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Abstract

High-throughput serial histology imaging provides a new avenue for the routine study of micro-

anatomical structures in a 3D space. However, the emergence of serial whole slide imaging poses a 

new registration challenge, as the gigapixel image size precludes the direct application of 

conventional registration techniques. In this paper, we develop a three-stage registration with 

multi-resolution mapping and propagation method to dynamically produce registered subvolumes 

from serial whole slide images. We validate our algorithm with gigapixel images of serial brain 

tumor sections and synthetic image volumes. The qualitative and quantitative assessment results 

demonstrate the efficacy of our approach and suggest its promise for 3D histology reconstruction 

analysis.

Index Terms

Histopathology image registration

1. INTRODUCTION

The introduction of high-throughput scanning technology has allowed for routine digital 3D 

reconstruction of serial whole slide histology images [1]. However, registration of serial 

whole slide images is a challenge due to artifacts induced by sectioning, mounting, and 

imaging [2, 3, 4, 5]. Additionally, a single image may contain several gigabytes of data. The 

resulting 3D volumes can easily exceed modern computer memory limits, thus precluding 

the direct use of existing reconstruction methods [6, 7, 8, 9, 10, 11]. Although some 

registration methods have been developed for 2D gigapixel images [12, 13, 14, 15], there is 

no method that dynamically extends registration to serial gigapixel images aiming for 3D 

micro-anatomical structure reconstruction. To address this, we develop a new multi-

resolution mapping and propagation method for serial image registration.

In practice, it is noticed that whole slide imaging stores more data than what is typically 

required for research or diagnosis. Furthermore, researchers and clinicians are often only 

interested in small subvolumes of data such as disease sites or histology hallmarks. Based on 
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current methods, accessing such subvolumes requires the prior registration of the entire full-

resolution whole slide image volume, leading to a high computational cost. To solve this 

problem, we develop a hierarchical image registration method that computes image 

deformation on-the-fly. In this way, we can minimize the computational burden and focus 

analysis on the tissue subvolumes of interest to domain experts. As most whole slide image 

files produced by digital scanners (e.g. Hamamatsu Nanozoomer 2.0-HT) contain a multi-

resolution pyramid image representation, we also reduce computation by performing time 

consuming tasks, such as registration optimization, at a low resolution and mapping the 

resulting deformations to a high resolution for subvolume reconstruction.

2. METHODS

Our workflow for subvolume registration includes 1) low resolution pre-alignment, global 

and local registration, 2) multi-resolution transformation mapping, and 3) high resolution 

registration propagation (Figure 1).

2.1. Low Resolution Whole Slide Registration

Serial tissue sections are typically mounted to glass slides at random locations and 

orientations. To facilitate full tissue registration, we first pre-align each tissue section to a 

reference section based on their contour principal axes [16]. Registration is computed 

between each sequential pair of images within the volume. Low resolution serial images are 

first converted to grayscale and recognized for tissue components with adaptive global 

thresholding. We denote the tissue contours as C = {xi = (xi1, xi2)T, ∀i}. With detected C, 

we next compute the centroid, μ ∈ ℝ2, and construct the scatter matrix Σ = (Y − μ) (Y − μ)T, 

where Y is a matrix with columns being {xi, ∀i} and (Y − μ) is column-wise subtraction. 

After matrix diagonalization of Σ, we have two eigen values λ1 and λ2 (λ1 ≥ λ2) and two 

corresponding eigen vectors v1 and v2. This process is applied to both reference image and 

target image, with the resulting matrices composed with eigen vectors Vr = (vr1 | vr2) and Vt 

= (vt1 | vt2), respectively. We compute the rotation matrix candidates  and R− = 

−R+. We take the rotation direction associated with the smaller difference between reference 

and pre-aligned images:

(1)

where Ir and It are the reference and target image in grayscale, respectively. The resulting 

pre-aligned image can be obtained by , where Δμ = μr − R*μt.

For global similarity transformation, we detect critical landmarks by Speeded Up Robust 

Feature (SURF) detector [17]. The detected tissue landmarks are then matched with local 

descriptors [18]. Since many cellular features are at least 5 μm in diameter, corresponding 

landmarks, such as nuclei, exist in adjacent 5 μm thick sections. These landmarks help 

mitigate the “banana” reconstruction problem [19].
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The matched point pairs are used to estimate an optimal similarity transformation, T. Given 

two corresponding point sets  and , we aim to 

minimize  by optimizing the parameters {s, θ, t}, where s, θ, and t 
are the scale, rotation angle, and spatial translation vector, respectively. The optimal 

parameters for similarity transformation can be analytically solved [20].

Global registration is followed by a nonrigid registration to compensate for local tissue 

deformations by B-spline transformation. The optimal local deformations are found by 

simultaneously maximizing the normalized mutual information and minimizing 

transformation energy [21, 22].

2.2. Multi-Resolution Registration Mapping

The resulting global and local transformations estimated with whole slide images at low 

resolution can be mapped to high resolution image levels (Figure 2). We denote the pre-

alignment, similarity, and nonrigid transformation at low image resolution as P, T, and D, 

respectively.

The pre-alignment and global registration can be simply denoted in a homogeneous 

coordinate system as follows:

where x = (x1, x2, 1)T ; x and x′ are coordinates for reference and target image at low 

resolution; s is the similarity transformation scaling factor; R and  are rotation matrices for 

the global and pre-alignment transformation, respectively; Δx = (Δx1, Δx2)T is a spatial 

translation vector. We can combine transformation T with P and denote it as .

Let us denote the global and local transformation at a high image resolution as  and , 

respectively. When mapping from low to high resolution, we can find  by:

where X and X′ are coordinate for reference and target image at high resolution, α = 2|ΔL| 

and ΔL is the resolution level difference between low and high resolution, given a standard 

2× downsampling rate followed by most scanners. It is straightforward to have  and 

as:

(2)
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For local deformation, the transformation at high resolution level is:

(3)

where Φ(·) is a 2D interpolation function necessary for non-integer coordinates (X1/α, 

X2/α).

2.3. High Resolution Image Registration Propagation

We use the center image in the volume as the reference and map remaining images to the 

reference image with cascaded pair-wise transformations. In this way, all images are 

transformed to a common coordinate system for 3D histological structure reconstruction and 

spatial analysis.

To facilitate discussion, let us denote the ith original image, globally registered image and 

locally registered image as Ii, , and , respectively. Assuming there are N serial images in 

the imaging volume, we set image i* as the reference image for the whole volume, where 

 Correspondingly, the  and  are global transformations from Ii to Ii+1, and 

from Ii+1 to Ii, respectively.  is the nonrigid deformation from  to , where j = i + 1 if i < 

i* and j = i − 1 if i > i*, respectively. Similarly,  is the nonrigid deformation from 

 to . Note that .

As the nonrigid registration at the low resolution is applied to the globally registered image 

sequence and only local alignment transformations for all adjacent image pairs are available, 

the way to find the aggregated transformation for a target image slide Ij, where |j − i*| > 1, to 

the reference image  at the high image resolution is not straightforward. We describe our 

method for mapping each pixel in the reference coordinate system to the corresponding 

location in a target image with the mapped local and global transformations from low to 

high image resolution as follows.

Step 1: As globally registered images  have the same dimensions as the reference image 

where i < i*, we first map an arbitrary pixel  to globally registered image 

 space by nonrigid mapping . The resulting point location after local 

deformation is  (blue arrows in Figure 1).

Step 2: Next,  can be mapped to  as: 

 (orange arrows in Figure 1).

Step 3: Repeat Step 1 and 2 to propagate  and  for aggregated transformation from  to 

any arbitrary image in the volume. A similar procedure is applied to Ij, where j > i*. The 

algorithmic description of this registration propagation is presented in Algorithm 1.

To support 3D reconstruction of micro-anatomical objects such as cells, we use OpenSlide 

[23] to dynamically extract a small region from each serial image to be registered with the 
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multi-resolution registration mapping and propagation algorithm. By this approach, we 

effectively address the computer memory overflow problem due to the gigapixel image 

scale.

3. EXPERIMENTS AND RESULTS

We test our method for dynamic subvolume registration on a set of 40 serial hematoxylin 

and eosin stained tissue sections from a glioblastoma (GBM) biopsy. Each GBM serial 

section is cut to 5 μm thick and digitized at 0.2265 μm/pixel resolution, resulting in an 

overall image volume of 12.930 × 15.279 × 0.200mm3 (≈ 150 gigavoxels). From the entire 

image volume, we extract a registered 928 × 928 × 200μm3 (≈ 670 megavoxels) subvolume 

by performing whole slide pre-alignment, global and local registration at low resolution (L = 

8) and mapping to a high resolution (L = 0).

Algorithm 1

Registration Mapping and Propagation

Input: {Ii, i = 1, 2, …, N}: original serial images

Output: : registered serial images

Operator: 

1:

Compute reference image index 

2:

Compute , and  by Eqn (2) and (3), respectively

3: for all i ∈ (i* − 1, i* − 2, …, 1) do

4:
 for all  do

5:   Set (X1, X2) ← (x1, x2)

6:   Set j ← i* − 1

7:   while j ≥ i do

8:
   Local deformation: 

9:    j ← j − 1

10:

   

11: for all i ∈ (i* + 1, …, N) do

12:  for all (x1, x2) ∈ Ω (Ii*) do

13:   Set (X1, X2) ← (x1, x2)

14:   Set j ← i* + 1

15:   while j ≤ i do

16:
   Local deformation: 

17:   j ← j + 1

Rossetti et al. Page 5

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2017 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



18:

   

First, registration accuracy is examined visually for tissue edge discontinuity in distinct 

cross sections through the low resolution image volume in Figure 3. Each cross section 

plane is uniquely colored in the 3D view of the registered volume. Cross section locations 

are randomly selected and colored to match the y-z cross section views. Scaling in the z 

direction is increased to aid visual inspection of contour discontinuities. We observe the 

progressive improvement in registration for pre-alignment, similarity transformation, and 

nonrigid deformation. The subvolume montage view of a small tissue region of interest in 

Figure 4 shows a high correspondence across serial sections, suggesting the efficacy of our 

proposed method.

Next, we quantitatively evaluate the proposed registration propagation and multi-resolution 

mapping method by computing the registration accuracy for ten synthetic image volumes. 

For each such synthetic ground truth volume, we replicate a single section from the GBM 

data set 50 times at levels 8, 7 and 6. We intentionally produce random global 

transformations and local deformations to the level 8 synthetic volumes to simulate 

distortions introduced by tissue processing. Global transformations are constructed using 

sheer, translation and rotation values drawn from , , where p is the 

smallest image dimension, and , respectively. We extrapolate a 4 × 4 matrix, 

subject to , to appropriate image dimensions for generating local deformations. The 

global and local deformations are scaled using Equation 2 and 3 to produce identical 

distortions for the level 7 and level 6 ground truth volumes.

Registration is performed for each distorted synthetic volume at level 8, and the average 

registration accuracy is computed for pre-alignment, global and local registration. The 

registration accuracy for each synthetic volume is measured by the background overlap 

between the synthetic ground truth and deformed volume [24]. The average registration 

accuracies at level 8 describe the distortion correction power at each sequential registration 

step. To explore the error in multi-resolution mapping, we scale the deformations at level 8 

and apply them to level 7 and 6. The registration accuracy for each step at each level is 

presented in Table 1. We notice that sequential pre-alignment, global and local registration 

can correct most simulated distortions, and there is no substantial increase in error 

introduced by multi-resolution mapping from level 8 to level 6. The observed degradation 

from pre-aligned to global registration could result from the extra degree of freedom for 

scaling in the similarity transform estimation, given our synthetic data is not substantially 

scaled by simulated distortions. In the future, we plan to extend this work with iterative 

registration corrections across pyramidal resolution levels to further improve concordance 

across serial sections. Moreover, we intend to use human-annotated landmarks to extend our 

quantitative assessment.
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4. CONCLUSION

We present a new method to dynamically register 3D subvolumes from serial gigapixel 

whole slide images. The optimal deformation at low resolution is first estimated with a 

multistage registration process through serial images. With the optimal transformations, we 

next create a mapping and propagation method that connects the reference coordinate at the 

low resolution level to a registered subvolume at the high resolution level. Both qualitative 

and quantitative evaluation results demonstrate the promise of our multi-stage and multi-

resolution registration method for future 3D micro-anatomical structure reconstruction from 

serial whole slide histology images at gigapixel scale.
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Fig. 1. 
An overview of the proposed method for three-stage registration at low resolution (left 

panel) and high resolution mapping and propagation across serial images (right panel).
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Fig. 2. 
Diagram of mapping relationships between reference and target image at low and high 

resolution, respectively.
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Fig. 3. 
Qualitative evaluation of registration accuracy using random cross sections. Each row in the 

bottom panel displays the y-z cross sections at each registration stage for the corresponding 

cutting plane in the 3D rendered volume at the top.
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Fig. 4. 
Results of high resolution mapping and propagation for a 4096 × 4096 pixel region of serial 

GBM sections. A montage of the registered region is presented on the left, and a 3D 

rendered volume corresponding to the green box is shown on the right.
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Table 1

Registration accuracy for each processing step at three different levels: Mean±Std (n = 50).

Level Pre-aligned Global Local

L = 8 0.938 ± 0.005 0.903 ± 0.020 0.989 ± 0.001

L = 7 0.934 ± 0.005 0.900 ± 0.019 0.974 ± 0.001

L = 6 0.931 ± 0.005 0.897 ± 0.018 0.965 ± 0.001
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