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Monte Carlo methods to evaluate and maximize the likelihood function enable

the construction of confidence intervals and hypothesis tests, facilitating scien-

tific investigation using models for which the likelihood function is intractable.

When Monte Carlo error can be made small, by sufficiently exhaustive compu-

tation, then the standard theory and practice of likelihood-based inference

applies. As datasets become larger, and models more complex, situations

arise where no reasonable amount of computation can render Monte Carlo

error negligible. We develop profile likelihood methodology to provide fre-

quentist inferences that take into account Monte Carlo uncertainty. We

investigate the role of this methodology in facilitating inference for computa-

tionally challenging dynamic latent variable models. We present examples

arising in the study of infectious disease transmission, demonstrating our

methodology for inference on nonlinear dynamic models using genetic

sequence data and panel time-series data. We also discuss applicability to non-

linear time-series and spatio-temporal data.
1. Introduction
This paper develops profile likelihood inference methodology for situations where

computationally intensive Monte Carlo methods are employed to evaluate and

maximize the likelihood function. If the profile log-likelihood function can be com-

puted with a Monte Carlo error small compared to one unit, carrying out statistical

inference from the Monte Carlo profile as if it were the true profile will have rela-

tively small effects on resulting confidence intervals. Sometimes, however, no

reasonable amount of computation can reduce the Monte Carlo error in evaluating

the profile to levels at or below one log unit. This predicament typically arises with

large datasets and complex models. However, to investigate large datasets in the

context of complex models there is little alternative to the use of Monte Carlo

methods. Monte Carlo approximation of the profile likelihood function provides

opportunities to assess Monte Carlo variability and make appropriate compen-

sations. We use this approach to construct profile likelihood confidence intervals

with statistical behaviour properly adjusted for Monte Carlo uncertainty.

Our paper is organized as follows. First, we set up mathematical notation to

formalize the task of Monte Carlo profile likelihood estimation via a metamodel.

Section 2 puts this task in the context of some previous work on likelihood-based

inference for intractable models. Section 3 develops our methodological

approach. Section 4 presents a dynamic latent variable modeling framework of

broad applicability for which the methodology is appropriate. We demonstrate

the capabilities of our methodology by solving two inferential problems for

which scientific progress has been limited by the lack of effective statistical meth-

odology. These examples arise from the study of transmissible human diseases, a

field characterized by extensive and diverse data, indirect observation of the

underlying infection processes, strongly nonlinear stochastic dynamics and

public health importance. Infectious disease data therefore provide many infer-

ence opportunities and challenges. Section 4.1 concerns inference on population
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Figure 1. The effect of bias on confidence intervals for a quadratic profile log-likelihood function. (a) The blue dotted quadratic represents a log-likelihood profile.
The maximum-likelihood estimator of the profiled parameter is f3, with corresponding log likelihood ‘� ¼ ‘(û� ; y�) ¼ ‘P (f̂� ; y�). The 95% CI [f1, f5] is
constructed, via the horizontal and vertical blue dotted lines, as the set of parameter values with profile log likelihood higher than ‘* 2 1.92. The red quadratic is
the sum of the blue dotted quadratic and linear bias (black dashed line). Horizontal and vertical red lines construct the resulting approximate confidence interval
[f2, f6] and point estimate f4. (b) The same construction, but with higher curvature of the profile log likelihood leading to diminishing effect of the bias on the
confidence interval. (Online version in colour.)
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dynamics from genetic data. Section 4.2 concerns fitting

nonlinear partially observed Markov models to panel data.

Section 4.3 discusses the role of our methodology for nonlinear

time-series and spatio-temporal data analysis. Section 5 inves-

tigates our methodology via a simulation study on a toy

example. Section 6 is a concluding discussion which situates

our paper within the broader goal of inference for large

datasets and complex models.

We consider a general statistical inference framework in

which data are a real-valued vector, y*, modelled as a realization

of a random variable Y having density fY(y ; u), where u is an

unknown parameter in Rp. We are concerned with inference

onu in situations where the data analyst cannot directly evaluate

fY(y ; u). Instead, we suppose that approximate evaluation of

fY(y ; u) is possible through Monte Carlo approaches. One

situation in which this arises is when the statistician can simulate

draws from the density fY(y ; u) despite being unable to directly

evaluate it [1]. In addition to a simulator for the full joint distri-

bution of Y, we might also have access to simulators for various

marginal and conditional distributions related to fY(y ; u). For

example, this can arise if Y has the structure of a fully or partially

observed Markov process [2]. Simulation-based methods are

growing in usage, motivated by advances in the availability of

complex data and the desire for statistical fitting of complex

models to these data. Although we cannot calculate them, we

can nevertheless define the log-likelihood function,

‘(u ; y�) ¼ log fY(y� ; u) ð1:1Þ

and a maximum-likelihood estimate (MLE),

û � ¼ û (y�) ¼ arg max
u

‘(u ; y�): ð1:2Þ

To formalize the task of constructing marginal confidence inter-

vals, we suppose that u ¼ (f, c) with f [ R1 and c [ Rp�1.

Here, f is a focal parameter for which we are interested in

obtaining a confidence interval using the data, y*. As the

choice of focal parameter is arbitrary, we are solving the general

problem of obtaining a marginal confidence interval for each

component of a parameter vector. The profile log-likelihood

function for f is defined as

‘P(f ; y�) ¼ max
c

‘((f,c) ; y�): ð1:3Þ
The profile log likelihood is maximized at a marginal MLE,

f̂ � ¼ f̂ (y�) ¼ arg max
f

‘P(f ; y�): ð1:4Þ

A profile likelihood confidence interval with cut-off d is defined

as

{f : ‘P(f ; y�) . ‘P(f̂ � ; y�)� d}: ð1:5Þ

Profile likelihood confidence intervals are a widespread infer-

ence approach with some favourable properties, including

asymptotic efficiency and natural transformation under repara-

meterization [3]. Modifications can lead to higher-order

asymptotic performance [4] but these are not routinely avail-

able. In our context, (1.3)–(1.5) are not directly accessible to

the data analyst. Instead, we work with independent Monte

Carlo profile likelihood evaluations at a sequence of points

f1:K ¼ (f1, . . ., fK). We denote the evaluations as

(�‘
P
k (y�), k [ 1 : K), using a breve accent to distinguish Monte

Carlo quantities. Without loss of generality we can write

�‘
P
k (y�) ¼ ‘P(fk ; y�)þ bk(y�)þ ek(y�), k [ 1 : K, ð1:6Þ

where e1:K(Y ) are Monte Carlo random variables which are, by

construction, mean zero and independent conditional on Y . In

(1.6),b1:K(y*) gives the Monte Carlo bias of each profile log-like-

lihood evaluation. Motivation for the decomposition into target

quantity, bias and additive error on the log scale in (1.6) is that

this is a proper scale for Monte Carlo central limit theory rel-

evant to our subsequent examples [5] as well as an

appropriate scale for inference.

The amount of information about f in the data is rep-

resented by the curvature of the profile log likelihood, and

if this is large then statistically relevant region with high

profile likelihood is narrow. As represented pictorially in

figure 1, increasing the curvature of the profile log likelihood

reduces the consequence of non-constant bias in the construc-

tion of profile confidence intervals. A useful simplification

arises when it is reasonable to treat the distribution of the

Monte Carlo bias and error in (1.6) as constant across the stat-

istically relevant region having high-profile likelihood. This

leads us to consider a metamodel with bk(y*) ¼ b(y*) and

with e1:K(y*) independent and identically distributed (i.i.d.)
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with variance s2(y*) , 1. The resulting metamodel is

�‘
P

k (y�) ¼ ‘P(fk ; y�)þ b(y�)þ ek,

e1:K i:i:d:with Var(ek) ¼ s2(y�):
ð1:7Þ

Empirical evidence for non-constant Monte Carlo variance

could motivate the inclusion of heteroskadistic errors in

(1.7). The assumption in (1.7) of approximately constant

Monte Carlo bias is hard to quantify empirically on computa-

tionally challenging problems, since one cannot readily

obtain an estimate with negligible bias. Although the bias

on the Monte Carlo profile likelihood estimate may be intract-

able, the coverage of a constructed confidence interval can be

checked by simulation at a specific parameter value such as

an MLE, as demonstrated in §5.
 terface
14:20170126
2. Previous work on likelihood-based inference
via simulation

A prescient paper by Diggle & Gratton [1] developed Monte

Carlo maximum-likelihood methodology with similar motiv-

ation to our current goals. However, Diggle & Gratton [1] did

not work with profile likelihood and did not show how to cor-

rect the resulting confidence intervals for Monte Carlo error.

Further, Diggle & Gratton [1] assumed that the Monte Carlo

methods would involve simulating from the modelled joint

distribution of the entire dataset, whereas modern computa-

tionally efficient Monte Carlo algorithms may be based on

simulating sequentially from conditional distributions in a care-

fully crafted decomposition of the entire joint distribution. Bretó

et al. [2] and He et al. [6] introduced the term plug-and-play to

describe statistical methodology for which the model (viewed

as an input to an inference algorithm) is specified via a simu-

lator in this broader sense. The term likelihood-free has been

used similarly, in the context of Markov chain Monte Carlo

(MCMC) [7] and sequential Monte Carlo (SMC) [8,9]. The

term equation-free has been used for the related concept of simu-

lation-based model investigations in the physical sciences [10].

Related terms implicit [1] and doubly intractable [11] have been

used to describe models for which only plug-and-play algor-

ithms are practical. From the point of view of categorizing

statistical methodology, it is natural to view the way in which

an inference algorithm accesses the statistical model as a

property of the algorithm rather than a property of the model.

Rubio & Johansen [12] investigated non-parametric

estimation of a likelihood surface via approximate Bayesian

computing (ABC). These authors also provided a literature

review of previous approaches to carry out statistical

inferences in situations where likelihood evaluation and

maximization necessarily involve computationally inten-

sive and noisy Monte Carlo procedures. We are not aware of

previous work developing Monte Carlo profile likelihood

methodology. Profile methodology focuses the computational

effort on parameters of key interest—specifically, parameters

for which one computes a profile. The process of constructing

a profile requires computation of a relevant feature of the like-

lihood surface in the region of inferential interest. Studying the

likelihood surface on this scale, rather than focusing exclu-

sively on a point estimate such as the maximum-likelihood

estimate, has some theoretical justification [13]. In the general

theory of stochastic simulation-based optimization, building

metamodels describing the response surface is a standard
technique [14]. Our goal is to develop metamodel method-

ology that takes advantage of the statistical properties of the

profile likelihood and constructs confidence intervals correct-

ing properly for Monte Carlo variability.
3. Profile cut-off correction via a local quadratic
metamodel

Local asymptotic normality (LAN) provides a general theor-

etical framework in which the log-likelihood function is

asymptotically well approximated by a quadratic [15].

Under sufficient regularity conditions, this quadratic approxi-

mation is inherited by the profile log likelihood [16]. Here, we

write the marginal f component of the LAN property as a

finite sample normal approximation given by

‘P(f ; Y)� ‘P(f0 ; Y) � Z(f� f0)
ffiffi
I
p
� (f� f0)2I

2
, ð3:1Þ

where Y � fY (y ; u0) for u0 ¼ (f0, c0), and Z � N[0, 1] is a

normal random variable with mean 0 and variance 1. In

(3.1), � indicates approximate equality in distribution.

Under regular asymptotics, the curvature of the quadratic

approximation in LAN is the Fisher information, and LAN

is therefore a similar property to asymptotic normality of

the maximum-likelihood estimate. The quantity I in (3.1)

can be interpreted as the marginal Fisher information for f,

also known as the f-aspect of the Fisher information [4,

Section 3.4]. Specifically, if we write the inverse of the full

Fisher information as

Vu ¼
Vf Vfc

Vcf Vc

� �
,

then I ¼ V21
f . In this article, we focus on developing

and demonstrating statistical methodology rather than on

presenting theoretical results. Therefore, the formal math-

ematical representation of the approximations in this paper

as asymptotic limit theorems is postponed to subsequent

work.

The LAN property suggests that the Monte Carlo profile

log likelihood evaluated at f1:K can be approximated, in a

neighbourhood of its maximum, by a quadratic metamodel,

�‘
P
k (y) ¼ �â(y)f2

k þ b̂(y)fk þ ĉ(y)þ ek,

e1:K i:i:d: with Var(ek) ¼ s2(y�):
ð3:2Þ

This local quadratic metamodel is a special case of (1.7). The

unknown coefficients â(y�), b̂(y�) and ĉ(y�), corresponding to

equation (3.2) evaluated at y ¼ y*, describe a quadratic

approximation to the numerically intractable likelihood

surface. We can use standard linear regression to estimate

â(y�), b̂(y�) and ĉ(y�) from the Monte Carlo profile evalu-

ations. Writing e ¼ e1:K, we denote the resulting linear

regression coefficients as �a� ¼ �a(y�, e), �b
� ¼ �b(y�, e) and

�c� ¼ �c(y�, e). The Monte Carlo quadratic profile likelihood

approximation is

�‘
Q

(f ; y�) ¼ ��a�f2 þ �b
�
fþ �c�: ð3:3Þ

The marginal MLE f̂ � can be approximated by the maximum

of �‘
Q

(f ; y�), which is given by

�f
Qðy�,eÞ ¼

�bðy�, eÞ
2�aðy�, eÞ :
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Now, for Y � fY (y ; u0), we separate the variability in �f
Q

(Y, e)

into two components:

(1) Statistical error is the uncertainty resulting from random-

ness in the data, viewed as a draw from the statistical

model. This is the error in the ideal quadratic profile

approximation estimate b̂(y�)=2â(y�) as an estimate of f0.

(2) Monte Carlo error is the uncertainty resulting from imple-

menting a Monte Carlo estimator. This is the error in
�b(y�, e)=2�a(y�, e) as a Monte Carlo estimate of b̂(y�)=2â(y�).

The LAN approximation in (3.1) suggests a normal

approximation for the distribution of the marginal MLE f̂ �

which we write as

f̂ ðYÞ � N½f0, SE2
stat�: ð3:4Þ

The usual statistical standard error, 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
2â(y�)

p
, is not avail-

able to us, but we can instead use its Monte Carlo estimate,

SEstat ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�aðy�, eÞ
p : ð3:5Þ
To quantify the Monte Carlo error, we first note that standard

linear model methodology provides variance and covariance

estimates �Var[�a(y�, e)], �Var[�b(y�, e)] and �Cov[�a(y�, e), �b(y�, e)].

The regression errors represent only Monte Carlo variability

conditional on Y ¼ y*, i.e. �Var[�a(y�, e)] ¼ Var[�a(Y, e)jY ¼ y�].
A standard central limit approximation for regression coeffi-

cient estimates is

�aðy�,eÞ
�bðy�, eÞ

� �
�N

âðy�Þ
b̂ðy�Þ

� �
,

�Var½�aðy�,eÞ� �Cov½�aðy�, eÞ,�bðy�, eÞ�
�Cov½�aðy�, eÞ;�bðy�, eÞ� �Var½�bðy�,eÞ�

 !" #
:

An application of the delta method gives a central limit

approximation for the maximum, conditional on Y ¼ y*,

given by

�bðy�, eÞ
2�aðy�, eÞ �N

b̂ðy�Þ
2âðy�Þ

 !
,SE2

mc

" #
, ð3:6Þ

where:
 6
SE2
mc ¼ �Var

�bðy�,eÞ
2�aðy�,eÞ

" #
� 1

4�a2ðy�, eÞ
�Var½�bðy�, eÞ� � 2�bðy�, eÞ

�aðy�, eÞ
�Cov½�aðy�,eÞ, �bðy�, eÞ� þ

�b
2ðy�, eÞ

�a2ðy�, eÞ
�Var½�aðy�,eÞ�

( )
: ð3:7Þ
To obtain the combined statistical and Monte Carlo error, we

write

Var
�bðY, eÞ
2�aðY, eÞ

" #
¼ E Var

�bðY, eÞ
2�aðY, eÞ

�����Y
" #( )

þ Var E
�bðY, eÞ
2�aðY, eÞ

�����Y
" #( )

: ð3:8Þ

Now, from (3.1), the curvature of the profile log likelihood

is approximately constant, independent of Y . We suppose

that the profile points used to obtain �f
Q

(Y, e) are approxi-

mately centred on �f
Q

(Y, e) regardless of the value of Y.

This assumption can be satisfied by construction, for

example, by fitting the quadratic metamodel in (3.2)

using local weights (as in the Monte Carlo-adjusted

profile (MCAP) algorithm below). Further, we suppose

that Var[ek(Y)] � Var[ek(y*)]. Together, these approximations

imply

Var
�bðY, eÞ
2�aðY, eÞ

�����Y
" #

� Var
�bðy�, eÞ
2�aðy�, eÞ

" #
: ð3:9Þ

Also, from the central limit approximation in (3.6), we have

E
�bðY, eÞ
2�aðY, eÞ

�����Y
" #

� f̂ ðYÞ: ð3:10Þ

Putting (3.9) and (3.10) into (3.8), and using the

approximations in (3.4) and (3.6), we get

�bðY, eÞ
2�aðY, eÞ � N½f0,SE2

total�,

where

SEtotal ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SE2

mc þ SE2
stat

q
:

The usual asymptotic profile likelihood confidence inter-

val cut-off value can be obtained by converting the

standard error of the MLE into an equivalent cut-off on a

quadratic approximation to the profile log likelihood. In

our setting, the asymptotic (1 2 a) confidence interval,
�f

Q
+ za � SEtotal, where P[Z . za] ¼ a=2, is equivalent to a

Monte Carlo adjusted profile cut-off for the quadratic

approximation �‘
Q

(f ; y�) of

d ¼ �a� � ðza � SEtotalÞ2 ¼ z2
a �a� � SE2

mc þ
1

2

� �
: ð3:11Þ

Note that, if SEmc ¼ 0, the calculation in (3.11) for a ¼ 0.05

reduces to

d ¼ 1:962

2
¼ 1:92,

the usual cut-off to construct a 95% CI for an exact profile

likelihood.

Confidence intervals based on a quadratic approximation

to the exact log likelihood are asymptotically equivalent to

using the same cut-off d with a smoothed version of the like-

lihood, so long as an appropriate smoother is used [13]. An

appropriate smoother should return a quadratic when the

points do indeed lie on a quadratic, a property satisfied, for

example, by local quadratic smoothing such as the R function

loess [17]. We, therefore, propose using d as an appropriate

cut-off on a profile likelihood estimate obtained by applying a

suitable smoother to the Monte Carlo evaluations in (1.6).

A smoother, S(f ; f1:K, �‘
P
1:K, l), generates a value at f based

on fitting a smooth curve through the points

{(fk, �‘
P
k ), k [ 1 : K} with an algorithmic parameter l determin-

ing the smoothness of the fit. A resulting maximum
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smoothed Monte Carlo profile likelihood estimate is

�f
S ¼ arg max

f
S(f ; f1:K, �‘

P
1:K, l): ð3:12Þ

A corresponding Monte Carlo profile likelihood confidence

interval for a cut-off d is

{f : S(f ; f1:K, �‘
P
1:K, l) . S(�f

S
; f1:K, �‘

P
1:K , l)� d}: ð3:13Þ

Here, we suppose that S(f ; f1:K, �‘
P
1:K, l) is evaluated at f via

local quadratic regression with weight wk(f) on the point

(fk, �‘
P
k ), wherewk(f) depends on the proximity off tofk. Specifi-

cally, we take S to be the widely used local quadratic smoother of

[18] as implemented by the functionloess in R3.3.3. In this case,

l is the span of the smoother, defined as the fraction of the data

used to construct the weights in the local regression at any

pointf. In practice, the statistician needs to specifyl. While auto-

mated choices of smoothing parameter have been proposed, it

remains standard practice to choose the smoothing parameter

based on some experimentation and looking at the resulting fit.

In our experience, the default loess choice of l ¼ 0.75 in

R3.3.3 has been appropriate in most cases. However, a larger

value of l is needed when the profile is evaluated at very few

points (as demonstrated in the electronic supplementary

material, Section S1). When the exact profile is not far from quad-

ratic, one can expect local quadratic smoothing of the Monte

Carlo profile likelihood to be insensitive to the choice of l.

Just as the local quadratic regression smoother has

weights w1:K(f ), the quadratic metamodel in (3.2) can be

fitted using regression weights. A natural choice of these

weights for obtaining a profile confidence interval cut-off

for S(f ; f1:K, �‘
P
1:K, l) is w1:K(�f

S
). This choice is used for the

MCAP algorithm below. For our numerical results, we used

the implementation of this MCAP algorithm given as the

electronic supplementary material, Section S3.
Algorithm MCAP

input:

Monte Carlo profile �‘
P

1:K evaluated at f1:K

Local quadratic regression smoother, S

Smoothing parameter, l

Confidence level, 1 2 a

output:

Cut-off, d, for a Monte Carlo profile likelihood confidence interval

algorithm:

Fit a local quadratic smoother, �‘
S
(f) ¼ S(f ; f1:K , �‘

P
1:K , l)

Obtain �f
S ¼ arg max �‘

S
(f)

Obtain regression weights w1:K for the evaluation of

S(f ; f1:K , �‘
P

1:K , l) at f ¼ �f
S

Fit a linear regression model, �‘
P
k ¼ �af2

k þ bfk þ c þ ek , with

weights w1:K

Obtain regression estimates �a and �b

Obtain regression covariances �Var[�a], �Var[�b], �Cov[�a,�b]

Let SE2
mc ¼ 1

4�a2 { �Var[�b]� 2�b
�a

�Cov[�a, �b]þ �b
2

�a2
�Var[�a]}

Let xa be the (1 2 a) quantile of the x-square distribution on one

degree of freedom

Let d ¼ xa(�a� SE2
mc þ 1=2)
4. Example: inference for partially observed
dynamic systems

Many dynamic systems with indirectly observed latent pro-

cesses can be modelled within the partially observed

Markov process (POMP) framework. A general POMP

model, also known as a hidden Markov model or a state

space model, consists of a latent Markov process fX(t)g,
with X(t) taking values in a space X, together with a sequence

of observable random variables Y1:N ¼ (Y1, . . ., YN). The

observation Yn is modelled as a measurement of X(tn) by

requiring that Yn is conditionally independent of the other

observations and of fX(t)g given X(tn). We will suppose

that Yn takes values in Y ¼ Rd, the space of d-dimensional

real vectors. When d ¼ 1 (or d is small) Y1:N is called a uni-

variate (or multivariate) time-series model. The POMP

framework provides a fundamental approach for nonlinear

time-series analysis, with innumerable applications [2].

When d becomes large, the POMP framework allows for non-

linear panel data and spatio-temporal data, as well as other

complex data structures. Unless the POMP model is linear

and Gaussian, or X is a sufficiently small finite set, Monte

Carlo techniques such as SMC are required to evaluate the

likelihood function. For our examples, we focus on likelihood

maximization by iterated filtering [19]. Similar issues arise

with alternative computational approaches, including

Monte Carlo Expectation-Maximization algorithms [20, ch.

11]. Even for the relatively simple case of time-series POMP

models (discussed further in §4.3) numerical issues can be

computationally demanding for currently available method-

ology, giving opportunity for MCAP methodology

to facilitate data analysis. However, to demonstrate the

capabilities of our methodology, we first present two high-

dimensional POMP inference challenges that become

computationally tractable using MCAP.
4.1. Inferring population dynamics from genetic
sequence data

Genetic sequence data on a sample of individuals in an eco-

logical system has potential to reveal population dynamics.

Extraction of this information has been termed phylodynamics
[21]. Likelihood-based inference for joint models of the

molecular evolution process, population dynamics and

measurement process is a challenging computational

problem. The bulk of extant phylodynamic methodology

has therefore focused on inference for population dyna-

mics conditional on an estimated phylogeny and replacing

the population dynamic model with an approximation,

called a coalescent model that is convenient for calculations

backwards in time [22]. Working with the full joint likeli-

hood is not entirely beyond modern computational

capabilities; in particular it can be done using the genPomp

algorithm of Smith et al. [23]. The genPomp algorithm is an

application of iterated filtering methodology [19] to phylo-

dynamic models and data. To the best of our knowledge,

genPomp is the first algorithm capable of carrying out

full joint likelihood-based inference for population-level

phylodynamic inference. However, the genPomp algorithm

leads to estimators with high Monte Carlo variance,

indeed, too high for reasonable amounts of computation

resources to reduce Monte Carlo variability to negligibility.
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Figure 2. Profile likelihood for an infectious disease transmission parameter
inferred from genetic data on pathogens. The smoothed profile likelihood and
corresponding MCAP 95% CI are shown as solid red lines. The quadratic
approximation in a neighbourhood of the maximum is shown as a blue
dotted line. (Online version in colour.)
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This, therefore, provides a useful scenario to demonstrate our

methodology.

Figure 2 presents a Monte Carlo profile computed by

Smith et al. [23], with confidence intervals constructed by

applying the MCAP algorithm implemented by the mcap

procedure (electronic supplementary material, Section S3)

with default smoothing parameter. The model and data

concern HIV transmission in Southeast Michigan, but

details of the model and computations are not of imme-

diate interest since all we need to consider are the estimated

profile likelihood points. The profiled parameter quanti-

fies HIV transmission from recently infected, diagnosed

individuals—it is 1J0
in the notation of Smith et al. [23] but

we rename it as f for the current paper. The computations

for figure 2 took approximately 10 days using 500 cores on

a Linux cluster. To scale this methodology to increasingly

large datasets and more complex models, it is apparent

that one may be limited by the computational effort requi-

red to control Monte Carlo error. The MCAP procedure

gives a Monte Carlo standard error of SEmc ¼ 0.151 on

the value maximizing the smoothed Monte Carlo profile,

based on the quadratic approximation at the maximum.

The statistical error is SEstat ¼ 0.32. Combining these sources

of uncertainty gives a total standard error of SEtotal ¼ 0.354.

From (3.11), the resulting 95% CI cut-off is d ¼ 2.35. We see

in figure 2 that the smoothed profile is close to its quadratic

approximation in the neighbourhood of the maximum stat-

istically supported by the data. We also see that the Monte

Carlo uncertainty in the profile confidence interval is rather

small, leading to a profile cut-off not much bigger than the

value of 1.92 for zero Monte Carlo error, despite the large

Monte Carlo variability in the evaluation of any one point

on the profile.
4.2. Panel time-series analysis
Panel data consist of a collection of time series which have

some shared parameters, but negligible dynamic depen-

dence. We consider inference using mechanistic models for

panel data, i.e. equations for how the process progresses

through time derived from scientific principles about the

system under investigation. In principle, statistical methods

for mechanistic time-series analysis [2] extend to the panel

situation [24]. However, extensive data add computational

challenges to Monte Carlo inference schemes. In particular,
with increasing amounts of data, it must eventually become

infeasible to calculate the likelihood with an error as small

as one log unit. The MCAP procedure nevertheless succeeds

so long as the signal-to-noise ratio in the Monte Carlo profile

is adequate. In a simple situation, where each time series is

modelled as i.i.d. and each time-series model contains the

same parameters, we can check how this ratio scales. The

Fisher information scales linearly with the number of time

series in the panel, and therefore the curvature of the log-

likelihood profile also scales linearly. The Monte Carlo stan-

dard error on the likelihood scales at a square-root rate. In

this case, we, therefore, expect the MCAP methodology to

scale successfully with the number of time series in the panel.

Investigations of population-level infectious disease

transmission lead to highly nonlinear, stochastic, partially

observed dynamic models. The great majority of disease

transmission is local, despite the importance of spatial trans-

mission to seed the local epidemics [25]. Fitting models

to panels of epidemiological time-series data, such as inci-

dence data for collections of cities or states, offers potential

to elucidate the similarities and differences between these

local epidemics.

We demonstrate the MCAP procedure on a panel estimate

of the reporting rate of paralytic polio in the pre-vaccination

era USA. Reporting rate has important consequences for

understanding the system: conditional on observed incidence

data, reporting rate determines the extent of the unreported

epidemic. Yet, in the presence of many uncertainties about

this complex disease transmission system, a single disease

incidence time series often cannot conclusively pin down

this epidemiological parameter. The profile evaluations in

figure 3 were obtained by Bretó et al. [24] in an extension of

the analysis of Martinez-Bakker et al. [26]. Martinez-Bakker

et al. [26] analysed state-level paralytic polio incidence data

in order to study the role of unobserved asymptomatic

polio infections in disease persistence. Here, the reporting

rate parameter (log(r) in the terminology of [24]) is denoted

by f. The MCAP procedure gives a Monte Carlo standard

error of SEmc ¼ 0.033 and a statistical error of SEstat ¼ 0.013.

Combining them gives a total standard error of SEtotal ¼

0.035. The resulting profile cut-off is d ¼ 13.6. The profile

decreases slowly to the right of the smoothed MLE, since

higher reporting rates can be compensated for by lower trans-

mission intensities. The model struggles to explain reporting

rates much lower than the smoothed MLE, since the report-

ing rate must be sufficient to explain the observed number
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of cases in a situation where almost all individuals acquire

non-paralytic polio infections. This asymmetrical trade-off

may explain why the profile log likelihood shows some

noticeable deviation from its quadratic approximation in a

neighbourhood of the maximum. A consequence of this

changing curvature is that the quadratic approximation

used to construct the Monte Carlo profile at its maximum

(figure 3, dotted blue line) does not share this maximum.

The computations for figure 3 required approximately

24 h on 300 cores. At this level of computational intensity,

we see that the majority of uncertainty about the parameter

f is due to Monte Carlo error rather than statistical error.

For this large panel dataset, in the context of the fitted

model, the parameter f would be identified very accurately

by the data if we had access to the actual likelihood surface.

Additional computation could, therefore, reduce the uncer-

tainty on our estimate of f by a factor of three. However,

the data analyst may decide the available computational

effort is better used exploring other parameters or alternative

model specifications.

4.3. Applications to time-series and spatio-temporal
data analysis

The examples in §§4.1 and 4.2 demonstrate applications

which were computationally intractable without MCAP.

Applications of the POMP framework to nonlinear time-

series analysis typically involve smaller data sets, and a

relatively simple dependence structure, and are therefore

less computationally demanding. This consideration has

facilitated the utilization of Monte Carlo profile likelihood,

without the benefits of MCAP, as a technique at the cutting

edge of nonlinear time-series analysis. In the context of infec-

tious disease dynamics, Dobson [27] wrote, ‘Powerful

new inferential fitting methods [28] considerably increase

the accuracy of outbreak predictions while also allowing

models whose structure reflects different underlying assump-

tions to be compared. These approaches move well beyond

time series and statistical regression analyses as they include

mechanistic details as mathematical functions that define

rates of loss of immunity and the response of vector abun-

dance to climate.’ Examples showing a central role for

Monte Carlo profile likelihood in such analyses are given

by King et al. [29, Fig. 2], Camacho et al. [30, Figs. S3 and

S8A], Blackwood et al. [31, Fig. 3A], Shrestha et al. [32, Figs.

2B-2G and 4L-4P] and Blake et al. [33, Figs. S1, S4 and S5].

The main practical limitation of this approach is compu-

tational resources [6]. We have shown that our

methodology can both quantify and dramatically reduce

the Monte Carlo error in computationally intensive inferences

for POMP models. The MCAP procedure therefore improves

the accessibility and scalability of inference for nonlinear

time-series models.

Spatio-temporal data consists of time series collected at

various locations. Models for partially observed spatio-

temporal dynamics extend the panel models of §4.2 by

allowing for dynamic dependence between locations. SMC

methods, that provide a foundation for likelihood-based infer-

ence relating POMP models to time-series data, struggle with

spatio-temporal data since they scale poorly with spatial dimen-

sion [34]. Theoretically, SMC methods with sub-exponential

scaling can be developed for weakly coupled spatio-temporal

systems [35]. Nevertheless, practical methodology for fitting
nonlinear non-Gaussian spatio-temporal models continues to

be constrained by high Monte Carlo variance [36]. Thus, this

class of inference challenges stands to benefit from our MCAP

methodology. The electronic supplementary material, Section

S1, presents an example for fitting a coupled spatio-temporal

model to measles incidence in twenty cities.
5. A simulation study of the Monte
Carlo-adjusted profile procedure

We look for a numerically convenient toy scenario that

generates Monte Carlo profiles resembling figures 2 and 3.

Our simulated data are an independent, identically distri-

buted lognormal sample Y1:N, where log(Yn) � N[f, 2s2]

for n [ 1 : N. We consider a profile likelihood confidence

interval for the log mean parameter, f. The lognormal distri-

bution leads to log-likelihood profiles that deviate from

quadratic. To set up a situation with Monte Carlo error in

evaluating and maximizing the likelihood, we supposed

that the likelihood is accessed via Monte Carlo integration

of a latent variable. Specifically, we write YnjXn �
lognormal(Xn, s2) with Xn � N[f, s2]. Then, our Monte

Carlo density estimator is

�fY(y ; f,s, s, J) ¼ 1

J

XJ

j¼1

fLN(y ; fþ sej,s
2), ð5:1Þ

where fLN(y ; m, t2) is the lognormal density,

fLNðy ; m,t2Þ ¼ 1

yt
ffiffiffiffiffiffi
2p
p exp

�ðlog y� mÞ2

2t2

( )

and e1:J is a sequence of standard normal pseudo-random

numbers corresponding to a seed s. We suppose that we

are working with a parallel random number generator such

that pseudo-random sequences corresponding to different

seeds behave numerically like independent random

sequences. Our Monte Carlo log-likelihood estimator is

�‘(f,s ; y1:N , s, J) ¼
XN

n¼1

log �fY(yn ; f,s, sþ n� 1, J): ð5:2Þ

Our Monte Carlo profile is calculated at f [ f1:K. We maxi-

mize the likelihood numerically, at a fixed seed, to give a

corresponding estimate of s given by

�sP
k (y1:N , s, J) ¼ arg max

s
‘(fk,s ; y1:N , sþN(k � 1), J): ð5:3Þ

We do not wish to imply that practical examples will gener-

ally result from a fixed-seed Monte Carlo likelihood

calculation. Seed fixing is an effective technique for removing

Monte Carlo variability from relatively small calculations, but

can become difficult or impossible to implement effectively

for complex, coupled, nonlinear systems.

The following numerical results used N ¼ 50 and J ¼ 3

with true parameter values f0 ¼ 0 and s2
0 ¼ 1. There are

two ways to increase the Monte Carlo error in the log likeli-

hood for this toy example, by increasing the sample size, N,

and decreasing the Monte Carlo effort, J. The Monte Carlo

variance of the log-likelihood estimate increases linearly

with N, but at the same time the curvature of the log likeli-

hood increases and, within the inferentially relevant region,

the profile log likelihood becomes increasingly close to quad-

ratic. Thus, in the context of our methodology, increasing N
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Figure 4. Profile construction for the toy model. The exact profile and its
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Monte Carlo profile evaluations. The MCAP is constructed in solid red lines,
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mation used to calculate the MCAP profile cut-off is shown as a dotted
blue line. (Online version in colour.)
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actually makes inference easier despite the increasing Monte

Carlo noise. This avoids a paradoxical difficulty of Monte

Carlo inference for big data: more data should be a help for

a statistician, not a hindrance! Decreasing J represents a situ-

ation where Monte Carlo variability increases without

increasing information about the parameter of interest. In

this case, the Monte Carlo variability and the Monte Carlo

bias on the log likelihood due to Jensen’s inequality both

increase. Also, likelihood maximization becomes more erratic

for small J since the maximization error due to the fixed seed

becomes more important. However, figure 4 shows that, even

when there is considerable bias and variance in the Monte

Carlo profile evaluations, the Monte Carlo profile confidence

intervals can be little wider than the exact interval.

We computed intervals with nominal coverage of 95%.

The MCAP coverage here was 93.4%, compared to 94.3%

for the asymptotically exact profile (with a simulation study

Monte Carlo standard error of 0.2%). The MCAP intervals

were, on average, 12.5% larger than the corresponding exact

profile interval, with the increased width accounting for the

additional Monte Carlo uncertainty.

Two alternative approaches to generating confidence

intervals based on a maximum-likelihood estimator are

observed Fisher information and the bootstrap method. Com-

parisons with these methods on the toy example are

presented in the supplement (electronic supplementary

material, Section S2). Profile likelihood confidence intervals

were found to perform favourably on this example, measu-

red by interval width for a given coverage and given

computational effort.
6. Discussion
This paper has focused on likelihood-based confidence inter-

vals. An alternative to likelihood-based inference is to

compare the data with simulations using some summary stat-

istic. Various plug-and-play methodologies of this kind have

been proposed, such as synthetic likelihood [37] and non-

linear forecasting [38]. For large nonlinear systems, it can be

hard to find low-dimensional summary statistics that capture

a good fraction of the information in the data. Even summary

statistics derived by careful scientific or statistical reasoning

have been found surprisingly uninformative compared to
the whole data likelihood in both scientific investigations

[39] and simulation experiments [40].

Much attention has been given to scaling Bayesian

computation to complex models and large data. Bayesian com-

putation is closely related to likelihood inference for stochastic

dynamic models: the random variables generating a dynamic

system are typically not directly observed, and these latent

random variables are therefore similar to Bayesian parameters.

We refer to these latent random variables as random effects

since they have a similar role as linear model random effects.

To carry out inference on the structural parameters of the

model (i.e. the vector u in this article) the Bayesian approach

looks for the marginal posterior of u, which involves inte-

gration over the random effects. Likelihood-based inference

for u similarly involves integrating out the random effects.

Numerical methods such as expectation propagation (EP)

[41] and variational Bayes [42] are effective for some model

classes. Another approach is to combine MCMC computations

on subsets of the data, as in the posterior interval estimation

(PIE) method of Li et al. [43]. The above approaches (EP, VB

and PIE) all emphasize situations where the joint density of

the data and latent variables can be conveniently split up

into conditionally independent chunks, such as a hierarchical

model structure. Our methodology has no such require-

ment. The panel model example above does have a natural

hierarchical structure, with individual panels being indepen-

dent (in the frequentist model sense) or conditionally

independent given the shared parameters (in the Bayesian

model sense). Our genetic example, and the spatio-temporal

example of the electronic supplementary material, Section S1,

do not have such a representation.

Some simulation-based Bayesian computation method-

ologies have built on the observation that unbiased Monte

Carlo likelihood computations can be used inside an

MCMC algorithm [44]. For large systems, high Monte Carlo

variability of likelihood estimates is a concern, in this context,

since it slows down MCMC convergence [45]. Doucet et al.
[46] found that, for a given computational budget, the opti-

mal balance between number of MCMC iterations and time

spent on each likelihood evaluation occurs at a Monte

Carlo likelihood standard deviation of one log unit. For the

systems we demonstrate, Monte Carlo errors that small are

not computationally feasible.

Our simple and general approach permits inference when

the signal-to-noise ratio in the Monte Carlo profile log likeli-

hood is sufficient to uncover the main features of this

function, up to an unimportant vertical shift. For large data-

sets in which the signal (quantified as the curvature of the log

likelihood) is large, the methodology can be effective even

when the Monte Carlo noise is far too big to carry out stan-

dard MCMC techniques. Although the frequentist

motivation for likelihood-based inference differs from the

goal of Bayesian posterior inference, both approaches can

be used for deductive scientific reasoning [47,48].

Our methodology builds on the availability of Monte

Carlo algorithms to evaluate and maximize the likelihood.

If these Monte Carlo algorithms are completely overwhelmed

by the problem at hand, our method will fail. Geometric fea-

tures of the likelihood surface, such as nonlinear ridges and

multimodality, can lead to challenges for all numerical

methods including Monte Carlo approaches. High dimen-

sionality can also be problematic, particularly if combined

with difficult geometry. The presence of challenging
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characteristics leads to the high Monte Carlo error that motiv-

ates and necessitates methodology such as ours. However, if

the Monte Carlo component of the MCAP standard error is

large relative to the statistical component (SEmc� SEstat)

and also too large to be useful for the scientific application,

we diagnose that our method has failed.
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