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Abstract

Numerous methods for joint analysis of longitudinal measures of a continuous outcome y and a 

time to event outcome T have recently been developed either to focus on the longitudinal data y 
while correcting for nonignorable dropout, to predict the survival outcome T using the longitudinal 

data y, or to examine the relationship between y and T. The motivating problem for our work is in 

joint modeling the serial measurements of pulmonary function (FEV1 % predicted) and survival in 

cystic fibrosis (CF) patients using registry data. Within the CF registry data, an additional 

complexity is that not all patients have been followed from birth; therefore, some patients have 

delayed entry into the study while others may have been missed completely, giving rise to a left 

truncated distribution. This paper shows in joint modeling situations where y and T are not 

independent, it is necessary to account for this left truncation in order to obtain valid parameter 

estimates related to both survival and the longitudinal marker. We assume a linear random effects 

model for FEV1 % predicted, where the random intercept and slope of FEV1 % predicted, along 

with a specified transformation of the age at death follow a trivariate normal distribution. We 

develop an EM algorithm for maximum likelihood estimation of parameters, which takes left 

truncation and right censoring of survival times into account. The methods are illustrated using 

simulation studies and using data from CF patients in a registry followed at Rainbow Babies and 

Children’s Hospital, Cleveland, OH.
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1. INTRODUCTION

Longitudinal studies and clinical trials are often designed to study changes in a continuous 

marker, y, over time, estimate the time to a clinical event of interest, T, and/or to analyze the 

relationship between y and T. The continuous outcome variable, y, is measured repeatedly 

on each study participant and dropout due to the clinical event of interest causes values of 
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the longitudinal measurement beyond that point to be unobserved or missing. When the 

probability of dropout is nonignorable, i.e. dependent on unobserved values of y or latent 

variables related to y, methods analyzing y alone are often biased whereas joint models, if 

properly specified, provide consistent estimates. Numerous approaches [1–13] have been 

developed for joint modeling of y and T in this situation and joint modeling continues as an 

active area of research.

The motivating problem for this work is joint modeling serial measurements of pulmonary 

function (FEV1 % predicted) and survival in cystic fibrosis (CF) patients using data from a 

CF registry at Rainbow Babies and Children’s Hospital (referred to as the Case Western 

Reserve University Cystic Fibrosis database or CWRU CF database) that has captured 

clinical visit data on all patients seen at the CF center since its inception in the 1950’s. 

Others [1, 14] have demonstrated a strong relationship between rate of pulmonary function 

decline and survival or age at death and thus joint modeling assuming a nonignorable 

relationship between pulmonary function and survival is preferable to methods ignoring 

information on death when estimating patterns of FEV1 decline in population cohorts. For 

CF patients, pulmonary function testing is routinely carried out at routine visits, beginning at 

age 6, the youngest age when this testing can be reliably measured. If a subject does not 

have pulmonary function measured at age 6, we assume that follow-up for that subject began 

at the age when their first measurement was obtained. For these subjects with delayed entry 

into the registry, their information on survival is left truncated in the sense that their follow-

up began at the age of first pulmonary function testing rather than birth. To illustrate the 

degree of truncation in the registry, Figure 1 plots age of first visit with pulmonary function 

testing against calendar year of birth for the 1272 patients followed in the database. It can be 

seen that the earlier the patient was born, the more likely entry into the registry is to be 

delayed, as evidenced by an older age at first test. For example, patients born in the early 

1940’s did not have their first pulmonary function test (PFT) recordings on average until age 

20, whereas patients born in the 1990’s were recorded on average closer to the earliest 

possible age, age 6. Thus, the earlier the year of birth, the more severe the left truncation.

Left truncated survival data occur when, as in the CF registry, follow-up does not begin at 

time or age 0 for some or all subjects in the sample. The need to account for left truncation 

in survival data to avoid bias in estimating the survival function or parameters related to 

survival is well-recognized [15]. However, while numerous joint modeling approaches have 

been developed assuming nonignorable relationships between y and T, [1–13], none of these 

methods deal with the additional bias caused by left truncation. We show in this paper that 

left truncation of survival or time to event must also be accounted for in joint modeling a 

longitudinal outcome and time to event in order to avoid bias both in the time to event 

estimates but also in parameters related to y. In particular, in CF registries, left truncation 

due to delayed entry can result in bias in estimates of rates of decline in pulmonary function 

as well as in survival estimates.

This paper presents an approach to jointly model longitudinal responses and time to event 

outcomes while correcting for left truncation and applies the methods to the CWRU CF 

database. In Section 2, we define the notation and describe the model. In Section 3, we 

derive an EM algorithm for computing maximum likelihood estimates that accommodates 
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both nonignorable dropout and left truncation. These methods are applied to the CWRU CF 

database in Section 4. In Section 5, we present a simulation study based on the CWRU CF 

database, used to examine robustness of the model under various left truncation scenarios. 

The last section provides a discussion of the conclusions, strengths, and limitations of these 

methods.

2. MODEL AND NOTATION

Assume we have an observed sample of n subjects followed longitudinally in a registry, and 

interest is in describing patterns of change in a longitudinal measurement y over time as well 

as the time to a clinical event. For the CF registry y is FEV1% predicted and the clinical 

event is death. Assume here that the time scale is age, and let Li denote the age when the ith 

subject began to be followed in the registry, where Li > 0 indicates that follow-up began after 

birth and thus in the terminology of survival analysis, the subject’s survival data are left-

truncated. Also define the left truncation indicator = 1 if Li > 0 and = 0 otherwise. We 

observe either Ai = age at death, or Ci = age last known alive for the ith patient, along with 

the indicator δi = 1 if the patient died and δi = 0 otherwise. Our methods assume that 

survival ages Ai can be transformed to normality using some known function g(.), i.e. where 

 = g(Ai), possibly conditional on covariates, is normally distributed. With the motivating 

example, the CWRU CF database, we consider a log transformation: g(Ai) = log(Ai) = , 

assuming a lognormal distribution for Ai, but other transformations g(Ai) can be used. 

Similarly, defining Ci = g(Ci) and Li = g(Li) and letting Ti = min( , Ci), the observed 

information on the transformed scale summarizing survival can be written as {Li, Ti, δi, , i 

= 1,…,n). Note that when the log transformation =log(Ai) is used, Li = g(Li) is defined to 

be −∞ when Li =0. In addition, let  denote the ni × 1 vector of 

longitudinal measurements available for the ith subject in the observed sample, with 

corresponding ni × 1 vector of measurements times (measured in age (years)), 

.

The joint model we consider is formulated as a two-stage random effects model. The first 

stage describes the conditional distribution of the longitudinal measurements, yi, given 

subject-specific regression random effects, bi. This is written as:

(1)

where for i = 1, …, n, bi is a q × 1 vector of subject-specific regression coefficients, 

 is an ni × 1 error vector distributed , and Zi is an ni × q known 

design matrix. When modeling the CF data, we initially assume yi follows a linear trend 

with time; in this case, Zi consists of a first column made up of all 1’s and the second 

column made up of the times (ages in years) of measurements for subject i, and bi = (bi0, bi1) 

is the 2 × 1 vector of the unknown intercept and slope random effects.
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The second stage of the model assumes that the (q + 1) × 1 random vector  for each 

subject i = 1,.,n in the sample is a randomly selected observation from the possibly left 

truncated multivariate normal distribution , where the multivariate 

normal distribution  is:

(2)

Here, α is a p × 1 vector of fixed effects parameters, and Wi1 (q × p) and Wi2 (1 × p) are 

known design matrices whose elements may depend on a subject-specific covariate vector 

wi, and Σb, , and  are variance and covariance parameters of the joint distribution. Note 

that when = 0,  is just the untruncated distribution in (2). The 

covariance parameter between bi and , describes the association between the 

underlying random effects bi and . When = 0, bi and are independent, implying also 

that yi and are independent, and joint modeling is not necessary. When =0 and δi = 0 

(no truncation or censoring is present for subject i), or when  = 0, together stages I and II 

imply the following marginal distribution of yi: 

. Note that we assume throughout that the 

right censoring times Ci and left truncation times Li are independent of each other and are 

non-informative in that, conditional on wi, they are also independent of bi, yi, and .

3. COMPUTATION OF MAXIMUM LIKELIHOOD ESTIMATES

In this section, we extend an EM algorithm for computation of maximum likelihood 

estimates of the parameters  originally developed for the joint model of section 2 

without left truncation [5], to incorporate left truncation of survival times. The extension of 

the EM algorithm to incorporate left truncation follows an approach proposed by Bee [16] 

for samples from a left-truncated normal distribution. This approach assumes that there are 

‘latent’ observations that are unobserved due to the left truncation process, which become 

part of the hypothetical complete data specified in framing the EM algorithm. The procedure 

is outlined below; further details and theoretical justification of the approach are provided in 

Appendix B.

Because Li and wi may vary among subjects, we treat each subject as a separate stratum. To 

formulate the EM algorithm, we assume that for a subject with =1, the complete data 

consist of a random sample of mi + 1 subjects from that stratum, where an unknown number 

mi ≥ 0 of subjects had transformed times less than Li and thus were not included in the 

observed sample, and the remaining subject with > Li is the one observed. If then mi 

= 0 by definition. It is shown in Appendix B that the unobserved number of missing 

subjects, mi, has a geometric distribution with mean E(mi)= (1 − pi)/pi where 
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. If mi > 0, let  denote the 

random vectors of random effects and survival times for the mi unobserved subjects in 

stratum i. The EM formulation assumes that for each subject i,  and 

 constitute an independent random sample of size mi + 1 from the 

multivariate normal distribution in equation (2).

Thus, to formulate the EM algorithm, the observed data consist of {yi, Ti, δi, , and Li, i = 

1,…,n} and the complete data consist of bi, ei, Ti
0, mi, and if mi > 0, 

, for i = 1, …, n. The observed data log-likelihood can be written as:

(3)

A detailed expression for the observed data log-likelihood is shown in the Appendix 

(equation (A.1.1)). The complete data log-likelihood is simpler, and can be written as:

(4)

This can be shown to simplify to:

(5)
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where S1i = , S2i = , S3i = , S4i = , S5i = 

, and S6i = , where by definition 

The E-step of the EM algorithm calculates the expected values of the complete data log-

likelihood (5) conditional on the observed data using current estimates of the parameters. 

The distribution of the complete data log-likelihood is multivariate normal and thus, is a 

member of the exponential family. Specifically only for exponential families, the tth step of 

the E-step calculates the expected values of the sufficient statistics (i.e.,  

    in equation (5)), conditional on the observed data and 

current estimates of the parameters. This is equivalent to finding the expected values, 

 , where 

(see Appendix A.2), conditional on the observed data for subject i, for each i = 1, 

…, n. As an example, the derivation of is shown in Appendix A.2. Expressions for all 

required expectations in the E-step are also given in Appendix A.2.

The M-step of the EM algorithm finds the values of the parameters α, Ω, and that 

maximize the complete data log-likelihood given the observed data. Given that the complete 

data log-likelihood from the E-step follows a distribution that is a member of the exponential 

family, the M-step computes the new updated parameter estimates in terms of the 

conditional expected sufficient statistics. Following Schluchter et al. [5], in the M-step, to 

update the fixed effects contained in α, we calculate the MLE of α assuming that the 

variance/covariance parameters in Ω are known and equal to Ω(t). This is the generalized 

least squares estimate:

where  is the current estimate of E(mi). Similarly, assuming α is known and equal to 

α(t), the MLE of the unstructured covariance matrix Ω can be calculated as:

As in Schluchter et al. [5], the M-step estimate of  is: .
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Standard errors of parameter estimates are obtained via the bootstrap algorithm or 

numerically. For the latter, we use the SAS IML function NLPFDD, which is a nonlinear 

optimization method that approximates the derivatives of the observed data log-likelihood 

numerically using finite differences methods. The estimated Hessian matrix, , 

the matrix of second derivatives of the observed data log-likelihood, is evaluated at the 

maximum likelihood estimates, obtained from the EM algorithm. The estimated 

covariance matrix of the maximum likelihood estimates is then calculated as 

.

4. EXAMPLE-CYSTIC FIBROSIS

As noted in Section 1, the motivating example comes from the Case Western Reserve 

University Cystic Fibrosis (CWRU CF) database. CF is a lethal, autosomal recessive disease 

and is most common among Caucasians [17]. We focus here on a measure of pulmonary 

function, forced expiratory volume in one second (FEV1), measured as a percentage 

predicted as compared to the average (non-CF) individual of predicted normal based on the 

patient’s age, gender, and height, referred to as FEV1 % predicted, [18–19]. Specifically, 

best yearly FEV1 % predicted is the longitudinal measurement for this study and is defined 

at the highest recording of FEV1 % predicted during a given calendar year for a given 

patient. Using only best yearly recordings is intended to minimize effects of suboptimal 

measurements of FEV1 % predicted that may be obtained during periods of acute illness in a 

given year. Although we could model survival from birth in the CWRU dataset, where all 

subjects are left truncated with follow-up beginning at age ≥6 years, we instead model 

survival and FEV1 decline conditional on survival to age 6, avoiding the need to model 

survival at ages <6 where we do not have information on survival. We therefore took the 

scale of Ai, Ci and Li as age in years-6, where only those subjects with first pft at age >6 are 

considered left truncated ( =1).

We apply the proposed model to the 1272 patients of the CWRU CF database, divided into 6 

birth cohorts, as follows: 1930–49, 1950–59, 1960–69, 1970–79, 1980–89, and 1990–2006. 

The first two decades when patients were born (1930–39 and 1940–49) and the last two 

decades when patients were born (1990–1999 and 2000–2006) were combined into 

respective cohorts (1930–49 cohort and 1990–2006 cohort) because of the small number of 

patients in the individual decade of birth cohorts. Since survival and degree of left truncation 

are of primary interest, the descriptive statistics for survival and age when first pulmonary 

function test (PFT) measurement was obtained for each birth cohort were assessed (Table 1). 

The difference between the age of first test and age 6 reflects the amount of left truncation 

within each cohort where the higher the age at first test, the more severe the left truncation. 

Mean ages at first test in Table 1 indicate the same trend shown in Figure 1, i.e. that earlier 

birth cohorts tend to have more severe left truncation. In the most recent birth cohort, 1990–

2006, only 2 deaths were observed; therefore, survival estimates for this cohort are 

imprecise, and will not be analyzed separately in this study. The joint model described in 

Section 2 with correction for left truncation (referred to as JM-C) and the joint model of 

Schluchter et al. [1], which does not account for left truncation (referred to as JM-UN), were 

applied to the birth cohorts for comparison.
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In nearly all birth cohorts, the JM-UN resulted in higher estimates of mean intercept 

(parameterized as FEV1 % predicted at age 6) and less negative estimates of the slope as 

compared to estimates from the JM-C model (Table 2 and Figure 2). The difference between 

the intercept and slope estimates from both models is greater in the earlier birth cohorts, 

when more patients are left truncated. The JM-UN also resulted in higher estimates of 

survival as compared to the JM-C, and the difference between the two models was greater in 

the earlier birth cohorts, where left truncation was more severe or pronounced (Figure 3 and 

Table 2).

The estimates of survival from age 6, obtained from the lognormal joint models (with and 

without correction for left truncation), were compared to corresponding baseline survival 

curve estimates from Cox models (obtained with SAS Proc PHREG with and without 

correction for left truncation using the Entry= option) to assess the fit of the lognormal 

distribution for survival time. Since the survival curves estimated from the JM-C model 

agree closely with the corresponding survival curves estimated from the Cox model with 

correction for left truncation, the assumed lognormal distribution for survival appears to 

provide a reasonably good fit (Figure 3). The survival curve estimates from the JM-UN 

model also closely match the survival curve estimates from the Cox model without 

correction (not shown in Figure 3).

The estimates of intercept and slope of FEV1 % predicted and survival demonstrate the 

expected cohort effect, where earlier birth cohorts have lower intercepts, steeper slopes, and 

shorter survival times when compared to the later birth cohorts.

5. SIMULATION STUDIES

Simulation studies were carried out to assess performance of the JM-C model in comparison 

to the JM-UN model (not correcting for left truncation) under two scenarios. In the first 

scenario, data were generated from the joint lognormal model (equations 1 and 2), and the 

second scenario examined performance when the survival data were generated from a 

misspecified Weibull model. Simulations focused only on estimation of fixed effects terms 

in the vector α since these are usually of most interest. All simulations used 500 

replications, with a sample size of 300 subjects (including unobserved left-truncated 

subjects).

In the first scenario, the means of the intercept , slope , and survival time 

depended on a continuous N(0,1) covariate , as follows: , 

, and . True parameter values, obtained by 

fitting a no-covariate model to the CF data and by assuming a 10% increase in the means of 

,  and  per one unit increase in , were  =(108.0, 

−1.65, 3.60, 10.8, 0.165, and 0.36)’, Σb = , , , and 

. For the second scenario, data were generated from a model where the 
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marginal distribution of yi was the same as in the first scenario and the conditional 

distribution of survival age Ai, given , , and the N(0,1) covariate , was Weibull rather 

than lognormal (for details, see Appendix C). As in scenario 1, this model implied that 

regressions of , , and  on  were linear where the regression parameters 

were the same as in scenario 1. Estimates of from the 

models in scenario 2 were compared to log(33.7) = 3.517, where 33.7 is the median survival 

time when = 0, and  and  were equal to their conditional means given  (Appendix 

C). Under both scenarios, all survival times > 45 years were right censored. To simulate left 

truncation, with probability P, subject i was removed from the sample if Ai < L, where all 

combinations of the probability P =0.20, 0.50, and 0.80 and age at truncation L =10, 20, and 

30 years were examined. All subjects, including those with first PFT at age 6, were 

considered left truncated when fitting the JM-C model.

When data were generated from the assumed lognormal model (scenario 1), the JM-C model 

performed well, with most parameters estimated with nonsignificant or <5% bias and 95% 

confidence interval coverages ranging from 92.0% to 96.8% (Table 3). In contrast, the JM-

UN model produced negatively biased estimates of the regression coefficients and , 

and of in all cases. Except when left truncation was least severe (P=0.20, L=10), JM-UN 

estimates of were positively biased. As expected, the performance of the JM-UN model 

worsened as the degree of left truncation increased.

Under scenario 2, results (Table 4) showed that with the exception of estimation of , the 

corrected (JM-C) model’s parameter estimates had relatively small percent bias and 

coverage probabilities ranging from 91–96.4%. Although the JM-C estimates of had low 

bias, the confidence interval coverage probabilities were too low. Confidence intervals for 

from the JM-UN model also had poor coverage, and the JM-UN model’s estimates of 

and were negatively biased, with increasing bias and worsening confidence interval 

coverage as the degree of left truncation increased. The JM-UN estimator of was 

increasingly negatively biased as the degree of left truncation increased.

6. DISCUSSION

In this paper, we present a method for dealing with bias caused by left truncation (delayed 

entry) in registry data, such as the CF data. Under the assumed model, correlation between 

yi and  is induced through nonzero correlations between random effects bi and  in a 

multivariate normal model. Previous studies [1,5] focused on the use of this joint model in 

the absence of delayed entry to examine the relationship between y and the time to event T 

and to deal with nonignorable dropout in y. This paper shows that more generally under this 

model, delayed entry of a subject i (i.e. where follow-up begins at age Li) implies left 

truncation of that subject’s survival time, and correct inference requires that the left 

truncation be correctly specified in the log likelihood to be maximized (equation A.1.1).

We present a novel EM algorithm that includes as part of the “complete” data for subject i, 
the random effects and survival times from an unknown number of subjects, who were 

unobserved because their survival times were less than the left truncation time Li of the 

observed subject. We note however that the EM formulation is just a device for finding 
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parameter values that maximize the likelihood of the observed data. In principle, values of 

parameters that maximize this likelihood could be found by other more traditional 

maximization algorithms.

Simulation studies under data generated from the correctly specified lognormal model 

(scenario 1) showed that the JM-UN model resulted in biased estimates of most fixed effects 

parameters. In contrast, under this scenario, the JM-C performed well.

The analyses of the CWRU CF database were consistent with simulation findings. The JM-C 

model appeared to correct for biases in estimates of survival and FEV1 % predicted decline 

caused by left truncation and provided intuitively reasonable estimates. In contrast, the JM-

UN model appeared to overestimate survival, and underestimate level and decline in FEV1 

with bias that increased with the degree of left truncation.

In simulations where the survival model was misspecified (scenario 2), estimates of fixed 

effects parameters from both JM-UN and JM-C models had bias and/or incomplete 

confidence interval coverage, although estimates of parameters related to intercept and slope 

of y from the JM-C model had smaller bias as compared to the JM-UN model. These results 

emphasize the importance of assessing fit of the survival model; comparison of model 

estimates with Cox model estimates adjusting for left truncation as in Figure 3 is one 

possible approach. The methods proposed here should not be used when a large proportion 

of subjects have left-truncated survival times since in this case estimation of the left-hand 

tail of the survival distribution relies heavily on model assumptions. Finally, numerous 

authors who have studied and developed joint models like ours that rely on untestable 

assumptions (e.g., concerning specification of the relationship between y and ) have 

stressed the importance of carrying out sensitivity analyses under different models [5, 20–

22].

Appendix A

A.1. The observed data log-likelihood

The observed data log-likelihood defined in equation (3) can be computed using the 

following formula:

(A.1.1)
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where , 

, , Ai = 

, Bi = , 

(where  and ) and . The 

first two summation terms of equation (A.1.1) represent the first term on the right hand side 

of equation (3), i.e. and the last two summation terms represent 

 = , where f(yi) is the 

density. The fourth summation term in (A.1.1) is derived by writing 

, and completing the square for inside 

the integral.

A.2. Computational details for the E-step of the EM algorithm

As noted in section 2, the E-step involves calculating the following for each subject i:

For example, consider the calculation of . This is computed as follows:

We begin by considering separately the cases for δi =1 ( is observed) and δi =0 ( is 

right-censored).

When δi =1,  is observed, so, . Given  are independent of (yi, 

, δi), but depend on Li,  Since the  j = 

1,…, mi, are identically distributed, this becomes
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where is given in equation (A.2.2).

When δi =0,  is right censored, , and  is not dependent on Li: 

. As before, are identically distributed, 

independent of (yi, , δi), but depend on Li; therefore,

where  is given in the Appendix (equation (A.2.1)).

Combining both cases when δi =1 and δi =0,  becomes:

The other terms for the E-step, , can be derived similarly.

The following additional quantities are needed for the E-step:

A.2.1. Conditional Moments of  when right-censored and left-truncated

Conditional on yi,  is normal, with mean 

and variance 

. Using results in Johnson and Kotz [23] on the 

mean and variance of left- and right-truncated normal random variables, it can be shown 

that:

(A.2.1)

And similarly, since  has mean  and variance it can be shown that:

(A.2.2)
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where H(z)= ϕ(z)/(1−Φ (z)) and and H*(z)= ϕ(z)/Φ(z), ϕ(z) is the standard normal 

probability density function, and is the standard normal cumulative 

distribution function.

A.2.2. Derived expectations for the E-Step

(A.2.3)

where 

, 

, , and 

.
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where 

 and 

.

Appendix B

Details on Formulation of the EM algorithm

To formulate the EM algorithm, we modify and follow a general EM approach set forward 

by Bee [16] and McLachlan and Krishnan [24] for maximum likelihood estimation with 

grouped and truncated data. For the moment, we focus only on the complete data for a given 

subject i in terms of survival times and random effects. We consider two cases. If (no 

left truncation occurred with respect to subject i) the complete data for subject i consist of 

( , bi) alone and implementation of the EM is straightforward. When = 0 the complete 

data log likelihood based on  is just the logarithm of  (2). 

However, if (left truncation due to delayed entry occurred) complete data for subject i 

are assumed to consist of data for the observed subject where >Li, plus mi ≥ 0 

unobserved pairs , j = 1,…,mi where < Li, and the are undefined if mi = 

0. Note that mi, which is unknown, is the number of unobserved “latent” subjects from the 

same stratum as subject i, (i.e., have the same values of Li and wi).

We focus on forming the complete data log likelihood corresponding to subject i when 

. Following McLachlan and Krishnan [24], the complete data model implies { , 

, j = 1,…,mi } represent a random sample of size 1 + mi from the untruncated 

multivariate normal density in equation 2. Thus the log likelihood for this “complete” data 

sample of 1 + mi observations is:

(B.1)

The complete data log likelihood can also be specified in terms of the observed data 

and the “missing” information: mi and { , j=1,…, mi)}. The joint density can be 

factorized as the marginal density of mi and the conditional density of and { , 
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j = 1,…, mi} given mi. The conditional distributions of , and of { , j = 1,…, 

mi} given mi are respectively that of a sample of size one from a left truncated multivariate 

normal density, and a sample of size mi from a right-truncated multivariate normal density. 

Leaving the density of mi given  unspecified for the moment and defining 

(equation A.2.3), with this factorization the complete data log likelihood can 

be written as:

(B.2)

Since (B.1) and (B.2) are both expressions for the complete data log likelihood, they will be 

equal when except for an additive constant c not depending on (α, Ω),

or

(B.3)

It can be seen that (B.3) defines a geometric distribution with probability pi. As noted by 

McLaughlin and Krishnan [24], assuming the density (B.3) for mi can be viewed as a device 

to produce the desired form (B.1) for the complete data log likelihood.

Intuitively we can think of the complete data as arising from a hypothetical sequential 

sampling scenario. All subjects sharing the same values of Li and covariates wi can be 

thought of as a stratum, where the target population consists of the union of all disjoint 

strata. Within a stratum (say the hth), all subjects have the same covariate vector wi =wh, 

design matrix Wi = Wh (equation 2) and truncation time Lh), and their distribution of 

survival time and random effects in equation (2) is N(Whα, Ω). Subjects are randomly drawn 

from the target population until n untruncated observations are obtained Corresponding to 

each subject i in the sample, mi is defined as the number of truncated (unobserved) subjects 

that were encountered from the same stratum up to the point where that subject was selected. 

If there are multiple left-truncated observations from the same stratum, then for each subject 

mi is defined as the number of unobserved observations drawn from the stratum since the 
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last untruncated observation was drawn from that stratum. Thus, for each observed subject in 

the sample, mi is the number of failures (subjects unobserved because their transformed 

survival times are less than Li) until the first success (subject with transformed survival time 

>Li), where the probability of success is pi. If for a given stratum, no subject with 

untruncated survival time is drawn, then no observations are observed at all from that 

stratum. This does not create bias under the assumed model. In the extreme case where all 

subjects share the same covariate values and left truncation time, if n is the observed sample 

size, then this model implies that the total number of unobserved subjects due to truncation, 

 is the sum of n independent geometric (p) random variables (where p1= p2=…= pn= 
p), and thus has a negative binomial distribution, with parameters n and p.

To finish the formulation of the EM, we define additional “complete” data as ei, i = 1,…,n, 

such that yi = Wibi + ei, i = 1,…,n. The ei are assumed independent of (bi, , , and mi) 

and their distribution depends only on , so including them with the complete data does not 

alter the interpretation above.

Because subjects are independent, and because ei is independent of for each subject i, 
the complete data log-likelihood for all subjects can then be written as in equation (3), i.e.

Appendix C

Weibull Model Used in Scenario 2 of Simulations

To generate data for scenario 2 of the simulations, random intercepts, slopes, and 

longitudinal response data yi, i=1,…,n were generated using the same marginal mixed model 

and parameter settings used in scenario 1, implying , , , 

and . Conditional on bi0, bi1, and wi,,the survival time Ai (years) was 

generated from a Weibull distribution with hazard function 

where and 

, with  and where γ = 4.465, λ0 = 1.05×10−7, γ0 = 

−0.0113γ, η1 = −0.3208γ, and η2 = −0.36γ. Values of γ, λ0, η0 and η1 were obtained by 

fitting a mixed model to the CF data to obtain empirical Bayes estimates of ui0 and ui1, and 

then fitting a Weibull regression model using Proc Lifereg in SAS, using these estimates as 

covariates. This model implies that the regression on wi alone is linear with slope 

=0.36, and the median survival when   and wi are zero is 33.7. Because in the 

lognormal models JM-C and JM-UN, is interpreted as the log of the median survival time 

when wi =0, estimates of in the simulations were compared to log(33.7) = 3.517.
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Figure 1. 
Plot of age of first test vs. year of birth. The black line is a spline curve.
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Figure 2. 
Estimates of the population mean regression of FEV1 % predicted vs. age by birth cohort 

from the lognormal joint model without correction for left truncation, JM-UN ( ) and 

from the lognormal joint model with correction for left truncation, JM-C ( ).
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Figure 3. 
Survival curve estimates by birth cohort from the lognormal joint model without correction 

for left truncation, JM-UN ( ), the lognormal joint model with correction for left 

truncation, JM-C ( ), and the Cox model with correction for left truncation ( ).
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Table 1

Survival statistics and age of first PFT by birth cohort.

Birth cohort Number of subjects Number of subjects who died Average age at first test (± std. dev.)

1930–49 47 41 19.35 ± 7.43

1950–59 290 220 11.17 ± 6.19

1960–69 382 276 10.72 ± 7.18

1970–79 238 108 11.27 ± 6.55

1980–89 175 31 9.43 ± 4.72

1990–2006 140 2 7.75 ± 2.61

Total population 1272 678 10.74 ± 6.48

Stat Med. Author manuscript; available in PMC 2017 August 10.
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