Skip to main content
. 2017 Aug 3;8:1571–1600. doi: 10.3762/bjnano.8.159

Table 3.

Photocatalytic H2 evolution over g-C3N4-based nanocomposites. LED – light emitting diode; TEOA – triethanolamine; QDs – quantum dots.

Sl no. photocatalyst synthesis route light source sacrificial agent H2 production ref. (year)

1 g-C3N4–SrTiO3 co-precipitation l and calcination 250 W UV–vis lamp 440 µmol h–1·g–1 [83] (2011)
2 g-C3N4–SrTiO3:Rh solid state reaction 300 W Xe lamp methanol 223.3 µmol·h–1 [165] (2012)
3 g-C3N4–NiS hydrothermal visible light TEOA 48.2 µmol·h–1 [166] (2013)
4 g-C3N4–MoS2 impregnation visible light lactic acid 20.6 µmol·h–1 [167] (2013)
5 g-C3N4–CdS solvothermal and chemisorption 350 W Xe arc lamp 4152 µmol h–1·g–1 [168] (2013)
6 g-C3N4–Cu2O reduction 300W Xe lamp TEOA 241.3 mol h–1·g–1 [169] (2014)
7 g-C3N4–SnO2 chemical synthesis 300W Xe lamp TEOA 900 µmol h–1·g–1 [170] (2014)
8 g-C3N4–N-TiO2 electrospinning 300 W Xe arc lamp methanol 8931.3 μmol·h–1·g–1 [171] (2015)
9 g-C3N4–C-N-TiO2 solvothermal 300 W Xe lamp TEOA 39.18 µmol h–1·g–1 [172] (2015)
10 g-C3N4–CdS QD thermal polymerization 300W Xe lamp TEOA 601 µmol·h−1 [173] (2015)
11 g-C3N4–Au–CdS in situ reduction and photodeposition visible light TEOA 277 µmol·h−1 [174] (2015)
12 g-C3N4–N-CeOx annealing 300 W Xe lamp TEOA 292.5 µmol· h–1·g–1 [175] (2015)
13 g-C3N4–MgFe2O4 sol−gel and auto combustion 300 W Xe lamp TEOA 30.09 μmol·h−1 [176] (2015)
14 g-C3N4–InVO4 hydrothermal 300 W Xe arc lamp methanol 212 µmol·h–1·g–1 [146] (2015)
15 g-C3N4–TiO2 solvothermal UV LED (3 W, 420 nm) methanol 5.6 µmol·h−1 [177] (2016)
16 g-C3N4–TiO2 calcination and solvothermal AM1.5 solar
power system
methanol 186.9 μmol·h−1 [178] (2016)
17 g-C3N4–Ni@NiO-CdS reduction 300 W Xe lamp TEOA 1258.7 μmol·h−1·g−1 [179] (2016)
18 g-C3N4@TiO2–CdS hydrothermal UV LED (3 W, 420 nm) 75.2 µmol·h−1 [180] (2017)
19 g-C3N4–Ca2Nb2TaO10 thermal condensation and polymerization 300 W Xe arc lamp TEOA 43.54 µmol·h−1 [181] (2017)