from a 

reversed definition of the concordance probability, i.e. 

, conditioning on weakly ordered 

predictions. However, for fully continuous predictions and outcomes the two definitions of 

the concordance probability are equivalent since  implies  and the summands 

in the de denominator,  and , both equal 1 

[11].

For proportional hazards regression models based on uncensored, continuous time-to-event 

outcomes, the  is asymptotically equivalent to Harrell’s c-index when the 

proportional hazards assumption holds (Appendix 2). The same asymptotic equivalence 

holds for logistic regression models, with exact equality when the model contains only one 

categorical predictor (Appendix 2). In an external validation setting of a model with 

regression coefficients β the  can be used as a benchmark value to assess the 

influence of case-mix heterogeneity on the concordance probability – comparable to the 

case-mix corrected c-index as proposed before [4] – since it assumes correct regression 

coefficients [10]. Appendix 1 contains the derivation of variance estimates of the mbc in 

model development and external validation settings.

Including the calibration slope in the mbc

In an external validation setting the  does not use observed outcomes and is 

therefore not influenced by the validity of the regression coefficients in the validation data. 

Refitting the regression model to the validation data does not give insight into the 
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discriminative ability of the previously developed model. To assess the influence of overall 

regression coefficient validity on concordance, we first estimate the calibration slope  in 

the validation data, i.e. the regression coefficient of a model that regresses the observed 

outcomes y on the linear predictors Xβ in the validation data [12]. If , the regression 

coefficients are on average correct in the validation data. In contrast,  indicates a 

weaker association between the linear predictor and the outcomes in the validation data. For 

logistic regression models, an intercept estimate  is required for estimation of the 

calibration slope . With  we will denote  for logistic regression models and 

 for proportional hazards regression models. The , which we label 

calibrated model-based concordance (c-mbc), assesses both the influence of case-mix 

heterogeneity and the overall validity of the regression coefficients β. Similar to the original 

Gönen and Heller estimator, the c-mbc does not directly depend on observed survival and 

censoring times. Instead, it is only based on the regression coefficients  and the distribution 

of the linear predictor Xβ. Since the effect of censoring on the bias of  is negligible, 

 is expected to be insensitive to censoring as well. Table 1 gives an overview of 

the potential use of the mbc in relation to existing concordance measures.

CASE STUDIES

Unfavorable outcome after traumatic brain injury

To illustrate the use of the mbc and the c-mbc for logistic regression models, we revisit a 

case study on the prediction of 6-month outcome in patients with traumatic brain injury [4]. 

A model to predict unfavorable outcome (i.e., death, a vegetative state, or severe disability) 

was developed with data on 1,118 subjects (456 (41%) had an unfavorable outcome) from 

the International Tirilazad Trial [13]. The validity of the risk prediction model was studied in 

1,041 subjects (395 (38%) had an unfavorable outcome) who were enrolled in the North 

American Tirilazad Trial [14]. The logistic regression model consisted of three predictors 

(age, motor score, and pupillary reactivity) for an unfavorable 6-month outcome [15].

The model showed reasonable discrimination in the development sample (c-index 0.749; 

mbc 0.749; Table 5). The larger variability of the linear predictor in the external validation 

sample than in the development sample (SD(Xβ) = 1.11 and SD(Xβ) = 1.03, respectively) 

substantially increased the expected discriminative ability (mbc = 0.767; 95% CI 0.759 – 

0.775; Table 5). Including the validity of the regression coefficients (calibration slope 1.02) 

indicated a small additional increase in discriminative ability (c-index 0.779; c-mbc 0.774; 

Table 5).

Survival after coronary revascularization

To illustrate the use of the mbc and the c-mbc for proportional hazards regression models, 

we apply them to a recent validation study of the SYNTAX Score II (SSII) [16]. The SSII 

has been developed by applying a Cox proportional hazards model to the data of the 

SYNTAX trial [17, 18]. The SSII uses 2 anatomical variables (anatomical Syntax Score and 

unprotected left main coronary artery disease) and 6 clinical variables (age, creatinine 

clearance, left ventricular ejection fraction, sex, chronic obstructive pulmonary disease, and 

peripheral vascular disease) to predict 4-year mortality after revascularization with CABG or 
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PCI. For validation of SSII we use 3,986 patients of the Coronary REvascularization 

Demonstrating Outcome Study in Kyoto (CREDO-Kyoto) PCI/CABG registry cohort-2 

[19].

There was a substantial difference in the development data between the mbc (0.707; Table 5) 

and both the c-index (0.744) and Uno’s concordance measure (0.743), probably due to a 

high proportion of censoring (90.1%). Under the assumption that the proportional hazards 

assumption holds until the follow-up is complete– the proportional hazards assumption of 

the Cox regression model was not rejected up till 4 years of follow-up (p=0.63) [20] – we 

may conclude from the simulations study that the mbc gives a better estimate of the 

concordance probability in this example. The larger variability of the linear predictor in the 

external validation sample than in the development sample (SD(Xβ) = 0.97 and SD(Xβ) = 

0.90, respectively) increased the expected discriminative ability (mbc = 0.719; 95% CI 0.715 

– 0.722; Table 5). However, including the validity of the regression coefficients in the 

external validation sample (calibration slope 0.785) indicated an overall decrease in 

discriminative ability (c-index = 0.725; Uno = 0.729; c-mbc = 0.684; Table 5). The 

difference between the c-mbc and both the c-index and Uno’s concordance measure was 

again considerable, likely due to a high proportion of censoring (89.7%). The proportional 

hazards assumption of the Cox regression model that was refitted to the external validation 

data was again not rejected (p=0.41).

SIMULATION STUDY

Methods

We simulated validation studies of a logistic regression model that aims to predict a binary 

endpoint and a proportional hazards regression model for a time-to-event endpoint. Both 

regression models were characterized by a linear predictor , with the baseline 

characteristic vector x consisting of a continuous predictor x1, e.g. age, and a binary 

predictor x2, e.g. sex. To mimic different external validation settings, we generated patient 

data (10.000 replications of 400 patients per setting) with different case-mix heterogeneity 

and different true regression coefficients (Table 2; Table 3). In a base case scenario (A), 

continuous predictors x1 were drawn from a standard normal distribution and binary 

predictors x2 were drawn from a Bernoulli distribution with success probability 0.2. Based 

on true predictor effects β1 = β2 = 1, we generated binary outcomes y from a Bernoulli 

distribution with success probabilities  (true intercept β0 = −2) and 

time-to-event outcomes y from an exponential distribution with mean .

To study the influence of case-mix heterogeneity on concordance measures we varied the 

standard deviation of the continuous predictor (0.8 and 1.2 in scenarios B and C 

respectively) and the success probability of the binary predictor (0.1 and 0.4 in scenarios D 

and E respectively). We studied the influence of overall regression coefficient validity by 

varying the true effects of the continuous predictor (0.8 and 1.2 in scenarios F and G 

respectively), the binary predictor (0.5 and 2 in scenarios H and I respectively), and the true 

intercept of the logistic regression model (−3 and −1 in scenarios J and K respectively).
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Censoring times were generated from an exponential distribution with mean c for different 

choices of c to analyze the effect of different proportions of censoring. To illustrate the effect 

of a violation of the proportional hazards assumption, we alternatively generated time-to-

event outcomes from an exponential distribution with mean  and time-varying 

coefficients .

In each sample we calculated: the linear predictor Xβ with predictor effects β1 = β2 = 1 and 

intercept β0 = −2 in case of binary outcomes; the calibration slope  as the regression 

coefficient of a model with the linear predictor  as the sole predictor; the  and 

the  with their variance estimates; Harrell’s c-index; the case-mix corrected c-

index, i.e. the c-index based on either 25, 100 or 400 resampled outcomes for each linear 

predictor ; and Uno’s concordance measure with the truncation time τ equal to the 

maximum follow-up time and to 80% of the maximum follow-up time in each replication. 

We used the rcorr.cens function in R package Hmisc and the Est.Cval function in R package 

survC1 for calculation of Harrell’s c-index and Uno’s concordance measure respectively 

[21–23].

Results

For binary outcomes and for uncensored time-to-event outcomes we found that the means of 

the mbc and the case-mix corrected c-index were very similar across the different validation 

settings (Table 2; Table 3). The empirical standard deviation of the case-mix corrected c-

index was slightly higher as a result of resampling 400 binary outcomes and 25 time-to-

event outcomes for each patient. However, the case-mix corrected c-index converged to the 

mbc with increasing numbers of resampled outcomes per patient (Figure 1).

The means of the c-mbc and the c-index were very similar as well, although the empirical 

standard deviation was lower for the c-mbc in case of Cox regression (Table 2; Table 3). 

Standard deviation estimates of mbc and c-mbc were well in agreement with the simulated 

empirical variances (Table 2; Table 3). Across all validation settings, the c-mbc remained 

stable at the true value with increasing proportions of censoring of time-to-event outcomes, 

while the c-index and to a lesser extent Uno’s concordance measure increased unfavorably 

(Table 4; Supplementary figure 1). The empirical standard deviation of the c-mbc – again in 

good agreement with the standard deviation estimate – was structurally smaller than the 

standard deviation of the c-index and Uno’s measure. When outcomes were sampled from 

an exponential distribution with time-varying coefficients ( ), the 

proportional hazards assumption of the c-mbc was violated leading to an underestimation of 

the concordance probability, specifically in the absence of time-to-event outcomes 

(Supplementary table 1). As a result of the decrease of the true regression coefficients in 

time, all concordance measures increased with increasing proportions of censoring of time-

to-event outcomes.

We further analyzed the relation between the c-index and the mbc, the calibration slope or 

the c-mbc with scatterplots of validation setting A (Figure 2). Variation in the mbc was small 

compared to the c-index, since case-mix heterogeneity (SD(Xβ)) was stable across the 
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samples (left panel). With the limited number of 400 patients in each sample, the calibration 

slope – representing overall regression coefficient validity – varied substantially across the 

samples and was strongly related to the c-index (middle panel). Finally, the c-mbc – 

incorporating both case-mix heterogeneity and overall regression coefficient validity – 

correlated very well with the c-index (right panel).

When we changed case-mix heterogeneity (setting B-E), both the mean mbc and the mean c-
mbc changed similarly, since the mbc’s assumption of correct regression coefficients held in 

these validation settings. As expected, when we changed the regression coefficients (settings 

F-I) the mbc remained the same while the c-mbc changed in accordance with the calibration 

slope. Changing the intercept of the logistic regression model (settings J-K) again affected 

only the c-mbc, but with a much smaller impact than a change in the regression coefficients 

of predictors.

DISCUSSION

We derived the mbc, which is a closed-form, censoring-robust alternative for the resampling-

based case-mix corrected c-index. We showed that the mbc is asymptotically equivalent to a 

previously proposed, approximate case-mix corrected c-index. The c-mbc is comparable to 

Harrell’s c-index in independent data with binary and time-to-event outcomes and 

furthermore is robust to censoring of time-to-event outcomes, in contrast with the c-index 

and Uno’s concordance measure.

The mbc improves the understanding of a difference between the c-statistic at model 

development versus the observed c-statistic at external validation. The difference between 

the mbc at model development and the mbc at external validation indicates the change in 

discriminative ability attributable to the difference in case-mix heterogeneity. The difference 

between the c-mbc and the mbc in external validation data expresses the change in 

discriminative ability due to the (in)correctness of the regression coefficients. Thanks to their 

censoring-robustness, the mbc and the c-mbc facilitate measurements of concordance that 

are not biased by differences in censoring distributions between the development and the 

external validation setting.

The mbc and the c-mbc are model-based, i.e. they are based on the assumption that the true 

risks fit into the framework of a model. This assumption is necessary to evaluate the 

probability of the outcomes being ordered, conditional on the risk scores, i.e. 

. In this paper we used either a logistic regression model or a 

proportional hazards regression model to evaluate these probabilities. This may be a 

limitation compared to Harrell’s c-index and Uno’s concordance measure, since these pure 

rank-order statistics are applicable to any risk scoring system. However, since logistic 

regression and proportional hazards regression are commonly used to model binary 

outcomes and time-to-event outcomes respectively, the mbc and the c-mbc may often be 

valuable.

The c-mbc was shown to be very robust to censoring in the simulation study where the 

proportional hazards assumption held. When the proportional hazards assumption did not 

van Klaveren et al. Page 9

Stat Med. Author manuscript; available in PMC 2017 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



hold – as in our sensitivity analysis with time-dependent coefficients – the c-mbc gave 

different estimates than Harrell’s c-index and Uno’s concordance measure, even without 

censoring of time-to-event outcomes. In the presence of time-varying coefficients it may be 

better to assess discriminative ability in a limited follow-up period [8]. This was beyond the 

scope of our research, but we provided formulas for an mbc truncated at a fixed follow-up 

time in Appendix 3. When coefficients are time-dependent, the c-mbc could alternatively be 

based on more sophisticated conditional probabilities . Stare et al. proposed a 

measure for use with general dynamic event history regression models, including models 

with time-dependent coefficients, that reduces to the c-index for single-event survival data 

with neither censoring nor time dependency [24]. However, since all concordance measures 

for models with time-dependent coefficients will probably be sensitive to censoring, their 

use in practice needs additional study.

The c-mbc assumes a linear relationship (represented by the calibration slope ) between 

linear predictors and either the log hazard for time-to-event outcomes or the log odds for 

binary outcomes. In the scenarios F, G, H and I of our simulation study this assumption was 

clearly violated, since the true effect of only one of two predictors was varied consecutively. 

Although the c-mbc was robust to violation of the linearity assumption in these scenarios – 

the mean c-mbc was very close to the mean c-index (Table 2; Table 3) – further research is 

necessary to understand the importance of this assumption. An alternative c-mbc that allows 

for potential non-linear relationships between linear predictors and outcomes could be 

considered.

We derived variance estimators for the mbc – under the assumption of correct regression 

coefficients – and the c-mbc – including regression coefficient uncertainty. Variance 

estimates were very well in line with the empirical variances of the simulation study. The 

empirical variances of the c-mbc were generally lower than those of the c-index and Uno’s 

concordance measure for proportional hazards regression models, especially in the presence 

of high proportions of censoring. The higher precision of the c-mbc is likely the result of its 

proportional hazards assumption.

In both case-studies the effect of more case-mix heterogeneity (larger standard deviation of 

the linear predictor) on discriminative ability was illustrated by an increase in the mbc in the 

validation data compared to the mbc in the development data. The influence on 

discriminative ability of a change in the strength of the association between predictions and 

outcomes (calibration slope above 1 in the logistic regression case study, calibration slope 

below 1 in the proportional hazards regression case study), was reflected in the difference 

between the c-mbc and the mbc in the validation data. The large difference of the c-mbc in 

comparison with the c-index and Uno’s concordance measure, emphasized the importance of 

using censoring-robust concordance measures when time-to-event outcomes are 

substantially censored.

In conclusion, the mbc is an attractive closed-form measure that allows for straightforward 

quantification of the expected change in a model’s discriminative ability due to case-mix 

heterogeneity in a validation setting. Moreover, the c-mbc also reflects the impact of 

regression coefficient validity on a model’s discriminative ability in external validation data, 
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and is a censoring-robust alternative for the c-index when the proportional hazards 

assumption holds.
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APPENDIX 1

Estimating the variance of the mbc

The  estimates the concordance probability in an apparent validation setting. To 

obtain a variance estimate of  we follow the derivation of the variance estimate of 

Gönen and Heller’s concordance probability estimator [7]. It starts with a local linear 

asymptotic approximation of  in the neighborhood of the point estimate :

(8)

With , conditional on the covariates, the centered partial 

likelihood estimator  is asymptotically independent of . In addition, since 

 converges to a constant, the asymptotic variance of  is approximately:

(9)

The first part on the right hand side is the variance of the sample statistic . It is 

easy to obtain since  is the ratio of two U-statistics of degree 2:

(10)

From U-statistics theory we know that [25]:
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(11)

Hence

(12)

Note that for proportional hazards regression  and therefore the variance estimate 

reduces to .

The second part on the right hand side of equation 9 represents the variance of  as 

a result of uncertainty in the regression coefficients. We can use the inverse of the likelihood 

information matrix to estimate . The function  in equation 9 is estimated 

through numerical differentiation:

(13)

Where  is the standard error of  and  is the ith unit vector.

The variance of  in an apparent validation setting was decomposed into a part due 

to sampling patients and a part due to regression coefficient uncertainty (equation 9). When 

 is used in an external validation setting to assess the influence of case-mix 

heterogeneity on discriminative ability – assuming correct regression coefficients –, its 

variance is limited to the first part (equation 12). The c-mbc ( ) assesses both the 

influence of case-mix heterogeneity and the validity of the linear predictor Xβ in external 

data. The derivation of the variance estimate of  is similar to equation 8–13. 

Replacing X by Xβ and β by γ in equation 8 results in:

(14)

Similar to equation 9, the asymptotic variance of  is approximately:
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(15)

We can use equations 10–12 to estimate , the inverse of the likelihood 

information matrix to estimate  and numerical differentiation (equation 13) to 

estimate .

APPENDIX 2

Comparison of the mbc with Harrell’s c-index

We will show that within the development data, the mbc and the c-index are asymptotically 

equivalent for logistic regression models and – if the proportional hazards assumption holds 

– for proportional hazards regression models developed with continuous, uncensored time-

to-event outcomes. We will start by showing that the mbc and the c-index are exactly equal 

at internal validation of a logistic regression model with one binary or categorical predictor.

Logistic regression

Harrell’s c-index – allowing for ties in predictions – is:

(16)

The mbc at internal validation can be written similarly as:

(17)

The denominators of  and  are equal when  is estimated with logistic 

regression:

(18)

With only one binary predictor x, the numerators are equal as well since:
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(19)

And for ties:

(20)

Consequently,  and  are exactly equal for a logistic regression model 

with one binary predictor. Following the same line of reasoning, it is easy to show that 

 and  are equal for logistic regression models with one categorical 

predictor with any number of levels.

For logistic regression models in general, we stratify the subjects in risk groups  of 

increasing linear predictor values. The mbc can be written as:

(21)

With  and T denoting the sum of conditional probabilities  for 

respectively the subject pairs with different risk predictions but in the same risk group 

 and the subject pairs with equal risk predictions . 

The between-risk-group sums in  and  are asymptotically equivalent 

since:

van Klaveren et al. Page 14

Stat Med. Author manuscript; available in PMC 2017 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(22)

For subject pairs with different risk predictions but in the same risk group  and for 

subject pairs with equal risk predictions , a similar equivalence between the 

and  can be derived. In conclusion, the  and  are 

asymptotically equivalent for logistic regression models.

Proportional hazards regression

Harrell’s c-index – without ties in predictions – is:

(23)

For uncensored time-to-event outcomes, it can be written as:

(24)

The mbc at internal validation can be written similarly as:

(25)

For continuous uncensored time-to-event outcomes, the denominators of  and 

 are both  since .

Under the assumption of proportional hazards, the true conditional probability 

 given one binary predictor with values  and  follows from 

equation 6:
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(26)

Since the observed frequency of  with  and  will converge to this true 

probability when the proportional hazards assumption holds, it follows that:

(27)

Applying the same stratification in risk groups  of increasing linear predictor values as for 

logistic regression models, leads to the conclusion that  and  are 

asymptotically equivalent for proportional hazards regression models, when the proportional 

hazards assumption holds.

APPENDIX 3

The truncated mbc

The truncated concordance probability  in a patient population is:

(28)

For the truncated model-based concordance  we again derive the probabilities 

 from the proportional hazards regression model:

(29)

Using integration by parts gives:

(30)
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The second integral on the right-hand-side of the equation can be written as:

(31)

Substituting equation 31 into equation 30 results in:

(32)

Since , equation 32 depends on the linear predictors  and , 

and on the baseline survival function  at time τ. The truncated model-based 

concordance results from equations 28 and 32:

(33)

In contrast with the original  in equation 7, which is defined on the basis of 

complete follow-up, the truncated  weighs each patient pair by the probability 

that at least one of the patients encounters the event before follow-up time τ.

References

1. Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, Obuchowski N, Pencina MJ, Kattan MW. 
Assessing the performance of prediction models: a framework for traditional and novel measures. 
Epidemiology. 2010; 21:128–138. [PubMed: 20010215] 

2. Harrell FE Jr, Califf RM, Pryor DB, Lee KL, Rosati RA. Evaluating the yield of medical tests. 
JAMA. 1982; 247:2543–2546. [PubMed: 7069920] 

3. Pencina MJ, D’Agostino RB. Overall C as a measure of discrimination in survival analysis: model 
specific population value and confidence interval estimation. Stat Med. 2004; 23:2109–2123. 
[PubMed: 15211606] 

4. Vergouwe Y, Moons KG, Steyerberg EW. External validity of risk models: Use of benchmark values 
to disentangle a case-mix effect from incorrect coefficients. Am J Epidemiol. 2010; 172:971–980. 
[PubMed: 20807737] 

5. Austin PC, Steyerberg EW. Interpreting the concordance statistic of a logistic regression model: 
relation to the variance and odds ratio of a continuous explanatory variable. BMC Med Res 
Methodol. 2012; 12:82. [PubMed: 22716998] 

van Klaveren et al. Page 17

Stat Med. Author manuscript; available in PMC 2017 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



6. Royston P, Altman DG. External validation of a Cox prognostic model: principles and methods. 
BMC Med Res Methodol. 2013; 13:33. [PubMed: 23496923] 

7. Gönen M, Heller G. Concordance probability and discriminatory power in proportional hazards 
regression. Biometrika. 2005; 92:965–970.

8. Uno H, Cai T, Pencina MJ, D’Agostino RB, Wei LJ. On the C-statistics for evaluating overall 
adequacy of risk prediction procedures with censored survival data. Stat Med. 2011; 30:1105–1117. 
[PubMed: 21484848] 

9. Korn EL, Simon R. Measures of explained variation for survival data. Stat Med. 1990; 9:487–503. 
[PubMed: 2349402] 

10. van Klaveren D, Steyerberg EW, Vergouwe Y. Interpretation of concordance measures for clustered 
data. Stat Med. 2014; 33:714–716. [PubMed: 24425541] 

11. Lambert J, Chevret S. Summary measure of discrimination in survival models based on 
cumulative/dynamic time-dependent ROC curves. Statistical Methods in Medical Research. 2014

12. Steyerberg, EW. Clinical Prediction Models: A Practical Approach to Development, Validation, 
and Updating. Springer; New York: 2009. 

13. Hukkelhoven CW, Steyerberg EW, Farace E, Habbema JD, Marshall LF, Maas AI. Regional 
differences in patient characteristics, case management, and outcomes in traumatic brain injury: 
experience from the tirilazad trials. J Neurosurg. 2002; 97:549–557. [PubMed: 12296638] 

14. Marshall LF, Maas AI, Marshall SB, Bricolo A, Fearnside M, Iannotti F, Klauber MR, Lagarrigue 
J, Lobato R, Persson L, Pickard JD, Piek J, Servadei F, Wellis GN, Morris GF, Means ED, Musch 
B. A multicenter trial on the efficacy of using tirilazad mesylate in cases of head injury. J 
Neurosurg. 1998; 89:519–525. [PubMed: 9761043] 

15. Steyerberg EW, Mushkudiani N, Perel P, Butcher I, Lu J, McHugh GS, Murray GD, Marmarou A, 
Roberts I, Habbema JD, Maas AI. Predicting outcome after traumatic brain injury: development 
and international validation of prognostic scores based on admission characteristics. PLoS Med. 
2008; 5:e165. [PubMed: 18684008] 

16. Campos CM, van Klaveren D, Iqbal J, Onuma Y, Zhang YJ, Garcia-Garcia HM, Morel MA, 
Farooq V, Shiomi H, Furukawa Y, Nakagawa Y, Kadota K, Lemos PA, Kimura T, Steyerberg EW, 
Serruys PW. Predictive Performance of SYNTAX Score II in Patients With Left Main and 
Multivessel Coronary Artery Disease-analysis of CREDO-Kyoto registry. Circ J. 2014; 78:1942–
1949. [PubMed: 24998278] 

17. Mohr FW, Morice MC, Kappetein AP, Feldman TE, Stahle E, Colombo A, Mack MJ, Holmes DR 
Jr, Morel MA, Van Dyck N, Houle VM, Dawkins KD, Serruys PW. Coronary artery bypass graft 
surgery versus percutaneous coronary intervention in patients with three-vessel disease and left 
main coronary disease: 5-year follow-up of the randomised, clinical SYNTAX trial. Lancet. 2013; 
381:629–638. [PubMed: 23439102] 

18. Farooq V, van Klaveren D, Steyerberg EW, Meliga E, Vergouwe Y, Chieffo A, Kappetein AP, 
Colombo A, Holmes DR Jr, Mack M, Feldman T, Morice MC, Stahle E, Onuma Y, Morel MA, 
Garcia-Garcia HM, van Es GA, Dawkins KD, Mohr FW, Serruys PW. Anatomical and clinical 
characteristics to guide decision making between coronary artery bypass surgery and percutaneous 
coronary intervention for individual patients: development and validation of SYNTAX score II. 
Lancet. 2013; 381:639–650. [PubMed: 23439103] 

19. Kimura T, Morimoto T, Furukawa Y, Nakagawa Y, Kadota K, Iwabuchi M, Shizuta S, Shiomi H, 
Tada T, Tazaki J, Kato Y, Hayano M, Abe M, Tamura T, Shirotani M, Miki S, Matsuda M, 
Takahashi M, Ishii K, Tanaka M, Aoyama T, Doi O, Hattori R, Tatami R, Suwa S, Takizawa A, 
Takatsu Y, Takahashi M, Kato H, Takeda T, Lee JD, Nohara R, Ogawa H, Tei C, Horie M, 
Kambara H, Fujiwara H, Mitsudo K, Nobuyoshi M, Kita T. Long-term safety and efficacy of 
sirolimus-eluting stents versus bare-metal stents in real world clinical practice in Japan. 
Cardiovasc Interv Ther. 2011; 26:234–245. [PubMed: 24122590] 

20. Grambsch PM, Therneau TM. Proportional Hazards Tests and Diagnostics Based on Weighted 
Residuals. Biometrika. 1994; 81:515–526.

21. R: A Language and Environment for Statistical Computing. R Foundation for Statistical 
Computing; Vienna, Austria: 2011. URL http://www.R-project.org/

van Klaveren et al. Page 18

Stat Med. Author manuscript; available in PMC 2017 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.R-project.org/


22. Hmisc: Harrell Miscellaneous. R package version 3.9-2. 2012. http://CRAN.R-project.org/
package=Hmisc

23. survC1: C-statistics for risk prediction models with censored survival data. R package version 
1.0-2. 2013. http://CRAN.R-project.org/package=survC1

24. Stare J, Perme MP, Henderson R. A measure of explained variation for event history data. 
Biometrics. 2011; 67:750–759. [PubMed: 21155749] 

25. Quade, D. Nonparametric partial correlation. North Carolina: 1967. Institute of Statistics Mimeo 
Series No. 526

van Klaveren et al. Page 19

Stat Med. Author manuscript; available in PMC 2017 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://CRAN.R-project.org/package=Hmisc
http://CRAN.R-project.org/package=Hmisc
http://CRAN.R-project.org/package=survC1


Figure 1. mbc versus casemix-corrected c-index based on 25, 100 and 400 resampled outcomes 
per patients respectively
Setting B of the binary outcome simulation; 10,000 replications of 400 patients.
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Figure 2. Performance measures (y-axis) mbc, calibration slope and c-mbc versus the c-index (x-
axis)
Setting A of the binary outcome simulation and the time-to-event outcome simulation; 

10,000 replications of 400 patients.
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Table 1
Use of mbc, c-mbc and commonly used concordance measures

For proportional hazards regression models and logistic regression models, it is specified: how to measure 

concordance in an apparent validation setting (in patients whose data was used for model development); how 

to assess the influence of case-mix heterogeneity on concordance (Concordance assuming correct regression 

coefficients) in an external validation setting (in new patients); and how to measure concordance in an 

apparent validation setting.

Apparent validation External validation

Concordance Concordance assuming correct regression coefficients Concordance

Proportional hazards regression models

c-index case-mix corrected c-index c-index

Uno Uno

Gönen-Heller Gönen-Heller

mbc mbc c-mbc

Logistic regression models
c-index case-mix corrected c-index c-index

mbc mbc c-mbc
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Table 5
Case study of concordance measures (95% confidence interval) in logistic regression and 
Cox regression

The logistic regression model for unfavorable outcome after traumatic brain injury was developed in the 

International Tirilazad Trial and validated in the North American Tirilazad Trial. The Cox regression model 

for survival after revascularization was developed in the SYNTAX trial and validated in the CREDO-KYOTO 

registry.

Logistic regression Cox regression

Apparent validation External validation Apparent validation External validation

SD(Xβ) 1.028 1.112 0.904 0.965

Calibration slope 1.000 1.023 1.000 0.785

Harrell’s c-index 0.749 (0.719 – 0.778) 0.779 (0.750 – 0.808) 0.744 (0.707 – 0.781) 0.725 (0.700 – 0.750)

Uno (τ = 4) 0.743 (0.705 – 0.782) 0.729 (0.687 – 0.771)

mbc = mbc(Xβ) 0.749 (0.721 – 0.778) 0.767 (0.759 – 0.775)† 0.707 (0.680 – 0.734) 0.719 (0.715 – 0.722)†

c-mbc = mbc( Xβ) 0.774 (0.746 – 0.803) 0.684 (0.667 – 0.700)

†
95% confidence interval based on the variance estimate of mbc(Xβ) under the assumption of true β
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