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Global wind patterns affect flight strategies in many birds, including pelagic

seabirds, many of which use wind-powered soaring to reduce energy costs

during at-sea foraging trips and migration. Such long-distance movement

patterns are underpinned by local interactions between wind conditions

and flight behaviour, but these fine-scale relationships are far less well

understood. Here we show that remotely sensed ocean wind speed and

direction are highly significant predictors of soaring behaviour in a

migratory pelagic seabird, the Manx shearwater (Puffinus puffinus). We

used high-frequency GPS tracking data (10 Hz) and statistical behaviour

state classification to identify two energetic modes in at-sea flight, corre-

sponding to flap-like and soar-like flight. We show that soaring is

significantly more likely to occur in tailwinds and crosswinds above a

wind speed threshold of around 8 m s21, suggesting that these conditions

enable birds to reduce metabolic costs by preferentially soaring over flap-

ping. Our results suggest a behavioural mechanism by which wind

conditions may shape foraging and migration ecology in pelagic seabirds,

and thus indicate that shifts in wind patterns driven by climate change

could impact this and other species. They also emphasize the emerging

potential of high-frequency GPS biologgers to provide detailed quantitative

insights into fine-scale flight behaviour in free-living animals.
1. Introduction
The effects of global-scale environmental variables such as temperature and

precipitation on animal ecology are well known, but similar relationships

with wind have been much less extensively studied. Wind conditions affect

phenology, migration routes, ecological interactions and foraging success in

many volant animals including birds, bats and insects (e.g. [1–4]). Recent

GPS tracking studies have shown that global winds affect long-distance pat-

terns of foraging and migration behaviour in various wide-ranging bird

species [5–8]; however much less is known about the effect of more localized

wind conditions. Understanding such fine-scale interactions between flight be-

haviour and the environment is key to understanding how individual

behavioural responses to wind scale up to shape movement patterns at large

spatial scales and over evolutionary time, such as the evolution of stable

migration routes [8,9]. In a conservation context, such knowledge is also impor-

tant to predict how shifts in atmospheric conditions under climate change

[10–12] may impact many migratory birds.

Pelagic seabirds are top marine predators that regularly travel hundreds of

kilometres during foraging and migration [13], making them particularly reliant

on ocean wind patterns [14–17]. During these journeys many albatrosses and
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shearwaters (Procellariiformes) engage in specialized modes

of wind-powered soaring behaviour, thought to be metaboli-

cally less costly than flapping flight [18–20]. Data from GPS

and accelerometer tags are now providing insights into

soaring in free-living albatrosses and other birds [21–23];

however much remains unknown about the fine-scale

relationship between local winds and soaring behaviour. In

this study we use very high-frequency GPS tracking (10 Hz)

to show that wind speed and direction, measured via satellite

remote sensing, are highly significant predictors of soaring

behaviour in a migratory pelagic seabird, the Manx shear-

water (Puffinus puffinus). Manx shearwaters are small

(approx. 400 g), burrow nesting, pelagic seabirds. They are

Amber listed in the UK [24] where most (approx. 80%) of

the global Manx shearwater population nests. They forage

from breeding colonies around the UK coastline each

summer before migrating to overwinter off southern

Argentina, making an annual round trip of over 20 000 km

[9,25–27].

We tracked breeding adults during at-sea foraging trips

using custom GPS loggers that record bursts of three-dimen-

sional location fixes at 10 Hz, and distinguished flight

behaviour from each burst’s mechanical energy character-

istics. A bird’s total mechanical energy at any time consists

of the two components kinetic (related to speed) and gravita-
tional potential energy (related to altitude). During flight,

total energy can increase either through flapping, when

stored chemical energy is converted to power in the wing

muscles, or through input from an external energy source,

e.g. wind [28]. Relative changes to the kinetic and potential

energy components are determined both by the magnitude

of energy input and the bird’s current mode of movement.

Different flight behaviours therefore show markedly different

patterns of mechanical energy change over time, which can

be calculated from high-frequency three-dimensional GPS

positional data (e.g. [22]). During soaring, tracked albatrosses

show large cyclical variations in both potential (derived from

altitude) and kinetic energy (derived from ground speed) as

they ascend and descend through the shear wind gradient

above the sea surface [22]. Although Manx shearwaters are

‘flap-gliders’, mixing intermittent wingbeat pulses with glid-

ing and soaring [13], we hypothesized that wind-powered

soaring in this species would show similar variations in

energy and ground speed.

We therefore aimed to assess the prevalence of wind-

powered soaring in Manx shearwaters and how this may

vary under different environmental conditions. If, as might

be expected, wind conditions play a role in how frequently

soaring can occur, and soaring represents an energetically

favourable mode of flight, then this has implications for

the cost of movement during travel and foraging. This can

have knock-on effects upon how much effort is expended

during reproduction, which has been demonstrated to

impact breeding success in subsequent years [29]. Further-

more, quantifying the impacts of environmental conditions

on the energetics of movement has potential implications

for understanding the timing and success of migration

and stopover [9]. This study also represents a proof of

concept, demonstrating the potential of high-frequency

GPS to analyse predictive relationships between movement

and environmental conditions, with implications for

understanding distribution, space-use and conservation of

seabird species.
2. Methods
2.1. GPS tracking procedure
We tracked breeding adult birds during the chick-rearing season,

between 12 and 25 August 2012 at the study colony on Lundy

Island, Devon, UK (51.17818N, 4.66738W). We deployed our

own custom GPS loggers (mataki.org [30]) on eight birds.

Devices were positioned on the back above the bird’s centre of

gravity and attached to feathers with marine tape, ensuring

that if loggers could not be retrieved they would loosen and

fall off within 2–3 weeks (see details in [25,31]). Study individ-

uals weighed between 415 and 470 g, and complete mass of

devices including tape was less than 17 g, under 3.6% of body

mass. To maximize the proportion of foraging trips recorded,

devices were programmed to record 10 Hz bursts of GPS fixes

for 60 s, at 30 min intervals. Each fix recorded latitude, longitude

and altitude, so each discrete sequence of 10 Hz fixes (hereafter

‘burst’) forms a detailed track of the bird’s movement through

its environment. All loggers were retrieved from recaptured

birds and data were downloaded for analysis. One bird remained

in its burrow for the study duration, so at-sea GPS tracks were

obtained from seven birds (table 1). Seven complete foraging

trips were recorded from these birds, with durations of

17.1–53.5 h (mean 44.9+ 23.8 h), and four incomplete foraging

trips during which the device battery expired before the bird

returned to the colony.
2.2. Track processing and movement analysis
All analyses were carried out in R v. 3.1.2 [32]. Complete GPS

tracks were filtered to exclude fixes with erroneous timestamps

and those derived using fewer than four satellites, the minimum

required for a precise three-dimensional location and time fix

[25]. Each bird’s track was split into its constituent bursts and

the median latitude and longitude of each burst were assigned

as its location. Since this study concerns at-sea activity, colony-

associated bursts (within 1500 m radius around Lundy, n ¼ 84)

were excluded, as were information-poor bursts of fewer than

20 points (n ¼ 35), leaving a total of n ¼ 475 at-sea bursts.

Within each burst we calculated distance and ground speed

(velocity with respect to Earth’s surface) between successive

fixes. Fixes with speeds exceeding 40 m s21 were excluded as

likely GPS errors [25]. To reduce the effect of any small GPS

positional errors or missed fixes, we smoothed ground speed

and altitude along each burst by applying a 15-point (1.5 s)

rolling mean.

Following [23], from each fix’s ground speed and altitude we

calculated mechanical energy components kinetic (EK), gravita-

tional potential (EP) and total energy (ET ¼ EK þ EP), and also

mechanical power (P), which measures the rate of ET change

across each between-fix time interval. These describe a bird’s

in-flight mechanical energy relative to the Earth’s surface (as

inertial frame of reference), and their relative changes across a

60 s tracked burst describe flight dynamics in detail [22].

Although not directly related to metabolic energy expenditure,

power values in excess of 0 indicate a net increase in mechanical

energy over time, which could either be due to metabolic energy

input (from wing muscles) or from the wind [28]. There is an

upper limit to the power a bird can generate by flapping; there-

fore high power values and very large variation in EK and power

are strongly suggestive of wind energy input [22]. Further detail

on track processing is provided in electronic supplementary

material (S1).

Tracking data are inherently statistically non-independent,

with an animal’s movement at any time being influenced by its

recent activities, internal state and environment [33,34]. How-

ever, between-burst time intervals were sufficiently large

(minimum 31.08 min) to allow each to be treated as functionally



Table 1. Summary tracking statistics for all seven birds, including proportion of recorded bursts classified as soar-like, flap-like, sitting and colony-associated,
and average wind speed (mean+ s.d.) encountered during the tracking period.

ID
number
of bursts

body mass
before
tracking (g)

tracking
time (h)

total
distance
(km)

flap-
like
%

soar-
like
%

sitting
%

colony
%

wind speed
(mean+++++ s.d.)
(m s21)

1 114 445 79 625.1 21.9 26.3 35.1 16.7 11.05+ 1.6

2 115 430 85.8 483.7 11.3 9.6 72.2 6.9 6.54+ 3.59

3 56 440 46.8 282.6 17.8 25.0 51.8 5.3 10.97+ 2.52

4 33 470 25.9 200.8 21.2 9.1 48.5 21.2 1.9+ 0.25

5 44 465 28.5 123.1 22.7 4.5 43.2 29.5 7.09+ 0.15

6 101 450 94.9 700.8 26.7 2.9 58.4 11.9 4.82+ 3.0

7 96 440 76.9 462.8 8.3 31.3 37.5 22.9 10.58+ 1.76
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independent. We therefore compared bursts by calculating the

following summary parameters for each burst: (i) beeline dis-

tance (straight-line distance between burst start and endpoints);

(ii) mean ground speed (‘mean speed’); (iii) standard deviation

of kinetic energy (‘EK variance’); (iv) standard deviation of

power (‘power variance’); and (v) straightness index (beeline

distance divided by total path length), a measure of path

tortuosity ranging from completely straight (SI ¼ 1) to randomly

oriented (SI ¼ 0) [35].

Clusters in the distribution of summary parameters corre-

sponding to putative flight modes were identified by fitting

multivariate Gaussian mixture models (GMMs) by expectation-

maximization (EM), using mclust v.4.4 [36,37]. GMMs estimate

the probability of each observation belonging to each cluster,

and as such are a useful framework for identifying energetic

modes from 60 s bursts of tracked flight, which often

contain mixtures of flap-powered and wind-powered flight

rather than single discrete behaviours. All variables were

transformed to have mean 0 and standard deviation 1 before

model fitting.

2.3. Modelling behavioural responses to environment
Metop/ASCAT remotely sensed wind data (24-h averaged at

0.258 resolution) were obtained from CERSAT (http://www.ifre-

mer.fr/cersat). For each burst location this provided both total

wind speed and separate zonal and meridional components,

from which we calculated wind direction. Each burst’s flight

direction relative to wind (‘flight direction’) was calculated as

the difference between burst beeline bearing and wind direction,

and categorized as ‘tailwind’ (a difference of 08 to 508), ‘cross-

wind’ (508 to 1308) or ‘headwind’ (1308 to 1808), following [13].

We also obtained remotely sensed data for sea surface chloro-

phyll a concentration (CHL), net primary productivity (NPP)

and sea surface temperature (SST), to test possible relationships

between flight mode and ocean productivity as proxy for prey

abundance (see electronic supplementary material, S2). CHL

and SST from Aqua and Terra MODIS were obtained from

NASA OceanColor (4 km, 8640 � 4320, 8-day composite,

http://oceancolor.gsfc.nasa.gov/cms/). Aqua and Terra values

were averaged where both were available, and missing data

values were removed. Modelled NPP was obtained from

Oregon State University Ocean Productivity (2160 � 4320,

8-day composite, http://www.science.oregonstate.edu/ocean.

productivity/). We modelled relationships between flight

mode, wind and ocean productivity using logistic mixed-effects

regression (lme4 v.1.1-7 [38]).
3. Results
3.1. Flight mode classification
Foraging was mostly concentrated locally around Lundy and

northwest towards Wales (figure 1; mean distance from

colony 33.0+35.4 km). Track processing yielded a final

dataset of at-sea 10 Hz bursts (n ¼ 475) (figure 2; for

more examples see electronic supplementary material, S4).

Although most recorded for a full 60 s, some bursts were

shorter due to device error (burst length mean 43.9 s,

median 59.9 s). We were only interested in bursts recorded

during flight, so following [25], we first classified bursts as

either in-flight (n ¼ 193) or sitting on sea surface (n ¼ 282)

by fitting a two-component GMM to the bimodal distribution

of mean speeds (BIC ¼ 2625.7, log-lik ¼ 2297.44; electronic

supplementary material, figure S5). Flight bursts showed

high mean speed (10.89+3.31 m s21) while sitting bursts

showed low mean speed and variance (1.33+0.61 m s21).

Sitting bursts were excluded from subsequent analysis.

For all flight bursts (n ¼ 193) we identified clusters in the

distribution of mean speed, power variance and EK variance

by iteratively fitting trivariate GMMs with an increasing

number of clusters. Although Bayesian information criterion

(BIC) was maximized with a 3-component model, by far the

greatest BIC increase was observed between 1 and 2 com-

ponent models, identifying a clear knee-point [40]. We

therefore selected a mixture of 2 ellipsoidal Gaussian

components as most parsimonious (BIC ¼ 21270.09, log-

lik ¼ 2585.05, d.f. ¼ 19). The first component’s high speed

and low energetic variance was consistent with powered

flapping flight, while the second component showed high

speed and high energetic variance, consistent with wind-

powered soaring (figure 3a). Each flight burst was

classified to either flap-like (n ¼ 115) or soar-like (n ¼ 78)

by maximum probability. Bursts classified with under

95% probability (low-certainty bursts, n ¼ 74) were of inter-

mediate energetic variance and visual inspection suggested

that most contained mixtures of flight modes, although the

GMM classified the majority as flap-like (n ¼ 55). However,

the resolution of the available environmental covariates

meant that it would not be possible to resolve finer-scale

relationships between the environment and within-burst

variations in flight mode. We therefore decided to classify

http://www.ifremer.fr/cersat
http://www.ifremer.fr/cersat
http://www.ifremer.fr/cersat
http://oceancolor.gsfc.nasa.gov/cms/
http://oceancolor.gsfc.nasa.gov/cms/
http://www.science.oregonstate.edu/ocean.productivity/
http://www.science.oregonstate.edu/ocean.productivity/
http://www.science.oregonstate.edu/ocean.productivity/
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bursts in their entirety to either flap-like or soar-like for

subsequent analyses.

Summary energetic parameter values for flap-like and

soar-like bursts classified with over 95% probability (high-
certainty bursts) are reported in table 2. High-certainty flap-

like and soar-like bursts contained markedly different
distributions of fine-scale in-flight power and ground speed

(figure 3b,c). Energetic dynamics within soar-like bursts gen-

erally consisted of large oscillations in power, often due to

rapid EK gains. There were large differences in the amount

of time that different individuals spent engaging in different

behaviours (table 1). There were overlaps in foraging areas
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between birds, but no obvious visible spatial trends in the

at-sea distribution of flap-like and soar-like flight (electronic

supplementary material, figure S3).
3.2. Environmental predictors of soaring
Wind speed data were accessed for 189 bursts (data for four

bursts were missing from the METOP/ASCAT dataset, poss-

ibly because of cloud cover). Tracked birds encountered wind

speeds between 1.41 and 13.69 m s21, with each bird experi-

encing a range of wind speeds during tracking (table 1;

electronic supplementary material, figure S10). Wind speed

had a clear strong effect on power variance, with soar-like

bursts with high power variance almost exclusively observed

in winds above 8 m s21 (figure 4a). Mean ground speeds

were mostly concentrated between 11 and 15 m s21 in low

winds, becoming more variable at higher wind speeds (elec-

tronic supplementary material, figure S9). Birds were more

often recorded flying in crosswind (n ¼ 99) than headwind

(n ¼ 57) or tailwind (n ¼ 33) (figure 4b).

We modelled the relationship between wind speed, flight

direction and flight mode using logistic mixed-effects

regression, including an interaction between wind speed

and flight direction and including individual and day as

random effects (n ¼ 189, AIC ¼ 204.1, model outputs are

reported in electronic supplementary material). Model

deviance was significantly reduced with wind speed and

flight direction included as predictors, compared to an inter-

cept-only null model (DAIC ¼ 19.5; x2 ¼ 29.5, null–residual

deviance 217.57–188.11, d.f. ¼ 5, p , 0.0001). The model
showed a highly significant effect of wind speed on flight

mode, with likelihood of soaring increasing at higher wind

speeds (figure 4c). There was also a significant interaction

between wind speed and flight direction, with soaring occur-

ring less frequently in strong headwinds than in tailwinds or

crosswinds (for separate plots for each flight direction, see

electronic supplementary material). The strength and signifi-

cance of both these relationships increased and model

fit improved when low-certainty bursts were excluded

(n ¼ 119, AIC ¼ 93.9, residual deviance ¼ 77.9). The second

model additionally showed a significant effect of flight

direction on flight mode, with reduced soaring in headwind

compared to crosswind and tailwind. We found no

significant relationships between flight mode and oceanic

productivity (electronic supplementary material, S2).
4. Discussion
Ocean wind patterns are important drivers of seabird ecology

and evolution [13,41], and recent research integrating infor-

mation from multiple biologger types has revealed that

winds exert a major influence on timing and distribution of

foraging and migration in many species [1,8,14,15]. The

relationship we demonstrate between flight behaviour and

local wind conditions illuminates some of the behavioural

mechanisms that underpin these large-scale patterns. Cross-

winds and tailwinds above a wind speed threshold of

around 8 m s21 are highly significant predictors of soar-like

behaviour in foraging Manx shearwaters. While we emphasize



Table 2. Summary movement and energetic characteristics of bursts classified to flap-like and soar-like with over 95% probability (n ¼ 119). Values reported
are mean+ s.d. Asterisks denote a significant difference between flap-like and soar-like bursts ( p , 0.0001), tested using either two-sided t-test (*) or
Wilcoxon sum-ranks (**).

flight
mode

number of
bursts

mean ground
speed (m s21)

power variance
(W) (*)

EK variance (J)
(*)

beeline
distance (m)

straightness
index (**)

flap-like 60 11.46+ 2.23 7.22+ 2.63 4.98+ 2.74 422.3+ 268.3 0.88+ 0.12

soar-like 59 11.97+ 3.84 30.62+ 10.5 27.29+ 10.68 418.0+ 299.5 0.72+ 0.25

rsif.royalsocietypublishing.org
J.R.Soc.Interface

14:20170262

6

that these results come from a population sample of seven

individuals, they support the inference that suitable wind con-

ditions enable birds to engage in soar-like flight, which is likely

to reduce overall energy costs during journeys. Statistical be-

haviour state classification is increasingly used to analyse

animal tracking data [26,33,42]. However, to our knowledge

this is the first time such an approach has been used to both

identify distinct modes of flight behaviour and demonstrate

their predictive relationship to environmental conditions.

4.1. Tracking and modelling of flight behaviour
The effect of tags on study animals is a key consideration in

tracking research. Previous tests with devices of equal

weight reported minimal impacts on movement and repro-

ductive success in Manx shearwaters [42]; however we

tracked movement at much finer temporal resolution than

any previous study, and it is impossible to rule out the effects

that a device weighing up to 4% of body mass could have on

behaviour (e.g. [43]). Nonetheless, we observed the same

responses to wind speed across several individuals that

encountered both low and high winds during tracking.

We suggest that although tag weight may impact flight to

some degree, this is unlikely to significantly alter overall

behavioural trends.

Using mean ground speed, kinetic energy (EK) and power

as variables in the GMM offered several advantages for

distinguishing wind-powered from flap-powered flight be-

haviour. Although the relative three-dimensional positional

accuracy of successive GPS fixes is very high, absolute GPS

accuracy is more reliable horizontally (used to calculate

ground speed and EK; absolute error of +2.5 m) than verti-

cally (used to calculate potential energy EP). Visually

inspecting all flight bursts showed no abrupt changes in alti-

tude that were obviously artefacts; however we opted to

exclude absolute EP values (which are derived from absolute

altitude) from the GMM in order to minimize any potential

effects of GPS error. Mechanical power measures the rate of

energy change across each between-fix time interval t (P ¼
(DEK þ DEP)/t), so by including power (derived from

change in altitude) as an input variable we ensured that the

GMM still incorporated relative changes in EP, an important

aspect of soaring flight. For additional model validation we

also independently hand-classified bursts as soar-like or

flap-like based on visual inspection of their shape, and the

results closely resembled model outputs (electronic

supplementary material, figure S7), improving our confi-

dence that the clusters identified by the GMM correspond

to these behaviours.

The GMM clearly distinguished bursts that contained

mostly flap-like or soar-like movement, due to their markedly

different mechanical characteristics. However, it appeared
slightly biased towards classifying low-certainty bursts

(those classified with under 95% probability) as flap-like

(n ¼ 55) rather than soar-like (n ¼ 17), despite visual

inspection suggesting that most were mixed-mode. These

intermediate energy bursts mostly occurred in wind speeds

above the soaring threshold (electronic supplementary

material, figure S8) suggesting that our models may slightly

underestimate use of soaring in wind speeds above 8 m s21.

This emphasizes that although a behavioural state framework

is a useful abstraction for modelling relationships between

flight mode and environment, Manx shearwater flight is com-

plex and responsive to local heterogeneity in wind and wave

conditions. 60 s tracked flight bursts exist on a continuum of

mixed behaviours, ranging from mostly flap-like to mostly

soar-like (e.g. figure 2). This variability reflects the smaller

wingspan and flap-gliding flight of this species compared

to that of large soaring specialists such as albatrosses,

which travel long distances without flapping their wings.

Soar-like bursts occasionally showed regular EP and EK oscil-

lations resembling those observed in albatrosses, albeit with

shorter soar cycle lengths (5 s compared to 15 s) [22]; however

such stereotyped movement was relatively uncommon (see

electronic supplementary material, S4). The resolution of

the available environmental covariates meant that it was

not feasible to model the effect of environment on within-

burst variability in flight behaviour. However, in future,

either accessing wind data at a higher spatio-temporal resol-

ution (e.g. collected using on-animal tags) or recording much

longer high-frequency GPS bursts (e.g. 5–10 min or above)

could potentially facilitate analysis of the effect of wind on

flight behaviour at an even finer scale.

4.2. Flap-like and soar-like flight characteristics
Birds engaging in powered flapping flight are predicted to

minimize net energy expenditure by travelling close to maxi-

mum range velocity (Vmr), the speed at which maximum

distance is covered per unit of fuel [28]. Previous studies

tracked Manx shearwaters at mean ground speeds of 10–

11 m s21, slower than their estimated Vmr of 14 m s21,

suggesting some use of wind while travelling [25,27]. Our

results confirm this, and show that soar-like flight enables

shearwaters to travel at equivalent mean ground speeds as

flapping (table 2). Within flap-like bursts the highest density

of ground speeds occurred between 12 and 14 m s21

(figure 3c), with birds apparently maximizing efficiency by

travelling close to Vmr. The relationship between ground

speed and airspeed varies with flight direction relative to

wind; we hypothesize that birds maintain airspeeds close to

Vmr throughout flapping, and that much of the observed

within-burst variability in ground speed is due to birds

flying with or against the wind, as indeed is the broader
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distribution of mean ground speeds observed in high winds

(electronic supplementary material, figure S9).

In contrast, during soar-like flight regular kinetic energy

boosts from the wind generate power levels far exceeding

those available through flapping alone (figure 3b), with maxi-

mum available power appearing to increase as a function of

wind speed (figure 4a). Accelerating and slowing repeatedly

as they change flight path and body orientation relative to

wind, soaring birds cover a far broader range of ground

speeds (figure 3c) along significantly more tortuous flight

paths (table 2). Soar-like flight in Manx shearwaters involves

more flapping activity than in albatrosses [13], whose

metabolic costs while soaring are extremely low [18]. None-

theless, we find that soaring shearwaters cover equivalent

distances as in flap-like flight (table 2) while spending

much more time flying at closer to their estimated minimum

power velocity (Vmp) of 7.5 m s21 (figure 3c), which strongly

suggests that energy expenditure is lower during soar-like

flight. The second smaller peak between 0 and 2.5 m s21

emphasizes the distinction between ground speed and air-

speed; it corresponds to phases during soaring when birds

ascend into oncoming wind, sharply decreasing in ground

speed but simultaneously increasing in airspeed [22]. Birds

were also more likely to soar in suitably strong tailwinds

and crosswinds than headwinds, although the relative coar-

seness of our wind data (24-h averaged vectors) means that

these categorized directions may be inexact. This nonetheless

makes intuitive sense, since soaring against strong headwind

is both time-inefficient and metabolically costly [18,20].

More broadly, these insights emphasize the emerging

potential of high-frequency GPS biologgers, either solo or

paired with other sensor types [20,44], as tools for studying

fine-scale movement behaviour in wild animals. Tri-axial

accelerometers are typically used to quantify metabolic

energy expenditure in tracked animals (e.g. [45,46]). How-

ever, since these measure body acceleration rather than an

individual’s position in space they can present challenges

for studying soaring and gliding in birds, in which body pos-

ture often remains relatively fixed and much muscle work is

isometric [44]. In future, combining high-resolution GPS with

co-deployed accelerometer tags would enable more precise

estimation of the relative metabolic costs of different flight
modes in this and other bird species, providing even more

detailed insights into dynamic relationships between flight

behaviour and the local environment.
4.3. Ecological relevance and future directions
Global wind patterns affect migration strategies in many

birds [6,7,14] and the foraging ecology of pelagic seabirds

[1,8]. Breeding and migration success may depend on mini-

mizing energy costs during these trips [1,28]. Our results

support the inference that soaring in tailwinds and

crosswinds above an 8 m s21 threshold enables Manx shear-

waters to reduce flight energy expenditure, and therefore

suggest a local-scale behavioural mechanism by which the

wind conditions experienced by birds during flight modulate

the net cost of at-sea journeys. Wind conditions are therefore

likely to affect route choice, for example sufficiently high

speed crosswinds and tailwinds may provide low-cost soar-

ing corridors to foraging areas. This may contribute to the

costs of foraging during reproduction, and may be an impor-

tant factor to consider in future analysis of carry-over effects

(e.g. [29]). Such a mechanism may also underpin some of the

considerable variety in foraging routes observed during sev-

eral years’ tracking of Manx shearwaters around the UK [27],

as well as the flexible route choice strategies of other seabirds

in response to wind [15,16]. Our data provide some support

for this, in that the tracked birds travelling furthest northwest

towards Wales were those that encountered the strongest

winds and soared the most (table 1).

Migratory birds are predicted to evolve migration strat-

egies that minimize energetic costs [28]. Following

favourable conditions for soaring may be one behavioural

mechanism by which long-term trends in oceanic wind

patterns, including the persistence of stable atmospheric

features, affect the evolution of migration routes and timing

in the Manx shearwater and other seabirds [8]. By identifying

the wind conditions that favour soar-like flight, our

results therefore present opportunities for a more predictive

approach to understanding seabird life histories. We suggest

that a future research direction, applying our model outputs,

would be to combine global-scale wind data with the mul-

tiple years of geolocator and GPS migration tracks now
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collected for this species [26,27], in order to further assess

how local behavioural responses to wind influence its

global spatial distribution and migratory routes. Such an

approach may also have conservation management impli-

cations for this and other seabirds. For example, although

Manx shearwaters are generally considered low risk for col-

lision with offshore wind turbines due to their relatively

low altitude flight [47], applying similar methods to assess

the predictive relationship between wind conditions, flight

behaviour and route choice in other, more vulnerable species

may assist in predicting regions of present and future

collision risk.

Our results also suggest that climate change-driven wind

pattern shifts [10] have the potential to affect the costs of

long-distance journeys in this species. Recent wind changes

in the Southern Ocean have affected foraging routes and

life-history traits in wandering albatrosses [1], suggesting fit-

ness impacts but also some behavioural plasticity in response

to changing atmospheric conditions. However, as much

smaller birds reliant on favourable winds for both foraging

and migration [5], Manx shearwaters may be highly sensitive

to such changes. If future global wind pattern shifts result in

either increased energy expenditure during flight or extended

travel times while at sea, this could have long-term popu-

lation impacts on survival and reproductive success [8].

Similar impacts may also be expected in other pelagic seabird

species, whose populations are already in global decline due

to human impacts on the marine environment [48].
5. Conclusion
Data from on-board biologgers are fast improving our

understanding of free-living animal movement. Using
high-frequency GPS, here we have shown for the first time

that wind speed, measured via satellite remote sensing, is

an accurate predictor of soar-like flight in a wide-ranging

pelagic seabird. Tailwinds and crosswinds above an 8 m s21

wind speed threshold predict significantly increased likeli-

hood of soaring flight. Both wind speed and direction are

therefore likely to modulate flight costs during at-sea trips,

suggesting a mechanism by which oceanic wind conditions

could affect population-level foraging and migration strat-

egies in this and other species. Our results highlight that

high-frequency GPS should be considered within an emer-

ging toolbox of tracking technologies that enable detailed

quantitative study of the interactions between animal

movement and the environment.
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