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Abstract: The benefits of locally adaptive statistical methods for fMRI research have been shown in recent
years, as these methods are more proficient in detecting brain activations in a noisy environment. One
such method is local canonical correlation analysis (CCA), which investigates a group of neighboring
voxels instead of looking at the single voxel time course. The value of a suitable test statistic is used as a
measure of activation. It is customary to assign the value to the center voxel for convenience. The method
without constraints is prone to artifacts, especially in a region of localized strong activation. To compen-
sate for these deficiencies, the impact of different spatial constraints in CCA on sensitivity and specificity
are investigated. The ability of constrained CCA (cCCA) to detect activation patterns in an episodic mem-
ory task has been studied. This research shows how any arbitrary contrast of interest can be analyzed by
cCCA and how accurate P-values optimized for the contrast of interest can be computed using nonpara-
metric methods. Results indicate an increase of up to 20% in detecting activation patterns for some of the
advanced cCCA methods, as measured by ROC curves derived from simulated and real fMRI data. Hum
Brain Mapp 33:2611–2626, 2012. VC 2011 Wiley Periodicals, Inc.
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INTRODUCTION

The benefits of locally adaptive statistical methods in
fMRI have been shown only recently, as these methods

more precisely detect brain activations in a noisy environ-
ment compared with mass-univariate methods involving
isotropic Gaussian smoothing [Borga and Rydell, 2007; Fri-
man et al., 2001; Harrison et al., 2007, 2008; Harrison and
Green, 2010; Penny et al., 2005; Flandin and Penny, 2006;
Rydell et al., 2008; Polzehl and Spokoiny, 2001, 2005; Rutti-
mann, 1998; Sole et al., 2001; Tabelow et al., 2006; Walker
et al., 2006; Weeda et al., 2009; Yue et al., 2010]. It has
been suggested that conventional Gaussian smoothing in
fMRI is intrinsically unsuitable as a technique to utilize
the benefits of high resolution fMRI [Tabelow et al., 2009].
Locally adaptive statistical methods, however, take better
advantage of high-resolution data leading to enhanced sig-
nal detection capabilities without spatial blurring of edges
of activation patterns because fine-grained pattern infor-
mation is not averaged over the local neighborhood
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defined by an isotropic smoothing kernel [Kriegeskorte
and Bandettini, 2007a, 2007b]. With appropriate spatial fil-
tering techniques, research studies can become more
powerful and also render clinical applications more in-
formative [Tabelow et al., 2009].

One such novel spatially adaptive method is local canoni-
cal correlation analysis (CCA), which investigates the joint
time courses of a group of neighboring voxels instead of
looking at the single voxel time course. CCA enables simul-
taneous adaptive spatial filtering and temporal modeling,
and is thus a locally adaptive extension of the mass-univari-
ate general linear model (GLM). CCA and multivariate mul-
tiple regression are methodologically equivalent [Via et al.,
2007]. In the past, different sets of spatial basis functions
ranging from individual Dirac delta functions in a local
neighborhood [Nandy and Cordes, 2003a] to symmetric
combinations of Dirac delta functions [Friman et al., 2001]
were proposed using CCA. Other basis functions used were
steerable spatial filter functions, which in analogy to the
spherical harmonics form a complete angular set of functions
and are thus able to adapt to an arbitrary direction in 2D or
3D coordinate space [Friman et al., 2003; Rydell et al., 2006].

Despite the increase of sensitivity using conventional
CCA, the method is problematic to use in high-resolution
fMRI because of its low specificity (ability to classify non-
active voxels as not active) and increased susceptibility to
artifacts [Nandy and Cordes, 2004a]. In conventional CCA
the value of a suitable test statistic is used as a measure of
activation. It is customary to assign the value of the statis-
tic to the center voxel of the local neighborhood. The
method is prone to artifacts, especially in a region of local-
ized strong activation. The reason for the increase in false
activations is due to two different deficiencies of conven-
tional CCA. The first deficiency is due to too much free-
dom of the spatial weights that allow for both positive
and negative linear combinations of voxels. This freedom
results in an improper spatial smoothing kernel combining
low pass and high pass filter properties. The second defi-
ciency is the so-called bleeding artifact [Nandy and
Cordes, 2004a] which is a type of smoothing artifact. This
artifact is expected to become stronger as the spatial con-
straint becomes less dominant for the center voxel. Simple
approaches have been suggested previously to obtain a
center voxel with sufficient dominant weight [Friman
et al., 2001; Friman et al., 2003] to reduce the bleeding arti-
fact but the specificity has never been systematically inves-
tigated. The bleeding artifact in connection with the shape
of the filter kernel in CCA leads to a blocky appearance of
activation patterns (block artifact). This artifact is most
prominent for conventional CCA but can also arise when
spatial constraints are used such that the weight of the
center voxel is not enforced to be sufficiently dominant
among all voxels in the neighborhood.

The potential benefit of using a spatial dominance con-
straint in CCA is that with a sufficiently large dominance
condition of the center voxel the specificity can be

increased and artifacts can be reduced or avoided. CCA
with a spatial dominance constraint of the center voxel
offers higher sensitivity and specificity than mass-univari-
ate methods with comparable Gaussian smoothing kernel.

In this research, we provide the mathematical frame-
work to incorporate spatial dominance constraints in CCA
to reduce artifacts and increase the specificity. We explic-
itly derive equations to solve the constrained CCA (cCCA)
problem. For example, we investigate different constraints
for the spatial weights on the ability to better detect activa-
tion patterns in the medial temporal lobes for an episodic
memory task. Furthermore, we introduce a signed test sta-
tistic for cCCA that can handle any arbitrary linear con-
trast of interest. Using simulated and real data, we show
the corresponding improvement of cCCA over conven-
tional CCA and standard mass-univariate approaches.

THEORY

CCA Formalism

Mathematically, CCA is a generalization of the GLM by
allowing the incorporation of spatial basis functions
according to

ða1f1ðnÞ þ : : : þ apfpðnÞÞ � Yðn; tÞ
¼ b1x1ðtÞ þ : : : þ brxrðtÞ þ eðtÞ; (1)

where the data are given by Y(n, t), n is the vector repre-
senting the spatial coordinates x, y, z, and t is time. The
functions fi(n), i ¼ 1,. . ., p represent the spatial basis func-
tions (local spatial filter kernels) modeling the spatial acti-
vation pattern in a neighborhood and the functions xj(t), j
¼ 1,. . ., r are the temporal basis functions modeling the he-
modynamic response. The coefficients �i and �j are the
spatial and temporal weights, respectively, that are being
determined and optimized by the data for each individual
neighborhood using an optimization routine. The symbol
� denotes spatial convolution and e(t) is a Gaussian dis-
tributed random error term. If the number of spatial basis
functions is reduced to a single function and this function
is a simple Gaussian function with fixed width, i.e.,

f1ðnÞ � Yðn; tÞ ¼ b1x1ðtÞ þ : : : þ brxrðtÞ þ eðtÞ;

we obtain the conventional GLM used in fMRI.

Local Neighborhood Approach

We are particularly interested in scenarios where the
spatial basis functions are Dirac delta functions in a small
local neighborhood such as a 3 � 3 pixel region [Nandy
and Cordes, 2003a]. With a small spatial filter kernel,
cCCA has the potential to provide high specificity of the
method and to avoid smoothing artifacts which are
expected to increase with the size of the local
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neighborhood. Furthermore, using delta functions guaran-
tees that edges of activation patterns are distinct and not
blurred. In principle, the method easily can be extended to
3D by using a 3 � 3 � 3 voxel neighborhood, however,
the computational effort is drastically increased, but
today’s GPU or other supercomputing resources can han-
dle this complexity because each possible configuration
can be processed independently of any other within the
local neighborhood. Further justification of why a 2D 3 �
3 neighborhood is optimal is rooted in the 2D manifold
structure of the gray matter sheet. The cortex always can
be unfolded into a 2D sheet so that processing in the third
dimension is not necessary.

Since Eq. (1) is linear we can use matrix notation. In the
following we assume that the spatial basis functions are
Dirac delta functions. Let Y be the matrix representing p
voxel time courses with dimension t � p and X the con-
ventional design matrix of size t � r for the r temporal
regressors. Furthermore, let a and b be two unknown vec-
tors of size p � 1 and r � 1, respectively. In conventional
CCA, we look for the linear combinations of voxel time
courses Ya and temporal regressors Xb such that the cor-
relation between both quantities is maximum. This leads
to an eigenvalue problem with min(p, r) solutions from
which the solution with the largest eigenvalue (i.e., maxi-
mum canonical correlation) is chosen.

cCCA and Dominance of the Center Voxel

Conventional CCA has a clear specificity problem [Nandy
and Cordes, 2004a], thus motivating the introduction of spa-
tial constraints. However, with constraints, sensitivity will be
decreased to some degree because specificity and sensitivity
have opposite properties and cannot be maximized simulta-
neously. Furthermore, there exist an infinite number of possi-
ble spatial constraints and each constraint will have different
sensitivity and specificity. We are particularly interested in
linear and related constraints so that linear algebra can be
used to find a solution of the cCCA problem. Besides obvious
non-negativity constraints of the spatial weights, of particular
importance are spatial dominance constraints where the cen-
ter voxel is guaranteed to be the largest among all other vox-
els in the local neighborhood. Spatial dominance, D, of all
center voxels in the data can be defined by

D ¼ min
j 2 data

aðjÞ1

max
i�2

aðjÞi

� �
0B@

1CA;

where aðjÞ1 is the weight of the j-th center voxel, aðjÞi is the
weight of the i-th voxel in the local neighborhood belong-
ing to the j-th center voxel, and the range of the min func-
tion contains all center voxels j in the dataset. If this
dominance is infinite, we would have maximum specificity
of the method and cCCA reduces to a mass-univariate
analysis. However, if the dominance is equal to one, we

have weakest dominance which will provide maximum
sensitivity but decreased specificity. In between these
extremes, other important dominance constraints exist,
and we will investigate one of them (the so-called ‘‘strong
dominance’’ or ‘‘sum’’ constraint) below and compare sen-
sitivity and specificity to the weakest dominance constraint
(the ‘‘maximum’’ constraint). We also consider the simple
positivity constraint which is a nondominance constraint.

Constraints for cCCA

Let a be the vector of the spatial weights with compo-
nents ai and a1 the weight of the center voxel of the local
neighborhood. Then, we consider the following three con-
straints for cCCA:

Constraint #1 (simple constraint)

a1 > 0 and ai � 0 8 i � 2: (2a)

Constraint #2 (sum constraint with strong dominance)

a1 �
Xp

i¼2
ai > 0 and ai � 0 8 i � 2: (2b)

Constraint #3 (maximum constraint with weakest
dominance)

a1 � maxi�2ðaiÞ > 0 and ai � 0 8 i � 2: (2c)

If any of the ai are zero, the corresponding voxel is
excluded from the spatial configuration. Note, that Con-
straint #1 does not guarantee dominance of the center
voxel. Constraint #2 (sum constraint) leads to a strong
dominance of the center voxel whereas Constraint #3
(maximum constraint) leads to the smallest possible domi-
nance of the center voxel.

All these constraints lead to a proper spatial smoothing
(low pass filtering) because all components of a are larger
than zero. A modification of Method #1 has been investi-
gated in fMRI and found to be superior than uncon-
strained CCA [Friman et al., 2003; Ragnehed et al., 2009].
It can easily be shown [Das and Sen, 1994] that Constraint
#1 leads to the same algebraic equation as unconstrained
CCA. Thus, the solutions of unconstrained CCA need only
be searched over all possible voxel combinations satisfying
Constraint #1 in each local neighborhood. Computation-
ally, Method #1 is fairly easy to implement and with
today’s computing resources does not cause any problems
in CPU time on a typical PC.

The disadvantage of Method #1 (and also of uncon-
strained CCA) is that the center voxel (to which the activa-
tion is assigned) is not guaranteed to have the maximum
spatial weight, which could lead to potential artifacts.
Method #2 has maximum specificity but may have less sen-
sitivity compared to Method #3. Method #3 is quite different
from the previous methods because the constraint is
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nonlinear and enforces least dominance of the center voxel
leading to a high sensitivity but less specificity. Method #3
has the nice property that the coefficients are minimally re-
stricted and at the same time satisfying the necessary posi-
tivity conditions with dominance of the center voxel D ¼ 1.

We would like to point out that these constraints are not
specific to the fMRI paradigms that we later investigate in
this work. However, if largest specificity is of interest, a
constraint with large dominance of the center voxel is
expected to be more suitable. Similarly, for largest sensitiv-
ity, a constraint with the least dominance of the center
voxel is expected to be best.

Solution of the cCCA Problem

To solve for linear constraints in a (Methods #2, #3), it is
possible to linearly transform the a to a constraint equiva-
lent to #1 by

a ¼ Mea; (3)

such that ea satisfies a non-negativity constraint

~ai � 0 8 i; (4)

and M is an invertible transformation matrix. Observe,
that now ea1 can also be zero which needs to be explicitly
considered in the transformed space because voxel 1 (cen-
ter voxel of neighborhood) can still satisfy the constraint
in the original voxel space with a positive weight a1 even
when ea1 ¼ 0.

The transformation matrix M ¼ (Mij) for constraint #2,
when Eq. (4) is satisfied, is given by

M ¼

1 1 : : : 1 1
: : :

0 1 0 0
..
. . .

. ..
.

0 0 1 0
: : :

0 0 0 1

0BBBBBBBB@

1CCCCCCCCA
; (5)

i. e. Mij ¼ 1 for i ¼ j, M1j ¼ 1 for j � 2, all other Mij ¼ 0.
The transform of a by M then leads to a transformation

of the data Y to eY so that the spatial covariate becomes

YM ea ¼ eYea;
where the transformed data are given by

eY ¼ YM;

and the maximum correlation between this covariate eYea
and Xb needs to be found subject to the constraint on ea.

For Constraint #3, even though a nonlinear constraint, it
is possible to find a transformation matrix. As shown in
detail in Appendix A, the transformation matrix given by

M ¼

1 0 : : : 0 0
: : :

1 �1 0 0
..
. . .

. ..
.

1 0 �1 0
: : :

1 0 0 �1

0BBBBBBBB@

1CCCCCCCCA
; (6)

will lead to a solution of cCCA for Constraint #3 when Eq.
(4) is satisfied.

P-Value Statistic

Each 3 � 3 neighborhood has 512 different configura-
tions, of which 256 configurations have a center voxel.
Once cCCA is performed for every 256 possible configura-
tions in each 3 � 3 pixel neighborhood, we compute
Wilk’s K statistic by converting the cCCA problem into an
equivalent multivariate multiple regression (MVMR) prob-
lem of the form

Ya ¼ XBaþ Ea;

where Y are the data (size t � p), a is the optimum spatial
weight vector (size p � 1), X is the design matrix (size t �
r), B is the matrix of regression weights (size r � p), and E
is a residual error matrix (size t � p). A likelihood ratio
test for the null hypothesis

H0 : CBa ¼ 0;

where C is a general contrast matrix of size w � r, leads to
Wilk’s K statistic given by

K ¼ jEaj
jEa þHaj

; (7)

where the error matrix Ea and hypothesis matrix Ha are
given by

Ea ¼ ðYa� XbBaÞ0ðYa� XbBaÞ
Ha ¼ ðCbBaÞ0½ðCðX0XÞ�1C0�ðCbBaÞ;

respectively, and

bB ¼ XþY

is the least square solution [Rencher, 1998]. Under normal-
ity assumptions and for any fixed a, K follows a Wilk’s
lambda distribution K(1, mHa

, mEa
), where mHa

¼ w are the
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degrees of freedom of the hypothesis matrix Ha and mEa
¼

t � r � p are the degrees of freedom of the error matrix
Ea. If the contrast is a vector c, contrast reparameterization
can be performed, and the first entry in c is a 1 and all
other elements are 0 (see Appendix B). Wilk’s K can be
converted to a F statistic by [Rencher, 1998]

FðmHa; mEaÞ ¼
1� K
K

mEa

mHa

(8)

and the negative logarithm of the significance (parametric
P-value) computed. Since our neighborhood around the
center voxel is not uniform and can include from 1 to 9
voxels (due to the vanishing of spatial weights for the
other voxels in the neighborhood depending on the partic-
ular constraint used), we compute the parametric P-value
according to Eq. (8) for all possible configurations in each
3 3 3 pixel neighborhood and find the particular configu-
ration with lowest P-value. This P-value is then assigned
to the center voxel. Please note that it is also possible to
assign the value of the test statistic instead of the paramet-
ric P-value of the test statistic to the center voxel. How-
ever, the test statistic is a biased measure because it does
not include the size of the configuration. For example, a
single voxel configuration with test statistic x is far more
significant than a multiple voxel configuration with
the same value. Thus, a statistic based on the parametric
P-value adjusts automatically for the different sizes of
voxel configurations and thus is a more unbiased measure
of activation than the test statistic itself.

It is important to understand that this P-value that is
finally assigned to the center voxel should be treated as a
statistic that quantifies the activation measure, rather than
as a true P-value, because assumptions of Gaussianity do
not hold in general for fMRI data and, more critically, a is
not a fixed vector in cCCA and the incorporation of con-
straints on the spatial weights a leads to a statistic that
does not conform to any parametric distribution under the
Null hypothesis. To compute the significance of the P-
value statistic, we use nonparametric methods involving
resting-state data. In a previous article we have introduced
a novel nonparametric method that uses order statistics
applied to resting-state data to obtain the distribution of
the maximum statistic [Nandy and Cordes, 2007]. An
implementation of this method provides accurate estimates
of true P-values adjusted for multiple comparisons. We
briefly outline this method in Appendix C and point out
some newly developed improvements that are not con-
tained in the original article.

Signed Test Statistic For cCCA

We would like to point out that the statistic in Eqs. (7)
and (8) can be easily converted to a signed univariate sta-
tistic (similar to the method proposed by Calhoun et al.,

2004) if the contrast is a vector c. In this case we define K�
and F� to be

K� ¼ signðc0bBaÞðjEajÞ
jEa þHaj

; (9a)

and

F� ¼ signðc0bBaÞF; (9b)

respectively. With this definition, cCCA leads to a power-
ful analysis method providing signed test statistics which
is not possible for multivariate test statistics such as the
‘‘searchlight’’ multivariate approach [Kriegeskorte et al.,
2006]. The cost, however, is the necessity to use nonpara-
metric significance testing because the parametric distribu-
tion is nontractable.

Optimum cCCA Solution Is a Function of the

Contrast of Interest

The P-value statistic introduced above will give the opti-
mum solution of the cCCA problem as long as the contrast
vector is reparameterized yielding only one transformed
regressor. Reparameterization can be done as shown in Ap-
pendix B. Without reparameterization, it can be shown that
only for unconstrained CCA the optimum a solution does
not depend on the contrast matrix and the optimum a is
equivalent to the a that gives the largest canonical correlation
[Nandy et al., 2010]. For cCCA, such a relationship between
the a that solves the cCCA problem and optimizes the
MVMR problem for any contrast matrix of interest does not
exist. Thus, to find the best solution, it is necessary to opti-
mize the MVMR problem, and this solution will depend on
the contrast matrix of interest. In the following we will derive
the optimum solution: Consider a particular voxel configura-
tion. Then the P-value for this configuration will be optimal
when K in Eq. (7) is minimized under the constraint of inter-
est. This leads to the optimization function

gða;k;l; mÞ ¼ a0Eaþ kða0Ha� 1Þþl1ða1 � hða2; : : : ; apÞ�m21Þ
þ l2ða2 � m22Þ þ � � � þ lpðap � m2pÞ;

(10)

where

E ¼ ðY� XbBÞ0ðY� XbBÞ
H ¼ ðCbBÞ0½CðX0XÞ�1C0ðCbBÞ

and the function h(a2, : : : , ap) specifies the constraint of in-
terest for a1 such that a1 � h(a2, : : : , ap) according to Eqs.
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(2abc). After linear transformation of a given by Eq. (3)
using the transformation matrices of Eqs. (5) (6), Eq. (10) is
of the same form as Eq. (A2) and leads immediately to the
equivalent form, Eq. (A9), i.e.

gða;k;l; mÞ ! egðea; kÞ ¼ ea0eEeaþ kðea0 eHea� 1Þ

where

eH ¼ M0HM; eE ¼ M0EM:

Differentiation with respect to ea gives the conditions for
the optimum solution of Eq. (10) yielding the generalized
eigenvalue problem

eEea ¼ ekeHea
where ek ¼ �k. Enforcing normalization using

ea0 eHea ¼ 1

provides

eaðsÞ ¼ ffiffiffiffiffiffiffiffiffiffiffi
1ea0 eHea

s ea
to be the solution of Eq. (10) in the transformed space and
in the interior domain of ea. Inverse transform then leads
to a(s). Note that in order to be complete we also have to
consider the a(s) on the nontrivial a(s) boundary as done
before for constraint #3 [Eq. (A10)]. As an optimum solu-
tion of the cCCA problem we take the particular a that
minimizes the parametric P-value statistic of the contrast
of interest. We would like to emphasize that the optimum
spatial configuration is not just the largest canonical corre-
lation between the spatial part and temporal regressors. It
also depends on the contrast of interest and the size of the
configuration. In fact, each different contrast produces a
different optimal set of the weights a and b.

Significance and family-wise error rate are computed
nonparametrically, as outlined in Appendix C. Compari-
son to mass-univariate analysis with Gaussian spatial
smoothing is performed by using a FWHM ¼ 2.24 pixels,
as justified in Appendix D. To assess the performance of
all analysis methods applied to real (nonsimulated) data,
we use ‘‘modified ROC’’ techniques and reconstruct con-
ventional ROC curves as outlined in Appendix E.

To illustrate the steps necessary to solve the cCCA prob-
lem and arrive at P-values, we provide a comprehensive
flowchart in Figure 1.

MATERIALS AND METHODS

fMRI was performed for six normal subjects with IRB
approval (according to institutional requirements) in a

3.0T GE HDx MRI scanner equipped with an 8-channel
head coil and parallel imaging acquisition using EPI with
imaging parameters: ASSET ¼ 2, ramp sampling, TR/TE
¼ 2 s/30 ms, FA ¼ 70�, FOV ¼ 22 cm � 22 cm, thickness/
gap ¼ 4 mm/1 mm, 25 slices, resolution 96 � 96 recon-
structed to 128 � 128 by zerofilling in k-space. Three fMRI
data sets were obtained for each subject (resting-state,
memory, motor) of which we only report the results of the
first two in this article to avoid redundancy.

The first data set was collected during resting-state
where the subject tried to relax and refrain from execut-
ing any overt task with eyes closed. The light in the scan-
ner room was shut off to avoid distracting the subject.
Scan duration was 9 min 36 s and included 288 time
frames.

The second data set was collected while the subject per-
formed an episodic memory paradigm with oblique coro-
nal slices collected perpendicular to the long axis of the
hippocampus. Specifically, this paradigm consisted of
memorizing novel faces paired with occupations. It con-
tained six periods of encoding, distraction, and recognition
tasks as well as short instructions. Words on the screen
reminded subjects of the task ahead. Behavioral data were
collected using a conventional 2-button box with EPRIME
(Psychology Software Tools, INC., Pittsburgh, PA). Specifi-
cally, the encoding task consisted of a series of novel stim-
uli (7 faces paired with occupations, displayed in
sequential order for a duration of 3 s each, 21 s total dura-
tion) that the subject must memorize. After the encoding
task a distraction task occurred for 11 seconds. The subject
saw the letter ‘‘Y’’ or ‘‘N’’ in random order and random du-
ration (0.5 to 2 s). The subject was instructed to focus on
the ‘‘Y’’ and ‘‘N’’ and to press the right button whenever
‘‘Y’’ appeared and the left button whenever ‘‘N’’ appeared,
as fast as possible. Reaction time and accuracy of the but-
ton presses were recorded. Because of its simplicity, this
distraction condition functioned as an active control task
and did not lead to any activation in regions associated
with the memory circuit (hippocampal complex, posterior
cingulate cortex, precuneus, fusiform gyrus). After the dis-
traction task, the recognition task occurred consisting of 14
stimuli - with half novel and half identical (in random
order) to the stimuli seen in the previous encoding task
(each stimulus was displayed for 3 s). The subject was
instructed to press the right button if the stimulus was
seen in the previous encoding task and press the left but-
ton if the stimulus was not seen (i.e., stimulus was identi-
fied as novel to the subject). Reaction time and accuracy of
the button presses were recorded. In each of the six peri-
ods, different stimuli were used that the subject did not see
before. Scan duration was 9 min and 36 s, and 288 time
frames were collected. All face stimuli were taken from the
color FERET database of photographs [Phillips et al., 2000].

The third data set was obtained by performing an event-
related motor task involving bilateral finger tapping while
the subject was looking at a screen. The motor task lasted
for 2 s and was alternated with a fixation period (serving
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as a control) of random duration lasting between 2 s and
10 s, uniformly distributed. Which task to perform was
indicated on the display by the letter 1 for the motor task

and 0 for the control task, programmed in EPRIME. Axial
slices were collected with 150 time frames giving a scan
duration of 5 min.

Figure 1.

Flow chart to compute the p-value for cCCA. This example fully

describes the steps necessary to solve the cCCA problem with

the sum (large dominance) constraint. Note that for each 3 � 3

neighborhood, there are 256 different spatial configurations pos-

sible that include the center voxel. Thus the loop over the con-

figurations needs to be carried out 256 times for each center

voxel. To solve the cCCA problem for the max (low dominance)

constraint, an additional step (not shown in the flow chart) is

necessary because solutions can also exist on the boundary of

the a domain (see text).
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Data Analysis

All fMRI data were realigned in SPM5 (http://www.fi-
l.ion.ucl.ac.uk/spm/), and maximum motion components
were found to be less than 0.6 mm in all directions. In a
preprocessing step, all voxel time series were high-pass fil-
tered by regression using a discrete cosine basis with cut-
off frequency 1/120 Hz [Frackowiak, 2004]. No temporal
low-pass filtering was carried out. All voxels with intensity
larger than 10% of the mean intensity were used in the
analysis. This threshold effectively eliminated all nonbrain
voxels leading to an average of about 4,500 voxels per slice.

Basis Functions for cCCA

All voxel time courses including the spatial basis functions
and temporal regressors were mean subtracted (over time)
and variance normalized. As local spatial basis functions in Eq.
(1) we used Dirac delta functions in a 3 � 3 in-slice neighbor-
hood. This leads to 9 spatial filter kernels in Eq. (1) given by

fkðnÞ ¼ dðx� iðkÞ; y� jðkÞÞ; k ¼ 1; : : : ; 9

such that i(k), j(k) ¼ {1,1; 1,0; 1,�1; 0,1; 0,0; 0,�1; �1,1; �1,0;
�1,1} [Nandy and Cordes, 2003a]. For the temporal model-
ing, we specified design matrices as in SPM5 containing
all conditions of the paradigms. In the memory paradigm
we modeled instruction (I), encoding (E), recognition (R),
and control (C) by temporal reference functions. In the
motor paradigm, fixation (F) and motor task (M) were
modeled according to the paradigm timings. All reference
functions were convolved as usual with the standard
SPM5 HRF two-gamma function.

RESULTS AND DISCUSSION

Simulation

Spatial activation patterns (whose sizes range from 1 to
9 pixels) were generated on a 32 � 32 pixel grid (Fig. 2).
Realistic pixel time series for the activation patterns were
obtained from real motor activation data that were thresh-
olded at P ¼ 10�6 to obtain time series that are almost
sure to be active with respect to the contrast ‘‘motor acti-
vation-fixation’’. To achieve a specific CNR, null data
using wavelet resampled resting-state data with intact cor-
relation in time and space [see Bullmore et al., 2001; Break-
spear et al., 2004] were added to all active and non-active
pixels of the simulated data in the 32 � 32 region. To com-
pute the CNR we use the general definition

CNR ¼
P

kiP
1i

� �1
2

where ki and Bi are the eigenvalues of the covariance ma-
trix of the activation signal and noise, respectively [Cordes
and Nandy, 2007].

To illustrate the performance of cCCA and appearance
of different artifacts on a qualitative scale, we show in Fig-
ure 2 the spatial activation patterns for CNR ¼ 0.75 for dif-
ferent methods with P < 0.01 (uncorrected for multiple
comparisons). Note the blurring of patterns for single
voxel with Gaussian smoothing (FWHM ¼ 2.24 pixels),
strong bleeding and block artifacts for unconstrained
CCA, block artifacts for cCCA with the simple constraint,
but very small artifacts and accurate representation of
most patterns by cCCA with the sum constraint, and some
bleeding artifacts of cCCA with the maximum constraint.
Overall, cCCA with the sum constraint performs best fol-
lowed by cCCA with the maximum constraint.

To quantify the performance of different methods, we
show in Figure 3 conventional ROC techniques [i.e., frac-
tion of true positives (FTP) vs. fraction of false positives
(FFP)] for a high noise case (CNR ¼ 0.25) (Fig. 3 left) and
a low noise case (CNR ¼ 0.5) (Fig. 3 right). Note that for
the low CNR simulation the cCCA methods with the high
and low dominance constraints are superior than the other
methods, whereas for the high CNR simulation cCCA
with the high dominance constraint is best. For both CNR
scenarios conventional CCA performs poorly because of
the strong bleeding artifact (see Fig. 2).

Memory Activation in the Medial Temporal

Lobes

Detection of memory activation in the medial temporal
lobes, in particular in the hippocampus, is often compli-
cated by the low CNR in the data. The primary source of
difficulty is that hippocampal activations are weak and
focal in nature, due to specialized task performance in hip-
pocampal subregions (CA fields, dentate gyrus, subicu-
lum) and nearby medial temporal lobe regions (entorhinal
cortex, perirhinal cortex, parahippocampal gyrus, fusiform
gyrus). Thus, it is problematic to see memory activations
in the medial temporal lobes at stringent thresholds (for
example P < 0.05 corrected for multiple comparisons)
whether Gaussian spatial smoothing is performed or not
using classical mass-univariate methods, as they fail to
harness systematic correlations in evoked responses within
neighboring voxels. Locally adaptive methods based on
cCCA can dramatically increase the sensitivity of detecting
memory activations as shown in Figure 4A for the contrast
‘‘encoding-control’’. In this figure it is apparent that with
single voxel analysis (without smoothing) no activation in
the left hippocampus is visible. Furthermore, performing
single voxel analysis with Gaussian smoothing eliminates
almost all activations in bilateral hippocampal regions.
Unconstrained CCA improves the detection of hippocam-
pal activations but introduces severe artifacts as seen in
the right parietal region. This artifact is less associated
with the blocky appearance from the bleeding artifact but
originates from the unconstrained signs of the spatial
weights resulting in an enlarged subspace of voxel time
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series that correlate significantly with the memory regres-
sors. This leads to a large fraction of false positives in null
data and therefore gives a high threshold of the statistical
map when a family-wise error rate <0.05 is specified. The
result is that hippocampal activations appear focal (a de-
sirable feature) but are inherently unreliable because of the
susceptibility of CCA to yield artifacts. The cCCA meth-
ods, however, do not have these weaknesses and show im-
pressive detection of bilateral hippocampal activations
with no apparent artifacts. If the threshold is lowered such

that P < 0.001 uncorrected for multiple comparisons,
detection of hippocampal activations is substantially
increased by all methods (Fig. 4B). Unconstrained CCA
now shows heavy artifacts in the right parietal cortex, and
its activation patterns are not consistent with all other
methods. Besides consistent hippocampal activations for
all cCCA methods as well as univariate methods, cerebel-
lar activations and bilateral activations in the fusiform
gyrus are only clearly visible for the cCCA methods but
not for mass-univariate methods.

Figure 2.

Spatial activation patterns (whose sizes range from 1 to 9 pixels)

were generated in a 32 � 32 pixel region (top left). Realistic

pixel time series for the activation patterns were obtained from

motor activation data that were thresholded at P ¼ 10-6 to

obtain time series that are almost sure to be active with respect

to the contrast ‘‘motor activation-fixation’’. To achieve a specific

CNR, null data using wavelet resampled resting-state data with

intact correlation in time and space were added to all active and

nonactive pixels of the simulated data in the 32 � 32 region.

Spatial activation patterns are shown for CNR ¼ 0.75 for differ-

ent methods with P < 0.01 (uncorrected for multiple compari-

sons). Note the blurring of patterns for single voxel with

Gaussian smoothing (FWHM ¼ 2.24 pixels), strong bleeding and

block artifacts for unconstrained CCA, block artifacts for cCCA

with the simple constraint, but very small artifacts and accurate

representation of most patterns by cCCA with the sum con-

straint, and good accuracy but some bleeding artifacts of cCCA

with the maximum constraint.
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Reconstructed ROC Curves of Memory

Activation

For data with low CNR, univariate analysis with or
without Gaussian spatial smoothing performs poorly. This
is reflected in a low sensitivity of mass-univariate meth-
ods. Unconstrained CCA has larger sensitivity than single
voxel analysis but very low specificity. Highest sensitivity
is obtained by cCCA with the maximum constraint fol-
lowed by cCCA with the sum constraint. It has been estab-
lished that the modified ROC curves (see Appendix E) are
always lower bounds of conventional ROC curves and
that the ordinate of both ROC methods is linearly related
for a given false positive fraction [Nandy and Cordes,
2003b]. Thus, modified ROC curves provide an equivalent
description to conventional ROC curves. Using the meth-
ods described in Appendix E [Eqs. (E1)–(E5)], we recon-
structed conventional ROC curves for memory data (Fig.
5). Because of the linear relationship between both ROC
techniques, the order of efficiency of different data analy-
sis methods is the same but the magnitude of the efficien-
cies is increased by about 60% compared with modified
ROC curves.

Area Under the ROC Curves

Integrating the reconstructed ROC curves over FPF ¼
[0,0.1], a range that is mostly important in neuroscience and
radiology, provides a measure of overall performance of dif-

ferent data analysis methods. From Figure 6 we can con-

clude that cCCA with either the maximum constraint or the
sum constraint have highest sensitivity. The degree of
improvement compared to single voxel analysis with Gaus-
sian spatial smoothing is about 20% for cCCAwith the maxi-
mum constraint and 13% for cCCA with the sum constraint.
This is true for both motor and memory fMRI data.

Applicability of cCCA in fMRI

We predict that when analyzing data with small CNR (for
example high-resolution fMRI data), cCCA with the maxi-
mum constraint will maximize the method’s sensitivity by
	20% more than equivalent mass-univariate approaches.
The bleeding artifact will be less than with comparable
mass-univariate and Gaussian smoothing methods. If maxi-
mum specificity is desired (for example in neurosurgical
mapping with fMRI), then cCCA with the sum constraint
will yield optimum specificity (no significant bleeding arti-
fact) with an increase in sensitivity of about 13%.

CONCLUSIONS

We summarize the ideas introduced in this study and
results obtained

1. We established the mathematical formalism of how
constraints in cCCA can be handled by linear

Figure 3.

Conventional ROC techniques (fraction of true positives (FTP)

vs. fraction of false positives (FFP)) are shown for the simulation

of Figure 2. Specifically, a comparison was carried out for the

high noise case (CNR ¼ 0.25, left) and the low noise case

(CNR ¼ 0.5, right) using different analysis techniques. Note that

for the low CNR case, the cCCA methods with the sum con-

straint and the max constraint are superior than the other

methods whereas for the high CNR case, cCCA with the sum

constraint is best. For both CNR scenarios conventional CCA

(red) performs poorly. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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Figure 4.

A: Activation maps with FWE < 0.05 for the memory paradigm using different analysis methods.

The contrast is ‘‘encoding-control’’. B: Activation maps with P < 0.001 (uncorrected for multiple

comparisons). [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

r Constrained CCA in fMRI r

r 2621 r



transformations and reduction of equations to the
unconstrained CCA problem.

2. We showed how to construct a signed statistic that
accounts for any arbitrary contrast vector of interest
and how to incorporate adjustments for different sizes
of voxel configurations. Furthermore, we showed
how to solve the cCCA problem by optimizing the
weights a and b for a given contrast of interest.

3. Constrained CCA methods lead to substantially
increased detection of activation patterns for data
with low CNR. In particular, for data with low CNR
where the activation is thought to be localized to a
small region such as episodic memory activation
data, cCCA methods outperform conventional mass-
univariate analysis methods.

4. If the constraint of cCCA does not guarantee dominance
of the center voxel, block artifacts are observed (uncon-
strained CCA, cCCAwith the simple constraint).

5. Without constraint, CCA produces unreliable activa-
tion patterns because of the unrestricted sign of the
spatial weights and very low specificity.

6. Constrained CCA with the maximum constraint has
the highest sensitivity but shows some bleeding arti-
facts in regions where the CNR is large. Compared to
cCCA with the simple constraint and single voxel
analysis with Gaussian smoothing, cCCA with the
max constraint increases the statistical power by 20%.

7. Constrained CCA with the sum constraint has no visi-
ble block artifacts nor bleeding artifacts. Compared to
cCCA with the simple constraint and single voxel
analysis with Gaussian smoothing, cCCA with the
sum constraint increases the statistical power by 13%.

For these reasons we believe that advanced cCCA meth-
ods (using either the sum constraint for best specificity or
the maximum constraint for best sensitivity) are superior
to conventional CCA, cCCA with the simple positivity
constraint, and mass-univariate data analysis methods
with or without Gaussian spatial smoothing in fMRI.
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APPENDIX

A. Solution of the Optimization Problem For the

Maximum Constraint

The cCCAproblem is equivalent to the regression problem

Ya ¼ Xbþ e ðA1Þ

such that

bLS ¼ XþYa

is the linear least squares (LS) solution (where Xþ is the
pseudoinverse of X). Note that this bLS is only up to a
scale factor equivalent to the b in CCA because the b in
CCA (bCCA) satisfies the additional normalization condi-
tion [Rencher, 1998]

r Constrained CCA in fMRI r

r 2623 r



b0CCACOVðXÞbCCA ¼ 1;

where the prime indicates ‘‘transpose’’. Then, bCCA is
related to bLS of the multivariate regression problem by

bCCA ¼ bLSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0LSCOVðXÞbLS

q :

In the following we do not distinguish between these
minor scaling differences of CCA and multivariate regres-
sion explicitly. Incorporating Constraint #3 using Lagrange
optimization, leads to the following objective function to
be minimized:
fða; k; l; mÞ ¼ a0Aaþ kða0Ba� 1Þ

þ l1ða1 �maxða2; : : : ;apÞ � m21Þ
þ l2ða2 � m22Þ þ � � � þ lpðap � m2pÞ ðA2Þ

where

A ¼ Y0ð1� XXþÞ0ð1� XXþÞðYÞ; ðA3Þ

B ¼ COVðYÞ;

and k, l ¼ (l1, : : : ,lp), m ¼ (m1, : : : ,mp) are Lagrange multi-
pliers. The variables involving the components of m are so-
called slack parameters and enforce that the spatial
weights a2, : : : ,ap are non-negative and that a1 �
max(a2, : : : ,ap). The condition involving the variable k

a0Ba ¼ 1

is an auxiliary normalization condition for vector a and is
widely used in the classical theory of CCA [Rencher,
1998].

Differentiation of f(a,k,l,m) with respect to m and setting
the result to zero yields

m1l1 ¼ � � � ¼ mplp ¼ 0: (A4)

Now, we need to consider the following two scenarios for
a1

ðiÞ a1 > maxða2; . . . ; apÞ and all ai > 0

ðiiÞ a1 ¼ maxða2; . . . ; apÞ and all ai > 0:
(A5)

In the first case (i), m1,. . .,mp cannot be zero and it follows
from Eq. (A4) that l ¼ 0. Then, Eq. (A2) reduces to the
optimization condition for unconstrained CCA and can be
easily solved. In the second case (ii), we obtain �1 ¼ 0, and
�2 ¼ �3 ¼ . . . ¼ �p ¼ 0 to be consistent with Eq. (A4).
Thus, the objective function reduces to

f ða; k; l1Þ ¼ a0Aaþ kða0Ba� 1Þ þ l1ða1 �maxða2; : : : ;apÞÞ:

Now, let
al ¼ max (a2, : : : ,ap) for some l [ {2, : : : ,p}.

Then,
fða;k;l1Þ ¼ a0Aaþ kða0Ba� 1Þ þ l1ða1 � alÞ (A6)

needs to be minimized for all l [ {2,. . .,p} and the solution
space searched for consistency with Eq. (A5). An elegant
solution can be found by transforming Eq. (A6) to

fðea; k; l1Þ ¼ ea0 eAeaþ kðea0 eBea� 1Þ þ l1eal (A7)

using Eq. (3) with

M ¼

1 0 0 0
. . .

1 �1 0 0
..
. . .

. ..
.

1 0 �1 0
. . .

1 0 0 �1

0BBBBBBBB@

1CCCCCCCCA
(A8)

i.e., Mi1 ¼ 1 for all i, Mii ¼ 1 for i > 1, and all other entries
are zero. Note that M does not depend explicitly on the
index l. The matrices eA and eB in Eq. (A7) are given by

eA ¼ M0AM and eB ¼ M0BM

where we have used the fact that M ¼ M�1 for Eq. (A8).
Then, ea needs to satisfy Eq. (4), and Eq. (A7) is equivalent
to the unconstrained optimization problem because eithereal ¼ 0 or eal 6¼ 0 such that the derivative of f with respect
to l1 yields the condition eal ¼ 0. In both cases the last
term of Eq. (A7) vanishes, i.e. l1eal ¼ 0,

yielding

fðea;k;l1Þ ¼ ea0 eAeaþ kðea0 eBea� 1Þ (A9)

and Eq. (A9) is equivalent to unconstrained CCA. Thus,
Constraint #3 leads to a single linear transformation, and
the solution vector a obtained from ea needs to be checked
if Constraint #3 is in addition satisfied. A search needs to
be carried out over all possible voxel combinations in the
local neighborhood due to the possibility that eai ¼ 0 for
any i [ {1, : : : ,p}. The obtained solution space leads to a
local minimum of function f in the interior region of the a
domain. Thus, the solution space of a is given by Eq.
(A10) such that all a and ea satisfy Eq. (A5) and Eq. (4).

In order for the solution space to be complete, we also
have to consider that a possible minimum can occur at the
(nontrivial) boundary of the a domain, which is given by

a1 ¼ � � � ¼ ap: (A10)

Note, that the other constraints (#1, #2) do not have a non-
trivial boundary.

B. Contrast Reparameterization

For the memory paradigm, we present results for contrast
E–C, whereas for the motor paradigm we are interested in
the contrast M–F. These linear contrasts can be accommo-
dated into the cCCA formalism by reparameterization of the
design matrix X. For any linear contrast, the design matrix
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X can always be transformed to eX such thateX ¼ ½XeffX?�; (B1)

where Xeff is the first regressor of the new design matrixeX that is associated with a parameter estimate equivalent
to the original contrast c

0
b. To compute Xeff we start with

calculating the inverse of the design efficiency B for an ar-
bitrary contrast vector c:

1�1 ¼ ðX0
effXeffÞ�1 ¼ c0ðX0XÞ�1c: (B2)

Then, the right hand side of Eq. (B2) can be written

ðc0ðX0XÞ�1cÞ2

c0ðX0XÞ�1c

¼ ðc0ðX0XÞ�1cÞ2

c0ðX0XÞ�1ðX0XÞðX0XÞ�1c

¼ ðc0ðX0XÞ�1cÞ2

ðc0ðX0XÞ�1X0ÞðXðX0XÞ�1c

¼ c0ðX0XÞ�1cÞ2

ðXðX0XÞ�1cÞ0ðXðX0XÞ�1cÞ
¼ ðc0ðX0XÞ�1cÞ2½ðXðX0XÞ�1cÞ0ðXðX0XÞ�1cÞ��1

¼ ½ðXðX0XÞ�1cÞðc0ðX0XÞ�1cÞ�1Þ0ðXðX0XÞ�1cÞ
ðc0ðX0XÞ�1cÞ�1��1:

Comparison with the left side of Eq. (B2) gives

Xeff ¼ XðX0XÞ�1cðc0ðX0XÞ�1cÞ�1:

For an alternative derivation see Smith et al. [2007]. The
matrix X? in Eq. (B1) is perpendicular to Xeff and plays no
role in the estimation of c

0
b.

C. Significance and Family-Wise Error Rate

To determine the family-wise error rate (FWE) nonpara-
metrically for each subject we use resting-state data as we
previously proposed [Nandy and Cordes, 2007]. Resting-
state data are not null data but contain intrinsic structure
(low frequency components) [Cordes et al., 2001]. Instead
of correcting for the low frequency components using
phase averaging [Nandy and Cordes, 2007] we use wave-
let-resampling in the temporal domain to obtain null data
according to methods proposed by Bullmore et al. [2001]
and Breakspear et al. [2004]. In the following section, we
briefly summarize this method.

Let the test statistics at voxel x be denoted by Yx. Then the
family-wise error rate is determined by the maximum statis-
tic {maxxYx}, and for any threshold u,we can calculate the P-
value that automatically adjusts for multiple comparisons. To
estimate the null distribution of {maxxYx}, we use the boot-
strap method applied to the k largest order statistics
{Y(1), : : : ,Y(k)} from wavelet resampled resting-state data
where we use the same (but random) permutation of wavelet
coefficients in order to obtain resampled data where the spa-

tial correlation of each resampled data set is exactly the same
[Bullmore et al., 2001; Breakspear et al., 2004]. This method of
wavelet resampling satisfies the criterion of exchangeability
of fMRI time courses that are known to be spatially and tem-
porally correlated. In the present context of cCCA, the rele-
vant test statistic is given by Eq. (9ab). We use standard
nonparametric kernel-density estimation techniques [Silver-
man, 1986] with a Gaussian kernel to obtain an estimate of
the P-value of this distribution. In order to make the statistic
more uniform, we calculate the negative logarithm of the esti-
mated P-value, which we call Z. We then define

di ¼ iðZi � Ziþ1Þ for i ¼ f1; : : : ; kg

as normalized sample spacings for the k largest order statis-
tics. If the observed samples at the voxels are exponential
i.i.d., then so are the normalized sample spacings [Pyke,
1965]. This is true since the transformed test statistic is an
exponential random variable by construction. The k largest
order statistics can then be expressed as a linear function of
the normalized sample spacings di and Z(k þ 1) as follows:

ZðjÞ ¼ Zðkþ1Þ þ
Xk
i¼j

di
i
for j ¼ f1; : : : ; kg:

Since di for i ¼ {1, : : : ,k} are i.i.d., we can use the bootstrap
method to obtain resamples of normalized spacings d
i for i
¼ {1, : : : ,k}. The latter can be used to generate resamples
{Z*(1), : : : ,Z*(k)} of the k largest order statistics from which the
distribution of {maxxYx} can be obtained numerically. Since
wavelet resampled resting-state data can be considered to be
null with respect to the temporal regressors used in this
research, the obtained distribution approximates the null
distribution of {maxxYx}. The chosen value for k was 100 for
the bootstrap method and FWE was computed for P ¼ 0.05.

D. Effective Filter Width

To compare results of cCCA with univariate methods
involving Gaussian spatial smoothing, it is necessary to
compute a comparable filter width (size of FWHM) of the
Gaussian kernel from the size of the neighborhoods used
in CCA. Since we are using all possible configurations in a
3 � 3 pixel area involving the center voxel and its 8 neigh-
bors, the average configuration size is given by

s ¼
P9

i¼1
8

i�1

� �
iP9

i¼1
8

i�1

� � ¼ 2:24 pixels:

A comparable Gaussian filter width is then specified by

FWHM ¼ s� pixel size ¼ 3:8 mm:

We use this value for single voxel analysis with Gaussian
spatial smoothing.
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E. Receiver Operating Characteristics (ROC)

Curves Using Real Data

The ROC method is a valuable tool for testing the effi-
ciency of various data analysis methods and is usually
used based on simulated data where the ground truth is
known. This is acceptable for single-voxel analysis because
accurate modeling of spatial dependence of activation pat-
terns between neighboring voxels is then not the most im-
portant aspect. However, for locally adaptive statistical
methods the spatial structure of the data is most important
and extremely difficult to model because the distribution
of activated voxels is in general unknown, and simulated
spatial patterns for more complicated tasks (such as epi-
sodic memory) are conceivably quite different from reality.
We have shown in a previous article that the ROC method
using simulated data can be modified and applied to real
data [Nandy and Cordes, 2003b; Nandy and Cordes,
2004b] yielding so-called ‘‘modified ROC curves’’. In the
following we briefly outline this method and point out
two improvements. Instead of calculating the fraction of
true-positives (FTP) and fraction of false-positives (FFP)
based on ground-truth data, we determine the fraction of
active positives (FAP) (i.e. fraction of voxels detected to be
active) using fMRI activation data and fraction of resting
positives (FRP) using wavelet resampled resting-state data,
where, as before, we keep the spatial structure of the data
by using the same (but random) permutation of the wave-
let coefficients. From the quantities FAP and FRP, it is
then possible to estimate FTP and FFP, as a function of the
statistical threshold by

P ðY jT Þ ¼ 1

P ðTAÞ
ðP ðY Þ � P ðY jF Þð1� P ðTAÞÞ (E1)

where the letter P stands for probability, Y for an event
indicating active detection, F for an event representing an
inactive voxel. See Nandy and Cordes (2003b) for an
explicit derivation of Eq. (E1). Thus, P(Y|T) is the proba-
bility of detecting a truly active voxel as active (FTP),
P(TA) is the fraction of truly active voxels, P(Y) is the frac-
tion of voxels detected to be active (FAP), and P(Y|F) is
the fraction of false positives (FFP). Since we only need to

estimate fractions instead of the locations of active and non-
active voxels, it is not necessary to know the ground truth.
The quantity FFP is readily estimated from the resampled
resting-state data because these data have null properties
with respect to the paradigm. The quantity FAP is readily
estimated from the activation data. Finally, an improved
equation for P(TA) can be derived based on P-values
[Nandy and Cordes, 2006]: Let NA be the number of truly
active voxels, k the number of voxels detected to be active
and a the corresponding P-value. Then NA is bounded by
NA � k� ] of voxels detected in error ¼ k� aðN �NAÞ (E2)

yielding

NA � k� aN
1� a

: (E3)

Thus,

P ðTAÞ ¼
NA

N
�

k
N � a

1� a
: (E4)

and the best estimate of P(TA) is obtained by

P ðTAÞ ¼ maxa

k
N � a

1� a
: (E5)

This result [Eq. (E5)] is more accurate than the approxima-
tion given in Nandy and Cordes [2003b]. For different
analysis methods it is expected that the P(TA) estimate is
different because each method has different power. We
use the average value of P(TA) in order to be conservative.

With these estimations, modified ROC curves can be con-

verted to conventional ROC curves. Finally, as a measure of

performance we computed the area under the ROC curves

(aROC), integrated over FFP[[0,0.1], as a quantitative mea-

sure of activation in fMRI. We use as upper threshold FFP ¼
0.1 because in fMRI neuroscience we are more concerned in

limiting the number of false positives than the number of

false negatives. Furthermore, at FFP near 0.1 our experimen-

tal data show that the total error (false positives þ false neg-

atives) achieves a minimum. A similar approach in defining

the thresholds for integration has been used by Skudlarski

et al. [1999 ], Nandy and Cordes [2004b], and Ragnehead

et al. [2009] before.
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