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Abstract

In the past decade, advances in the use of monoclonal antibodies (mAbs) and adoptive cellular 

therapy to treat cancer by modulating the immune response have led to unprecedented responses in 

patients with advanced-stage tumours that would otherwise have been fatal. To date, three 

immune-checkpoint-blocking mAbs have been approved in the USA for the treatment of patients 

with several types of cancer, and more patients will benefit from immunomodulatory mAb therapy 

in the months and years ahead. Concurrently, the adoptive transfer of genetically modified 

lymphocytes to treat patients with haematological malignancies has yielded dramatic results, and 

we anticipate that this approach will rapidly become the standard of care for an increasing number 

of patients. In this Review, we highlight the latest advances in immunotherapy and discuss the role 

that it will have in the future of cancer treatment, including settings for which testing combination 

strategies and ‘armoured’ CAR T cells are recommended.

Immunotherapy is defined as the approach to treating cancer by generating or augmenting an 

immune response against it. This approach has been studied, mostly outside of mainstream 

cancer research, for over a century1. Nevertheless, cancer immunotherapy has only in the 

past decade been shown, in phase III clinical trials, to consistently improve the overall 

survival of patients with advanced-stage cancer2–5, bringing unprecedented interest to this 

field. Despite the breakthroughs of the past decade, the successes to date do not fully capture 

the promise of immunotherapy.

Antitumour immunotherapy has broad potential and could be used to treat many different 

types of advanced-stage cancer owing to the durable and robust responses it elicits across a 

diverse spectrum of malignancies. Two types of immunotherapy have emerged as 

particularly effective over the past decade: immune-cell-targeted monoclonal antibody 

(mAb) therapy and adoptive cellular therapy (ACT). In this Review, we present current 

clinical progress in both modalities, discuss how each of them might be particularly 
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indicated for different types of cancer and we outline the potential therapeutic relevance of 

combination regimens.

Immune modulation with monoclonal antibodies

Immune modulation is based on the striking finding that stimulation of T-cell function with 

antibodies that block or activate regulatory receptors is sufficient to cause the regression of 

some tumours. Immunomodulatory mAbs target immune cells rather than cancer cells, and 

thus, are not necessarily specific to any cancer type. Indeed, the blockade of a single 

molecule, programmed cell-death protein 1 (PD-1), has resulted in antitumour activity and is 

now approved by the FDA to treat patients with mela-noma2,3 and non-small-cell lung 

cancer (NSCLC)6. PD-1 is one of the receptors involved in immune-checkpoint signalling; 

in particular, in lymphocyte maintenance of self-tolerance. Checkpoint blockade is a method 

by which T-cell function is stimulated with mAbs that block their inhibitory receptors, 

whereas T-cell co-stimulation is the method that aims at activating T-cell function with 

mAbs that target their stimulatory receptors. Some tumour types, however, are more likely 

than others to respond to checkpoint blockade, which raises the possibility that T-cell-

stimulatory mAbs can be applied to a broad spectrum of cancer types if they are 

administered in the proper therapeutic context.

The generation of immunological memory is another unique feature of immune modulation 

as an effective cancer therapy7. A persistent memory response would have a role in both 

preventing disease recurrence and in guarding against the evolution of therapy-resistant 

malignant cancer clones. The precise implications of immunological memory formation 

remain undefined, but evidence for extremely durable remissions has been shown in some 

patients with unresectable or metastatic melanoma treated with immunotherapy8. 

Furthermore, complete and rapid tumour regression has been observed among a subset of 

these patients9,10, highlighting the fact that responses to immunotherapy are no less robust 

than those to cytotoxic chemotherapy and molecularly targeted therapy and can lead to 

tumour reduction and, in some cases, eradication.

The observation that mAbs targeting molecules on the T-cell surface are sufficient, in some 

patients, to mediate tumour regression is instructive. Therapeutic antitumour vaccination is 

based on the premise that an adaptive antitumour immune response can be elicited by 

presenting exogenous tumour antigens to the immune system. This strategy was at the 

forefront of cancer immunotherapy research in prior decades. Some vaccines were 

administered with so-called adjuvants, which, in the context of immunology, are agents 

designed to enhance the immune response to the antigen. One way to consider the current 

paradigm of cancer immunotherapy is a shift from administering an antigen to administering 

an adjuvant in the context of a pre-existing, but non therapeutic, vaccination event in situ, as 

will be described later.

The discovery that T-cell-stimulation alone (that is, without a co-administered vaccine to 

direct the immune response to a specific target) can have a therapeutic effect relies on a 

fundamental principle that surprised many in the field: it suggests that patients with cancer 

who derive benefit from T-cell-stimulatory therapy are immunologically primed, before 
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treatment, to mount an anticancer immune response. Correspondingly, successful 

immunotherapy in these patients merely needs to unmask this latent potential.

Numerous research groups have invested substantial resources into identifying patients who 

are most likely to benefit from T-cell stimulatory therapy. Such knowledge would not only 

spare some patients from unnecessary treatment with associated toxicities, but it would also 

expand the use of immunotherapy to treat new types of cancer. Among the initial candidates 

for predictive biomarkers were C-reactive protein (CRP) and the absolute lymphocyte 

count11, because they correlated with improved outcomes. Subsequently, the measurement 

of circulating myeloid-derived suppressor cell (MDSC) levels before treatment emerged as a 

potential method to predict outcomes12. In 2015, elevated baseline levels of soluble CD25 

were shown to correlate with poor survival outcomes13. In other studies14–16, extensive 

whole-exome sequencing was performed on samples from patients with melanoma and from 

patients with NSCLC treated with checkpoint blockade agents with the purpose of 

identifying genomic properties that might predict a response to these immunotherapies. 

Genetic features, such as mutation burden, were identified but no consensus has been 

reached regarding the identity of specific genetic alterations encoding so-called 

‘neoepitopes’ that would make malignant cells recognizable to T cells and offer good 

predictive value for a response to checkpoint blockade16. The discovery of such alterations 

and their validation in prospective clinical trials would be of immense importance as they 

could enable immunotherapy to be given selectively to patients who would benefit from it, 

merging immunotherapy with precision medicine in a manner that could benefit innumerable 

patients with cancer.

Immune-checkpoint blockade

In this section, we discuss the well-established role of cytotoxic T-lymphocyte protein 4 

(CTLA-4) and PD-1in T-cell activation. We also highlight other promising inhibitory T-cell 

receptors for which mAbs are being developed.

CTLA-4—T cells are primed to acquire effector function at the immunological synapse with 

an antigen-presenting cell (APC). The initiating event, so-called signal 1, is the recognition 

by the T-cell receptor (TCR) of a cognate antigen peptide presented in the context of an 

MHC molecule on the surface of an APC (FIG. 1). This interaction, however, is insufficient 

to activate T-cell function. In fact, the T cell will go on to become anergic or apoptotic if no 

second signal is received17. In order to adequately prime T cells, a second signal is required, 

typically in the form of the T-cell receptor CD28 binding with either CD80 or CD86 on the 

APC. Once this occurs, the T-cell inhibitory CTLA-4 receptor is shuttled to the cell surface 

where it binds CD80 or CD86 with greater affinity than CD28 (REFS 18,19). Thus, CTLA-4 

translocation to the T-cell surface peaks after TCR stimulation, and activation of this 

receptor limits T-cell stimulation by TCR/CD28 co-ligation, both by preventing signalling 

downstream of the TCR and by outcompeting CD28 for its ligands. Phenotypic evidence of 

the ability of CTLA-4 to dampen T-cell activation is well demonstrated in Ctla4-knockout 

mice20,21. These animals developed fatal autoimmune disorders caused by a marked 

expansion of the T-cell population and infiltration into multiple tissue types20,21. CTLA-4 

thus has a central role in suppressing T-cell function, thereby restricting T cell-mediated 
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antitumour activity. Not surprisingly, CTLA-4 blockade has paved the way forward for 

modern cancer immunotherapy.

Regulatory T (TREG) cells also use CTLA-4 to suppress antitumour immunity22,23. TREG 

cells constitutively express CTLA-4, typically at levels higher than those of conventional T 

cells24, and CTLA-4 is necessary for TREG cells to exert maximal immune-suppressive 

function23,25. Aside from disrupting CTLA-4 ligation on TREG cells, anti-CTLA-4 mAbs 

deplete intratumoural TREG cells, at least in mouse models26,27. In 2015 it was observed that 

CTLA-4 blockade reduces the interaction time of conventional T cells with TREG cells (REF. 

22), thereby potentially freeing conventional T cells to be adequately primed by APCs.

Once it emerged that CTLA-4 constrains T-cell activity, the use of agents that block this 

receptor became an attractive candidate ‘adjuvant’ for therapeutic cancer vaccination28. This 

approach was used in preclinical studies to enhance the potency of the immune response 

generated by the administration of DNA vaccines29 and of vaccines consisting of irradiated 

tumour cells transduced to express the granulocyte-macrophage colony-stimulating factor 

(GM-CSF)30. These results were followed by a phase III trial in which patients were 

randomly assigned to receive ipilimumab (anti-CTLA-4 human mAb) plus gp100 peptide 

vaccine, or each agent alone4. The overall survival of the patients in the ipilimumab group 

was improved compared with patients that received the peptide vaccine only, and addition of 

the peptide vaccine to ipilimumab did not confer any additional advantages. This result was 

a breakthrough for several reasons. Firstly, no treatment before ipilimumab had 

demonstrated any significant improvement of overall survival for patients with advanced-

stage melanoma in the setting of a phase III clinical trial. Secondly, these results revealed for 

the first time that immune-checkpoint blockade can be sufficient to improve survival in 

patients with advanced-stage cancer. Finally, the survival plot in this study shows a plateau 

at approximately 2 years, after which the patients that survived (20%) went on to experience 

durable benefit for the remainder of the study4. This pattern was atypical of melanoma and, 

in fact, of other malignancies treated with conventional cancer therapy.

These clinical findings suggest that, once immune-checkpoint blockade successfully engages 

a patient’s immune system to control tumour growth, the immune response can be sustained 

even after the course of treatment has ended. This observation is consistent with the fact that 

such immunotherapeutic agents do not target the tumour itself, but rather they modify the 

patient’s immune system to control tumour progression, even after the exogenous agent has 

been withdrawn.

The introduction of ipilimumab in the clinic brought a new and different set of drug adverse 

effects now known as immune-related adverse events (irAE)31. These are defined as the 

mechanism-based toxicities that result from a ‘disinhibited’ immune response. Given the 

unique aetiology of these adverse events, limited overlap exists between irAEs and the 

toxicities associated with most other forms of cancer therapy in terms of type or severity of 

symptoms31. In principle, the immune stimulation caused by immune-checkpoint blockade 

can affect any organ system; however, some organ systems are particularly susceptible to the 

adverse effects of immune modulation by anti-CTLA-4 treatment (TABLE 1). Fortunately, 

even clinically moderate to severe irAEs can generally be controlled with medical 
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management without altering the antitumour effects of the therapy. Whereas most irAEs are 

typically reversible, endocrinopathies such as hypophysitis and thyroiditis frequently require 

chronic hormone replacement. Discontinuation of ipilimumab should be considered if 

corticosteroids cannot be tapered below 10 mg daily, which is the case for a minority of 

patients. Clinicians, however, should keep in mind the unique response kinetics of 

ipilimumab and other checkpoint-blocking agents. Some patients who ultimately derive 

benefit from ipilimumab will often experience an initial phase of tumour growth on 

commencing therapy32, a phenomenon that has not been observed to the same extent with 

cytotoxic chemotherapy or molecularly targeted anticancer therapy, which are directed 

against the tumour and not the patient’s immune system. An appropriate use of checkpoint 

blocking agents (particularly anti-CTLA-4 monotherapy), thus, requires careful clinical 

judgment to avoid discontinuing the therapy too early in the treatment course. Immune-

related response criteria (irRC) have been developed to provide guidance for avoiding 

premature discontinuation of therapy under specific circumstances33. For example, whereas 

the development of a small new lesion during therapy would be designated as progression of 

disease by standard RECIST criteria34 and imply treatment failure; however, such a 

designation by irRC criteria would also take into account the overall disease burden33.

Ipilimumab was approved by the FDA for the treatment of metastatic melanoma in 2011. 

This agent’s antitumour properties, however, are not limited to melanoma35 nor even to 

cancers that are historically thought to be immune responsive, such as renal-cell carcinoma 

(RCC)36. Nevertheless, in our opinion, the future role of CTLA-4 blockade in cancer therapy 

will be primarily in the context of combination regimens. CTLA-4 blockade might enable 

local antitumour therapy to trigger a systemic response; for example, there is anecdotal 

evidence of widespread tumour regression after localized radiation therapy in the setting of 

systemic ipilimumab treatment37. Furthermore, preclinical evidence exists showing that 

intratumoural viral therapy38 and cryo-ablation39 can trigger a systemic response in the 

setting of CTLA-4 blockade.

PD-1 axis—PD-1 is a second inhibitory receptor expressed on T cells. The PD-1 ligands, 

PD-L1 and PD-L2, are expressed on the surface of APCs and malignant cells, particularly in 

response to local inflammatory cytokines, such as IFNγ. Similarly to CTLA-4, PD-1 

ligation inhibits signalling downstream of the TCR40,41 (FIG. 1). PD-L1 can also ligate to 

CD80 expressed on T cells as a second mechanism of T-cell suppression42,43. Autoimmune 

processes developed in pd1 knockout mice include arthritis, nephritis, and myocarditis44,45. 

PD-1 ligands present within tumours can function as potent mediators of T-cell suppression 

and intratumoural PD-L1 expression is associated with a poor prognosis in some tumour 

types, including lung, ovarian or colon cancer, among others46.

PD-1 and PD-L1 blockade are currently among the most promising endeavours in clinical 

oncology. Two anti-PD-1 mAbs, pembrolizumab and nivolumab, were approved by the FDA 

in 2014 after the publication of robust data showing that up to 40% of patients with 

advanced-stage melanoma, including those who previously had no response to ipilimumab, 

experienced objective responses when treated with these agents, compared with 

approximately 12% for ipilimumab monotherapy3. In 2015, the combination of ipilimumab 

and nivolumab was approved by the FDA for the treatment of patients with advanced-stage 
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melanoma based on phase III data showing improved response rates and progression-free 

survival rates compared with either agent alone47. Nivolumab was also approved in 2015 for 

the treatment of squamous-cell lung cancer that is refractory to platinum-based therapy 

based on the results of a phase III study showing a 3.2-month improvement in overall 

survival, and a 17% improvement in 2-year survival for patients with advanced-stage 

squamous-cell NSCLC receiving nivolumab compared with those receiving docetaxel for 

disease48. The indication for the use of nivolumab was then expanded to patients with other 

types of advanced-stage NSCLC49, as was pembrolizumab for patients with PD-L1-positive 

NSCLC50. Thus, antibodies that target the PD-1 axis have been approved for the treatment 

of patients with melanoma3,51 and NSCLC48, and ongoing efforts are seeking to expand the 

indication for the treatment of RCC51,52, bladder cancer53, ovarian cancer52, Hodgkin 

lymphoma54, and a growing list of other malignancies.

Intratumoural PD-L1 can suppress T-cell activity through interactions with both PD-1 and 

CD80 on T cells42,43, and for this reason some investigators have predicted that anti-PD-1 

and anti-PD-L1 therapies might have distinct antitumour effects and adverse-effect 

profiles55. PD-1 blockade would leave the CD80–PD-L1 interaction intact, whereas PD-L1 

blockade would leave the PD-L2–PD-1 interaction intact. In spite of these mechanistic 

differences, distinct clinical features of each approach have not yet become apparent.

Some similarity is shared between the inflammatory toxicities associated with the blockade 

of the PD-1 axis and CTLA-4; high-grade toxicities, however, are much less common with 

PD-1 pathway blockade47, with the exception of pneumonitis, which is a particular concern 

for patients receiving anti-PD-1 or anti-PD-L1 mAbs6,51. Earlier in the development of anti-

PD-1 therapy, 3% of the treated patients developed pulmonary toxicity, which was fatal for 

approximately one third of them6,51. The vigilance for pulmonary toxicities has increased as 

a result of these observations, and their management has improved47 (TABLE 1). The 

development of life-threatening pneumonitis can be avoided in the vast majority of patients 

by early intervention with corticosteroids and withholding anti-PD-1 treatment when 

appropriate; clinical experiences reflect an evolved approach to pneumonitis management, 

with no deaths from this toxicity reported in two phase III trials of anti-PD-1 therapy in 2015 

(REFS 47,48).

Anti-CTLA-4/anti-PD-1 combinations—We anticipate that the greatest antitumour 

effect of blocking CTLA-4 as well as the PD-1 axis will come in the form of combination 

therapy. Dual anti-CTLA-4 and anti-PD-1 therapy has already shown significant 

promise9,10,47. For example, this approach has demonstrated an unprecedented 58% 

response rate and an 11.5% complete response rate in patients with advanced-stage 

melanoma in a global phase III trial47. Combinations with other forms of immune 

modulation and agents historically thought not to function through immune modulation are 

being actively investigated for cancer therapy.

Lymphocyte-activation gene 3 (LAG-3)—LAG-3 is expressed on activated 

conventional T cells, TREG cells, B cells and plasmacytoid dendritic cells56. Upon binding 

MHC class II molecules on APCs, LAG-3 transmits an inhibitory signal in conventional T 

cells57, whereas this signalling event enhances the suppressive function of TREG cells (REFS 
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58,59) (FIG. 1). Co-expression of LAG-3 and PD-1 is a marker of exhausted T cells 

(dysfunctional T cells classically associated with chronic infection) and, therefore, the 

blockade of both receptors confers additive therapeutic activity in preclinical models of 

chronic infection and cancer60–62. Interestingly, a soluble form of LAG-3 has been detected 

in the serum of patients with breast cancer and its presence correlates with a more-

favourable prognosis63. A soluble LAG-3-Ig fusion protein, designed to promote dendritic-

cell (DC) maturation through MHC II binding, has been tested in patients with RCC in a 

phase I clinical trial, resulting in disease stabilization and enhanced CD8+ T-cell 

activation64. Finally, a blocking mAb targeting LAG-3 is currently being tested in the clinic 

(NCT01968109)65.

T-cell membrane protein 3 (TIM-3)—TIM-3 (also known as hepatitis A virus cellular 

receptor 2; HAVCR2) is another exhaustion-associated inhibitory receptor that serves to 

blunt T-cell-effector function66 and induce apoptosis of T cells66. To date, four natural 

ligands of TIM-3 have been identified: galectin-9 (REF. 67), HMGB1 (REF. 68), 

phosphatidyl serine69 and CEACAM-1 (REF. 70) (FIG. 1). TIM-3 blockade has 

demonstrated antitumour activity in mouse models of colon adenocarcinoma, melanoma, 

and sarcoma, particularly when combined with PD-L1 blockade71,72. Furthermore, anti-

TIM-3 treatment has been shown to enhance the proliferation and cytokine production of 

CD8+ T cells derived from patients with melanoma73.

T-cell immunoreceptor with Ig and ITIM domains (TIGIT)—TIGIT is expressed on 

CD4+ T cells, in which it marks TREG cells; on CD8+ T cells, in which it is a marker of 

exhausted cytotoxic cells; and on other immune cells74,75. TIGIT blockade in animal models 

mediates antitumour activity in combination with anti-TIM-3 or anti-PD-L1 mAbs. By 

contrast, a clear autoimmune phenotype has not been described for Tigit-deficient mice74,76, 

which suggests that TIGIT blockade might have a potential role in future immunotherapy 

regimens without adding significant toxicity.

T-cell co-stimulation

In part as a response to the potent antitumour activity observed when inhibitory T-cell 

receptors are blocked, substantial interest has been generated towards the activation of co-

stimulatory T-cell receptors to control cancer. Upon engagement of the TCR by peptides 

presented on MHC by APCs, co-stimulatory receptors on T-cells receive a crucial second 

signal from cell-surface proteins on APCs that enable T-cell activation77 (FIG. 1). The 

encouraging results of several preclinical studies prompted clinical trials to investigate 

several agonist mAbs targeting co-stimulatory molecules. These co-stimulatory receptors are 

members of the tumour necrosis factor receptor (TNFR) family, a group of non-enzymatic 

cell-surface proteins that mediate proliferation, activation and differentiation responses in T 

cells.

T-cell antigen 4-1BB homologue (4-1BB)—Therapeutic mAbs targeting the co-

stimulatory molecule 4-1BB (also known as CD137 or TNFR superfamily member 9) are 

among the most advanced co-stimulatory agonists currently in clinical development. 4-1BB 

is expressed on T cells, natural killer (NK) cells and monocytes78. Stimulation of T cells by 
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4-1BBL, its cognate ligand expressed on dendritic cells, results in proliferation and 

upregulation of the antiapoptotic proteins Bcl-2-like protein 1 (Bcl-xL)79, Bcl-2-related 

protein A1 (Bfl-1)79,80 and CASP8 and FADD-like apoptosis regulator (c-FLIP)80, which 

protect T cells from activation-induced cell death79–82. Data from preclinical studies have 

shown the antitumour activity of anti-4-1BB mAb therapy alone and in combination with 

CTLA-4 blockade83, CD40 activation84, cellular vaccines83,85 or radiation therapy86. 

Urelumab, a fully human anti-4-1BB agonistic mAb, has demonstrated antitumour activity 

in patients with melanoma87. A subsequent clinical study, however, was suspended owing to 

the development of severe hepatotoxicity88. Further clinical testing of urelumab at reduced 

doses in combination with several regimens is ongoing89. Given the role of 4-1BB in 

augmenting NK-cell activity, therapies that combine anti-4-1BB mAbs with mAbs targeting 

tumour cells (such as rituximab or cetuximab) are being developed to increase the ability of 

tumour-targeting mAbs to mediate antibody-dependent cell-mediated cytotoxicity via NK 

cells90,91.

Glucocorticoid-induced TNFR-related protein (GITR)—GITR (also known as TNFR 

superfamily member 18) is another clinically relevant co-stimulatory receptor92. GITR is 

upregulated when conventional T cells are activated, and is constitutively expressed by TREG 

cells (REF. 92). GITR activation augments effector T-cell proliferation, cytokine production 

and resistance to TREG-cell-mediated suppression93–95. Treatment with anti-GITR agonist 

mAbs has been shown to mediate tumour rejection and the generation of immunological 

memory in syngeneic mouse models of fibrosarcoma96, colorectal carcinoma97 and 

melanoma98. GITR ligation is also able to disrupt TREG-cell lineage stability and impart T-

effector function99. Treatments using anti-GITR approaches are currently being evaluated in 

early phase clinical trials across a broad spectrum of malignancies100,101.

CD40—CD40 is a member of the TNFR family, but it is predominantly expressed on 

dendritic cells, macrophages, monocytes and B cells, and also in malignant melanoma, 

lymphoma, leukaemia, and carcinoma cells102,103. CD4+ T cells express CD40L, the ligand 

for CD40, which enables APCs to activate T cells. Upon CD40 ligation, dendritic cells 

upregulate MHC class II and secrete proinflammatory cytokines, such as IL-12 (REF. 103) 

(FIG. 1). On B cells, CD40 is important for immunoglobulin class switching104. Therapeutic 

mAbs that target CD40 on tumour cells have been developed105; however, CD40 agonist 

mAbs that target nonmalignant immune cells to elicit an antitumour response are of 

potentially even broader applicability. The macrophage-mediated robust antitumour activity 

that agonist CD40 mAbs show when combined with chemotherapy for the treatment of 

patients with pancreatic cancer provides a striking example of their efficacy106.

OX40—OX40 (also known as tumour necrosis factor ligand superfamily member 4) is 

present on the surface of T cells, NK cells and neutrophils, whereas its ligand, OX40L, is 

expressed on a number of different immune cells, including APCs107. OX40 engagement on 

T cells promotes proliferation, survival, and the secretion of cytokines associated with both 

type 1 and type 2 T helper cell responses108,109. OX40 ligation also blunts the suppressive 

effects and promotes activation-induced cell death of TREG cells (REFS 110,111). In 

preclinical models, the ligation of OX40 exerts antitumour activity mediated by CD4+ and 
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CD8+ T cells, and confers immunological memory manifested as resistance to tumour 

rechallenge112. Results of a phase I trial113 demonstrated that an agonist mAb targeting 

OX40 given as monotherapy has antitumour activity in patients with melanoma or RCC. A 

number of follow-up clinical trials using OX40 agonists in combination regimens are 

currently underway114–117.

Checkpoint blockade plus co-stimulation

The concept of augmenting T-cell activity with co-stimulatory mAbs and concurrently 

liberating activated T cells to lyse malignant cells by blocking PD-1 or PD-L1 is an 

appealing antitumour approach. Several ongoing clinical trials involving patients across a 

broad range of solid organ and haematological malignancies are investigating this 

possibility; with most of them employing agents that target the PD-1 axis as the means of 

checkpoint blockade118. In the near future, we will have more data to evaluate the toxicity–

benefit ratio of such immunotherapeutic combinations; we anticipate that this knowledge 

will ultimately lead to the design of new therapies for a wide range of advanced-stage 

cancers.

CAR-T-cell therapy

The goal of adoptive T-cell therapy is to generate a robust immune-mediated antitumour 

response through the ex vivo manipulation of T cells. This aim can be accomplished through 

the selection and expansion of tumour-infiltrating lymphocytes (TILs), or through gene 

transfer of a synthetic TCR (sTCR) or a chimeric antigen receptor (CAR) into T cells. We 

will focus on CAR T-cell therapy, which differs from TIL or sTCR-based therapies in that it 

uses a single-chain variable fragment (scFv) derived from the variable heavy and variable 

light chains of an antibody to target an extracellular antigen independent of the peptide–

HLA complex119,120. In its simplest form, a CAR is encoded by a single gene consisting of 

an scFv, a transmembrane region, and the CD3ζ chain (the signalling domain of the TCR 

complex)119. This molecule, a so-called first-generation CAR, provides only activation 

signal 1 to T cells, and has been shown to lead to T-cell anergy upon repeated antigen 

stimulation120,121. Second-generation CARs contain an additional co-stimulatory domain 

that provides activation signal 2 upon the scFv engaging the target antigen121. The most 

frequently used co-stimulatory molecules, to date, have been the signalling domains of 

CD28 (REFS 121,122) or 4-1BB123,124, although others125,126 have also been studied. 

Almost all clinical trials performed to date, and all the trials discussed herein, have used 

second-generation CARs. In third-generation CARs, two co-stimulatory domains are added 

to the above design, although direct comparisons with second-generation CARs have not yet 

been conducted in the clinical setting. Finally, ‘armoured’ CAR T cells have been evaluated 

in preclinical experiments; the first clinical trials using armoured CAR T cells are now 

enrolling patients (NCT02498912)127. An armoured CAR vector includes a second gene, 

encoding a protein that either provides the resulting T cell with a survival or cytotoxicity 

advantage, or modulates the tumour microenvironment. Examples of such proteins include 

the proinflammatory cytokine IL-12 (REF. 128), or the immunostimulatory molecules 

4-1BBL129 or CD40L130.
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CD19-targeted CAR-T-cell therapy

Initial clinical trials using CAR T cells have all focused on targeting CD19, which is an ideal 

antigen because it is ubiquitously expressed on a broad range of differentiated B cells (from 

pro-B cells to memory B cells), but it is not expressed on haematopoietic stem cells or any 

other essential cell types, limiting potential ‘on target-off tumour’ toxicity. For this reason, 

CD19-targeted CAR T cells have been used to treat diseases from B-cell acute 

lymphoblastic leukaemia (B-ALL) to more-differentiated non-Hodgkin lymphomas. We and 

others have found that the expected normal B-cell aplasia is well tolerated and can be 

managed with monthly administration of intravenous immunoglobulin122,124,131.

B-ALL—To date, the single greatest success of ACT has been achieved with CD19-targeted 

CAR T cells for the treatment of relapsed and/or refractory paediatric and adult B-

ALL122,124,131. The efficacy of CD19-targeted CAR T-cell therapy can be put in perspective 

when considering the results of a large US–UK cooperative pre-CAR-T-cell therapy era 

group study that treated adults with ALL after first relapse (n = 609): the median survival 

was 24 weeks, and the 5-year overall survival was 7%132. Complete response rates from 

investigations conducted at several institutions testing CAR T-cell therapy have been 

reported in the range of ~70–90% in heavily pretreated patients122,124,131. Similar response 

rates have been reported in studies across institutions; however, understanding the key 

similarities and differences in CAR design, gene transfer technology, and the effects of 

different trial designs on patient outcomes are key for the field to advance.

Different scFv, co-stimulatory domains, and gene transfer methods have been employed by 

researchers from several institutions involved in several trials with CAR-T-cell therapy133 

(TABLE 2). Most of these trials included patients with relapsed or refractory B-ALL who 

received salvage chemotherapy, and regardless of the response, were administered CD19-

targeted second-generation CAR T cells, most often after lymphodepleting preconditioning 

chemotherapy. Each study used one of two different anti-CD19 scFvs, different gene-

transfer methods and infused either bulk or selected CAR-T-cell populations.

Several large clinical trials have used CD19-targeted CAR-modified T cells to treat B-ALL 

at various research centres in the USA, including the Memorial Sloan Kettering Cancer 

Center (MSKCC)122,134,135, the University of Pennsylvania (UPenn)124,136,137, the US 

National Cancer Institute (NCI)131,138, the Fred Hutchinson Cancer Center139 and the MD 

Anderson Cancer Center140 (TABLE 3). Differences in design between these trials included 

patient populations, conditioning therapies, tumour burden, and CAR-T-cell dose, among 

other variables. Additionally, the end points defined for each study and the methods for 

reporting clinical efficacy and safety varied between different institutions122,124,131,134–140.

In the trials conducted at MSKCC122,134,135, UPenn124,141,142, NCI131,138, and Fred 

Hutchinson139, investigators reported similar remarkably high overall response rates, 

complete remission rates, minimal residual disease (MRD) negativity (when reported) and 

comparable toxicity. This is in contrast with the design of the trial carried out at MD 

Anderson140, in which, uniquely, lymphodepleting conditioning chemotherapy was omitted 

and an electroporation method of gene transfer that involved co-culture on artificial antigen 

presenting cells (aAPCs) was employed. Conditioning chemotherapy is likely to deplete 
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immune-suppressive regulatory cells, a process that might be essential to the effectiveness of 

CAR-T-cell therapy. Similarly, an electroporation process that includes ex vivo culture on 

aAPCs can potentially exhaust T cells before they are infused.

CAR T-cell persistence is likely an important factor in determining the efficacy of the 

antitumoural response, although the optimal time of survival of CAR T cells required to 

eradicate disease in patients is not known, and likely highly variable between tumour types 

and individual patients. Most clinical trials conducted to date have not routinely detected, as 

might have been expected, the occurrence of lifelong memory against the target antigen; this 

is evidenced by only transient B-cell aplasias observed in the majority of patients 

treated122,131,134,135,138. Investigators conducting the UPenn study uniquely reported 

persistence of B-cell aplasia of >26 months in the patient with the longest ongoing response 

(range 1–26 months)124,136. Data from few patients with follow-up durations of over 1 year 

have been reported to date; however, it is estimated that B-cell aplasia at 6 months was 73% 

in this trial124,136. This persistence could be caused by several factors that were unique to 

the UPenn study: the young paediatric population treated (median age 11), the use of 

fludarabine-based conditioning chemotherapy in the majority of patients (see further 

discussion below), or the use of 4-1BB as opposed to the CD28 co-stimulatory domain. 

Paediatric B-ALL is very different compared with B-ALL in adult patients: as adults have a 

far greater rate of relapse and associated mortality in response to standard of care cancer 

therapies than children with B-ALL143. Moreover, differences between paediatric and adult 

patients’ thymic function144 and T-cell-subset populations and immunosenescence145 could 

potentially explain why CAR T cells might have superior persistence in paediatric patients. 

In addition, 4-1BB is considered a ‘late’ co-stimulatory signal146 and thus might have a role 

in increased persistence. Whether any of these factors, alone or in combination with each 

other and/or conditioning chemotherapy, contribute to increased persistence must be 

validated by further preclinical and clinical studies.

Despite the differences between the clinical trials discussed earlier122,124,131,134–140, the 

efficacy and safety outcomes were remarkably similar. Therefore, drawing generalizable 

conclusions about optimal trial and vector design from the comparison of these studies is 

difficult. Important lessons on the influence of the conditioning regimen on CAR T-cell 

persistence and efficacy, however, can be garnered from the results of the trial conducted at 

Fred Hutchinson, in which changes to the lymphodepleting conditioning regimen were made 

as the trial progressed139. Preclinical studies had shown that lymphodepleting conditioning 

chemotherapy is necessary before CAR-T-cell infusion to obtain maximal antitumour 

efficacy128, an observation also noted in the first cohort of patients with CLL treated with 

this therapy147,148. Inferior response rates were noted in trials that did not include 

conditioning chemotherapy, such as those carried out at MD Anderson140 and Baylor149 

(TABLE 3).

In the clinical trial carried out at Fred Hutchinson, the addition of fludarabine to the use of 

cyclophosphamide-based conditioning regimens was investigated in patients with B-ALL (as 

well non-Hodgkin lymphoma (NHL)). These trials offered a unique opportunity to compare 

the effects of changes in conditioning regimens in patient cohorts that had otherwise been 

treated identically139. In this trial, 13 patients with B-ALL received the same dose of CAR T 
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cells, but eight were given fludarabine and the other five were given conditioning regimens 

lacking fludarabine139. In patients that received fludarabine, CAR-T-cell numbers were 

found to peak earlier and expand to numbers >100-fold greater than those of patients treated 

with conditioning regimens lacking fludarabine. At day 28 post-CAR-T-cell infusion, this 

difference was even more apparent because, in patients who received conditioning without 

fludarabine, CAR T cells became minimally detectable139. This increased cell expansion 

and persistence correlated with enhanced clinical responses and toxicity, indicating its 

functional relevance. Similarly, in a trial that included 19 patients with NHL, nine of them 

received fludarabine conditioning. In these patients, an identical trend of increased peak 

CAR-T-cell expansion, and persistence at 28 days was observed. The overall response rate of 

patients with NHL that received a fludarabine-containing regimen was 83%, compared with 

50% of patients treated with conditioning regimens lacking fludarabine. Interestingly, no 

CD19+ relapses and only one CD19− relapse was observed139.

Another open-ended question is whether CART-cell therapy should serve as a ‘bridge’ to an 

allogeneic haematopietic stem cell transplantion (alloHSCT), or whether alloHSCT could be 

avoided. The standard of care for adults with relapsed B-ALL who develop a second 

complete response is alloHSCT150,151. For patients who would not be eligible for an 

alloHSCT owing to their disease burden, CAR T-cell therapy helps to reach a second or third 

complete response, making them newly eligible for transplant. A group of MSKCC 

investigators have reported on the largest series of adult patients with relapsed B-ALL 

treated to date (n = 38), with a strategy that encouraged patients to undergo an alloHSCT 

whenever possible135. However, two-thirds of patients achieving a complete response to 

CAR-T-cell therapy did not proceed to alloHSCT because of the lack of an available donor, a 

personal preference, or, most commonly, because of medical co-morbidities that excluded 

alloHSCT. The overall survival of the patients with >6 months of follow-up who achieved a 

complete response and proceeded to alloHSCT was 70%135. This is similar to the overall 

survival of patients who were ineligible or declined alloHSCT (62%; P= 0.5). Additionally, a 

subset of patients who were followed expectantly without alloHSCT have had long-term 

disease-free survival of >12 months post-CAR-T-cell therapy135. This study is the largest of 

its kind performed to address this question, but these values were certainly underpowered 

and the patients in the study were not randomly allocated, thus precluding any firm 

conclusions on post-CAR-T-cell alloHSCT. These results135, however, suggest that CART-

cell therapy might replace alloHSCT for patients with B-ALL in the future.

CLL—The initial trials investigating CAR T-cell therapy and, therefore, the first responses 

to this therapy were reported in patients with chronic lymphocytic leukaemia (CLL)147,152. 

The responses in patients treated with CAR T cells for CLL have been more modest than 

those observed in patients with B-ALL; although exceptional responses have been reported 

initially among the first two out of three patients achieving a complete response152,153. In an 

updated analysis by investigators from UPenn, five (inclusive of the initial two) out of 23 

evaluable patients achieved a complete response141. In a study carried out at MSKCC, in 

which nine patients were treated, the first three patients did not receive conditioning therapy, 

and the following six patients received cyclophosphamide or bendamustine 

conditioning147,148. None of the patients who did not receive conditioning therapy had a 
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response, and only one of the six patients who received it achieved a complete 

response147,148.

There are several potential causes for this relative paucity of responses seen in CLL when 

compared with B-ALL. One reason is that CAR T cells generated from patients with CLL 

might have inherent effector T-cell dysfunction154,155. Furthermore, it remains to be 

confirmed whether CAR T cells migrate towards, and penetrate into lymph nodes as 

efficiently as they do bone marrow. Additionally, immune suppression via T-cell checkpoint 

inhibitory receptors156, cell types associated with immunosuppression, such as TREG cells 

(REF.157) and MDSCs158 or supportive cell types, such as CLL-nurse cells159,160, and 

inhibitory cytokine production161 might influence CAR-T-cell efficacy in patients with CLL 

to varying degrees. CLL cells might exist in a tumour microenvironment that is suppressive 

to CAR-T-cell function (FIG. 2). Additional modifications in the design of CAR-T-cell 

therapies are needed to further optimize their efficacy for the treatment of CLL.

NHL

Several groups have reported their initial experience treating patients with relapsed and/or 

refractory NHL (mostly of aggressive histology subtypes) using the same CARs as those 

used to treat B-cell leukaemias139,162–165. Investigators from the NCI carried out a trial that 

included nine patients with aggressive NHL; either diffuse-large B-cell lymphoma (DLBCL) 

or primary mediastinal B-cell lymphoma (PMBCL)162. Using cyclophosphamide-

conditioning chemotherapy before administration of CAR T cells, four out of seven 

evaluable patients with aggressive NHL achieved a complete response, which included three 

patients who had a persistent complete response 9–22 months after treatment. The T-cell 

counts peaked in the peripheral blood 7–17 days after infusion and persisted for a period 

between 2 weeks and 2 months162.

Similar to the NCI trial, investigators from UPenn also reported on their CAR-T-cell trials 

for aggressive NHL with a cohort of 13 patients with DLBCL that had been heavily 

pretreated163. Different non-myeloablative preconditioning chemotherapy regimens were 

used in this trial. Five patients achieved a complete response, in all cases ongoing at the time 

of reporting between 6 months to >1 year163.

At the same time as UPenn investigators reported their results from treating patients with 

aggressive NHL with CAR-T-cell therapy, researchers at MSKCC reported on 10 evaluable 

patients with relapsed, aggressive-histology NHL who were chemosensitive to salvage 

therapy, but with tumour presence, as confirmed by post-treatment PET scans164. Unlike at 

the NCI or UPenn, the protocol investigated administering CAR T cells in the setting of 

high-dose chemotherapy (BEAM regimen; carmustine, etoposide, cytarabine, melphalan) 

followed by autologous stem-cell rescue (ASCR). CAR T cells were administered on days 

+2 and +3 post-ASCR. Six out of 10 evaluable patients achieved a complete response, with 

four of them remaining free from disease progression after 13–21 months of follow-up164.

As described earlier, investigators at the Fred Hutchinson conducted a trial that included 19 

patients with NHL of different grades139. These patients’ T cells were separated into CD4+ 

and CD8+, and independently transduced in parallel with a 4-1BB containing CAR. CD8+ 
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cells were further selected to have a potentially favourable central memory 

immunophenotype (Tcm). The final infusion product was formulated to consist of 1:1 

CD4+:CD8+ Tcm cells. The conditioning regimen included included various combinations 

involving cyclophosphamide and/or fludarabine. The overall response rate in all patients 

with NHL who received treatment was 63%. Similarly as observed in the trial for B-ALL139, 

these researchers oberved that T-cell persistence and the complete response rate were 

significantly improved in the group of patients that received a conditioning treatment 

containing fludarabine, as previously described.

Finally, investigators at Baylor reported on a trial that included five patients with NHL165. 

The design of this trial was unique because it involved infusing two CAR-T-cell products 

simultaneously: one containing a CD28-bearing CAR and the other consisting of an equal 

dose of T cells containing a first-generation CAR with a CD3ζ signalling domain but 

without an additional co-stimulatory domain. Furthermore, in contrast with other groups, it 

did not include lymphodepleting preconditioning chemotherapy. The efficacy of this design 

was limited, and no sustained remissions were observed in the patients who received 

treatment. The investigators determined that second-generation CAR T cells persisted longer 

(up to 9 months as detected in peripheral blood using quantitative PCR) than first-generation 

CAR T cells165.

Toxicity—The adoption of CAR-T-cell therapy, has been followed by the emergence of a 

novel set of adverse effects including cytokine-release-syndrome (CRS), macrophage 

activation syndrome (MAS; or haemophagocytic lymphohistiocytosis, HLH), and 

neurological toxicities. CRS is a constellation of symptoms derived from the cytokines 

released by activated T cells and/or activated macrophages122,138,166. A concomitant MAS is 

evidenced by the presence of elevated levels of ferritin and, in some cases, 

hypofibrinogenaemia166 in addition to elevated levels of cytokines, such as IL-6 and IL-10. 

MAS can occur owing to a positive feedback loop that affects signalling pathways activated 

by the cytokines released by activated CAR T cells138,166. These potential cytokine 

mediated toxicities range from mild, with isolated fever, to severe (sCRS), with symptoms 

that include hypotension and respiratory distress requiring the intervention of an intensive 

care unit122,138. CRP is a parameter that can be measured in routine clinical laboratory tests 

and serves as a surrogate marker of CRS in patients with B-ALL. A monitored rise in CRP 

levels in serum is indicative of a high likelihood of impending sCRS122. sCRS and MAS are 

managed with the administration of antibodies targeting the IL-6 pathway, and with 

lymphodepleting doses of corticosteroids122,138. Neurological toxicity seems to be distinct 

from CRS and can occur together with, or independent from, sCRS. The incidence of both 

toxicities (neurological and sCRS) seems to correlate with disease burden, tumour histology, 

CAR-T-cell dose, and conditioning chemotherapy. The timing of CRS-mediated toxicity 

correlates with T-cell expansion in blood because the onset occurs around the time of peak 

T-cell expansion and usually resolves as T cells contract122,138.

Major differences between CD19-targeted CART-cell trials exist, including differences in 

how sCRS is defined. In reports from the four major clinical trials for B-ALL mentioned 

above131,135,137,139, however, authors report similar rates of grade 3/4 CRS or sCRS, 

ranging from 23–29%. Treatment-related mortality from CRS and neurotoxicity is low. In 
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adults treated for B-ALL, treatment-related mortality is reported as 8% (three out of 38 

patients), 4% (one out of 24 patients), and 25% (three out of 12 patients) by MSKCC135, 

Fred Hutchinson139, and UPenn167 investigators, respectively. Treatment of paediatric B-

ALL and of other indications (such as CLL and NHL) in adults have even lower mortality 

rates, with UPenn investigators reporting no mortalities out of 85 non-adult B-ALL patients 

treated for all other indications167 and NCI investigators reporting no mortalities in 21 

paediatric or young-adult patients treated for B-ALL131. Given the heavy pretreatment 

history and poor prognosis of the patients included in these trials, the toxicity data need to be 

considered in the proper context when weighing this type of intervention in a risk–benefit 

discussion with patients. The modulation of CAR-T-cell infusion doses (for example, 

administering lower doses to patients with larger tumour burdens), and the selection of 

patients with lower tumour burdens might be promising approaches to minimize the 

occurrence of CRS and related toxicities in the future.

Additional targets in haematologic cancer

CD19 is an excellent target for CAR-T-cell therapy because it is expressed across a broad 

range of B-cell differentiation stages, and is ubiquitously expressed in many patients with a 

range of B-cell malignancies. Additional potential CAR targets for patients with 

haematological malignancies, however, have been identified and their use has been 

validated, with substantial preclinical data available; some of these potential targets have 

already been applied in the clinic. A selected list of these targets include, for the treatment of 

B-cell malignancies: CD22 (REF. 168), ROR1 (inactive tyrosine-protein kinase 

transmembrane receptor ROR1)169,170, CD30 (REF. 171) and Ig kappa (κ) light chain149; 

for the treatment of multiple myeloma: B-cell maturation antigen (BCMA)172, SLAMF7 

(CS1)173, CD38 (REFS 174,175) and CD138 (REF. 176); and for the treatment of AML: 

CD33 (REF. 177) and CD123 (REFS 178–180). The discussion of these and other targets is 

beyond the scope of this Review, but they have been discussed in detail elsewhere181.

CAR T cells for solid tumours

The demonstration of clinical efficacy in trials using CAR-T-cell therapy are, at present, 

limited to haematological malignancies, but this modality is beginning to be explored 

clinically in the treatment of solid tumours. Solid tumours present three unique challenges 

not seen in B-ALL. Firstly, when compared with B-ALL, their microenvironment can be 

considerably more immunosuppressive (FIG. 2). Secondly, antigen selection is, in general, 

more difficult because the antigen heterogeneity across the same malignancy is generally 

higher in solid tumours182,183. Thirdly, ‘on-target, off-tumour’ toxicity is more problematic 

because potential target antigens in solid tumours are more likely to be expressed in other 

essential organs. New targets for solid tumours that are beginning to enter clinical studies 

include mesothelin for the treatment of mesothelioma184–186, pancreatic142,186 and ovarian 

cancer186; disialoganglioside GD2 (REFS 187,188) and EGFRvIII189 for CNS 

malignancies; and mucin-16 (REFS 190,191) for the treatment of ovarian cancer. The results 

of the initial clinical trials for these and other targets are awaited. A more detailed discussion 

of CAR-T-cell therapy for solid tumours can be found elsewhere181.
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Potential escape mechanisms

Different physiological mechanisms can prevent durable CAR-T-cell-mediated antitumour 

responses. These mechanisms include target tumour-antigen escape, lack of CAR-T-cell 

persistence, and lack of CAR T-cell function. Antigen escape occurs in the setting of an 

initial response to CAR T cells, in which the target extracellular tumour-associated antigen 

is down regulated or when a minor tumour subclone that lacks antigen expression outgrows 

the other clones192. In either situation, malignant cells become undetectable to CAR T cells. 

Antigen escape was reported as a major cause of relapse in the UPenn trial for paediatric B-

ALL, in which 10 out of 15 relapses involved this mechanism and resulted in the expansion 

of CD19-negative malignant cell populations137. Antigen escape could be addressed by 

targeting multiple antigens. Lack of CAR T-cell persistence has been previously discussed in 

this Review. The ideal length of CAR T-cell persistence is unknown; however, it seems that 

some minimum degree of persistence (weeks to months) is required for optimal CAR-T-cell 

efficacy and complete tumour eradication. Conditioning chemotherapy, T-cell 

immunophenotype, the patients’ age and health status, the CAR-T-cell host and CAR vector 

design are among the factors that appear to influence persistence. Finally, lack of function 

can be further divided into two main causes. The first is an inability of CAR T cells to access 

the site of disease owing to a lack of homing signals and/or the presence of exclusion signals 

in the site of disease. The second is the suppression of CAR-T cell-mediated cytotoxicity at 

the site of disease by signals from the microenvironment. The lack of persistence or function 

can be addressed by administering CAR T cells in combination with immunomodulatory 

antibodies or by administering armoured CAR T cells.

Armoured CAR T cells

In an immunosuppressive tumour microenvironment, CAR T cells are likely to suffer the 

same loss of cytotoxic functionality as endogenous T cells (FIG. 1A). This phenomenon has 

been demonstrated by in vivo experiments, in which the injection of CAR T cells into mice 

bearing large, established tumours led to the upregulation at the protein level of the T-cell 

inhibitory enzymes diacylglycerol kinase and SHP-1, the cell surface expression of the 

inhibitory receptors PD-1, LAG-3, and TIM-3, and the inability to clear the tumour193. One 

strategy to overcome the effects of an immunosuppressive microenvironment is through the 

further modification of CAR T cells to additionally express immune-modulatory proteins, 

including ligands and cytokines (FIG. 1B). Examples of three classes of armoured CAR T 

cells that are currently in preclinical development are described below.

The first example is the inclusion of a second chimeric gene in the CAR vector, in which the 

PD-1 extracellular receptor domain is fused to the CD28 intracellular signalling domain. 

This design was tested in the setting of a synthetic TCR (sTCR), but could equally apply to 

CAR T cells194,195. T cells that included both the PD-1/CD28 fusion gene and the sTCR 

outperformed T cells that included the sTCR alone in in vitro studies of cytokine secretion 

and proliferation194,195. In murine xenograft models, and in a syngeneic model of human 

melanoma, the PD-1/CD28 chimera expressing targeted T cells demonstrated increased 

clearance rechallenge194,195.

Khalil et al. Page 16

Nat Rev Clin Oncol. Author manuscript; available in PMC 2017 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Another strategy involves CAR T cells that are genetically modified to constitutively express 

stimulatory ligands. T cells co-expressing CD40L130 or 4-1BBL129 with a second-

generation CAR have been shown to increase survival of mice with difficult-to-treat 

systemic lymphoma xenograft. CD40L mediates its effect on CD40+ tumours through T 

cells directly, by enhancing their immunogenicity, and via stimulation of dendritic cells130. 

4-1BBL expression has been shown to bind T-cell co-stimulatory receptors and stimulate, 

not only the transduced cells themselves, but also through trans-co-stimulation of adjacent T 

cells129.

A third example is the inclusion of a gene construct that leads to the secretion of a pro-

inflammatory cytokine. IL-2 (REF. 196), IL-15 (REF. 197) and IL-12 (REF. 128) have all 

been studied in this context. The first trial using armoured CAR T cells secreting IL-12 has 

recently opened and is testing a CAR targeting mucin-16 in patients with ovarian cancer 

(NCT02498912)191,127. Systemic administration of IL-12 was shown to be toxic in early 

phase clinical trials198, but local administration delivered to the site of the tumour can be 

achieved through secretion by CAR-targeted T cells. In this capacity, T-cells act as 

‘micropharmacies’ and, owing to the low IL-12 levels achieved through localized secretion, 

systemic toxicities might be avoided. IL-12 secretion benefits CAR T cells through 

pleotropic effects. In preclinical studies, IL-12 secretion has been shown to obviate the need 

for preconditioning chemotherapy128, enhance CAR T-cell persistence199, provide resistance 

to TREG cell (REF. 128) and MDSC200,202 inhibition and result in enhanced antitumour 

efficacy128,190,199–202.

Given that ovarian cancer, similarly to many other solid tumours, has a high TIL burden, 

which is indicative of a strongly immunosuppressive microenvironment, we are investigating 

the efficacy of mucin-16-targeted IL-12-secreting CAR T cells in a phase I trial for patients 

with relapsed ovarian cancer191.

mAbs, CAR T cells, or combined therapy?

Durable responses are seen using immune checkpoint blockade for the treatment of patients 

with metastatic melanoma or NSCLC, and CAR T-cell therapy has produced dramatic 

responses in B-ALL. An appreciation of why each therapy has been so effective for these 

malignancies, and less so in others (FIG. 2), might lead to more rational design in clinical 

trials to investigate immunotherapy for other tumour types.

It is understood that, as tumour cells evolve, they are eliminated by immune surveillance, 

particularly by T cells that respond to tumour neoantigen-derived peptides presented by 

MHCs203–208. Tumour types such as melanoma and NSCLC, which harbour a high 

frequency of somatic mutations209, leading to increased presentation of neoantigens, are 

more likely to escape immune surveillance through co-evolution in an immunosuppressive 

microenvironment. This same immunosuppressive microenvironment, which thwarts 

endogenous TILs, might also prevent CAR T cells from generating a robust antitumour 

response through the same suppressive mechanisms193,210 (FIG. 1).
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Thus, we hypothesize that, for tumours with high neoantigen-presenting capacity in an 

immunosuppressive microenvironment, immune-modulating mAbs, such as those that confer 

checkpoint blockade, will likely be necessary for the generation of immune-mediated 

antitumour responses. Additionally, as evidenced by the high rates of durable responses 

observed in patients with melanoma1–3,9,47 and NSCLC48,211 treated with PD-1 targeting 

mAbs alone, and especially in patients with melanoma treated with PD-1/CTLA-4 dual 

targeting10,47, immune-modulating mAbs are frequently sufficient to induce such a response 

in this setting. Evidence for this hypothesis is supported by data from studies in which a 

subset of lung adenocarcinomas with higher levels of somatic mutations had increased levels 

of inflammation- related gene expression and immune-checkpoint effector molecules, 

including PD-L1 (REF. 212). Furthermore, even within a given malignancy, the prevalence 

of neo-antigens can be predictive of the response to checkpoint blockade with PD-1-targeted 

therapy in patients with NSCLC14, and with CTLA-4-targeted therapy in those with 

melanoma15,16.

We further hypothesize that tumours with low neoantigen-presenting capacity, such as those 

that have a reduced number of potentially immunogenic somatic mutations (for example, B-

ALL209) or, otherwise, do not present neoantigens through downregulated antigen 

processing, presentation or HLA expression might be overlooked by endogenous T cells. 

These tumour types might not have had the pressure to co-evolve in an immunosuppressive 

microenvironment. In this situation, antigen presentation and TIL burden will likely be low, 

and immune-modulating mAbs alone would be less likely to generate a robust antitumour 

response. CAR T cells, however, are not inhibited by these barriers, and, as demonstrated 

with CD19-targeted CAR-T-cell therapy for B-ALL, can induce rapid complete responses in 

up to 90% of patients in this tumour type, which has a low somatic mutation rate209.

For tumours between both extremes of the neoantigen spectrum, immunotherapies involving 

either CAR T cells or immune-modulating mAbs alone have not shown the dramatic results 

seen with melanoma and lung cancer on the one hand, and B-ALL on the other. The limited 

available preclinical data supports the use of combination cellular and mAb therapy in 

syngeneic models of sarcoma and breast cancer, in which the combination of PD-1 blockade 

with murine CAR T cells showed a significantly enhanced antitumour effect compared with 

either intervention alone210. We predict that, in patients with tumour types of an 

intermediate neoantigen-presentation capacity, the maximal immune-mediated antitumour 

responses might be best achieved in patients in which both the microenvironment can be 

modified and HLA-independent targeted effectors added, such as with combination immune 

modulating mAbs plus CAR-T-cell therapy or, potentially, armoured CAR-T-cell therapy. 

However, a risk of toxicities being exacerbated does exist when these approaches are used. 

We eagerly await the results of the first trial investigating the combination of CTLA-4 

blockade with CAR T cells (NCT00586391)213, and the first trial using an armoured CAR 

vector (NCT02498912)127.

This neoantigen burden-based response hypothesis is not predicted to apply to other types of 

ACT. Unlike CAR-T-cell therapy, bulk TIL-based therapy requires tumour antigen peptides 

to be presented on MHCs. Thus, TIL therapy would more likely be successful in a tumour 

type with high neoantigen burden, as has been demonstrated with the successful use of TIL 
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therapy in treatment of melanoma214–216. This requirement would be overcome, however, if 

T cells targeting a specific neoantigen epitope in a particular patient could be identified and 

their numbers expanded ex vivo217. In such patients, the efficacy of neoantigen-directed 

TILs or sTCR-based therapies would remain subject to downregulation of HLA, defects in 

antigen processing and/or presentation machinery, or an immunosuppressive 

microenvironment, all of which can be found more frequently in tumour types with a high 

neoantigen burden (FIG. 2). Overall, this might partially explain the uniquely robust success 

among ACT, at least to date, of CAR-T-cell monotherapy in B-ALL.

Conclusions

The remarkable clinical results observed in trials investigating immunotherapy since 2010 

have generated a large amount of interest in this therapeutic modality. Clinical trials using 

checkpoint blockade inhibitors to treat patients with metastatic mela-noma1–3,9,47 and 

NSCLC48,211, and trials using CAR T cells to treat relapsed or refractory B-ALL122,124,131 

have demonstrated that treating cancer ‘indirectly’ by acting on the immune system can 

yield durable disease control in patients with malignancies previously thought to be 

uniformly fatal (BOX 1). We have focused on mAbs and CAR T-cell therapy, but a number 

of other modalities of immunotherapy also offer great hope. These include 

immunomodulatory small molecules218, oncolytic viruses38, vaccines219, and tumour-

targeting mAbs220, as well as attempts to overcome T-cell exclusion221, and to exploit the 

immunomodulatory potential of chemotherapy and radiation therapy. The efficacy of these 

methods can be complementary to that of the technologies discussed here. Conceptualizing 

which tumour types are most likely to respond to different immunotherapies by categorizing 

those tumours according to their neoantigen presentation ability and their microenvironment 

will help investigators choose the appropriate combinations of immunotherapy for each 

particular cancer; and with the ongoing advances in precision medicine, to facilitate 

personalized therapeutic selection for each patient.

Box 1

Anticipated challenges

Immunomodulatory antibodies

• Identify optimal combinations of immunomodulatory monoclonal antibodies 

with each other or with other forms of cancer therapy for individual cancer 

types. Such combinations are key to expanding the role of immunotherapy

• Minimize impact of ‘on-target, off-tumour’ adverse effects. 

Immunomodulatory antibodies are not inherently cancer-specific, and 

therefore inflammation in benign tissues can occur. With new combinations 

emerging, investigators must remain wary of new or more-severe adverse 

effects

• Define ideal treatment duration. Unlike many cancer treatments, the activity 

of immunotherapy can persist after the drugs have been cleared

CAR T cells
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• The challenge for relapsed/refractory B-ALL is to routinely translate deep 

remissions into cures. Fine-tuning conditioning chemotherapy regimens and 

targeting multiple antigens simultaneously to avoid antigen escape might 

address this issue

• The challenge for CLL and solid tumours is to achieve response rates similar 

to those for B-ALL. Obstacles are microenvironment-mediated 

immunosuppression, lack of persistence, lack of appropriate homing and/or 

access to the site of disease and, in some cases, lack of tumour-specific 

ubiquitously expressed target antigens. Modulation of the microenvironment 

with armoured CAR T cells or with co-administration of immunomodulatory 

antibodies might minimize these hurdles

• To mitigate cytokine-release syndrome and related toxicities: modifying cell-

dose and frequency of administration, including administering lower doses of 

CAR T cells initially to patients with bulky disease followed by larger 

subsequent doses and treating patients in earlier stages of disease. 

Additionally, with the improvement of biomarkers of CRS, early intervention 

for this adverse event might be possible

Combinations

• Identify the safest/most efficacious combinations of immunomodulatory 

antibodies and/or adoptive cellular therapeutics. Rational preclinical 

evidence-based approaches need to be taken, but optimization in patients will 

be time-consuming

• In addition to selecting the appropriate combinations of agents, unique 

challenges to be addressed in phase I trials include selecting initial doses, 

determining sequencing and timing of agents, estimating maximum tolerated 

dose, identifying agents with limited single agent activity/toxicity, but with 

considerable potential for synergy

B-ALL, B-cell acute lymphoblastic leukaemia; CAR, chimeric antigen receptor; CLL, 

chronic lymphocytic leukaemia; CRS, cytokine-release syndrome.
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Key points

• Cancer immunotherapies have the potential to generate robust antitumour 

responses; this can be achieved through several methods, such as modulatory 

antibodies or adoptive cellular therapy

• Since 2010, clinical trials using different immunotherapeutic approaches to 

treat patients with several tumour types have yielded unprecedented results

• In contrast with therapies that act on the tumour itself, immunotherapy-

dependent antitumour responses can be sustained after the treatment has 

finished

• The optimal efficacy of immunotherapy will likely be achieved with designs 

that include combinations of different immunotherapeutic approaches, or 

immunotherapy combined with other cancer treatments
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Figure 1. Immunomodulatory monoclonal antibodies and armoured chimeric antigen receptor 
(CAR) T cells overcome immune suppression
a | Overview of the immune inhibitory molecules that compromise endogenous T–cell 

antitumour activity. T cells are susceptible to immune inhibitory factors associated within 

the microenvironment that prevent their full antitumour activity. Such factors include cell 

surface proteins (such as programmed cell death 1 ligands 1 and 2 (PD-L1 and PD-L2)) and 

cytokines (such as TGF-β and IL-10). Regulatory T (TREG) cells are representative of 

inhibitory cellular components of the tumour microenvironment (TME), which also include 

myeloid-derived suppressor cells, tumour-associated macrophages and other cell types non-
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depicted. b | Similarly to endogenous T cells, CAR T cells are susceptible to immune 

inhibitory factors present in the TME. c | Immunomodulatory monoclonal antibodies can be 

used to overcome local immunosuppression by either activating stimulatory receptors (such 

as TNFRSF9 (4-1BB) or OX40), or blocking suppressive receptors (for example, 

programmed cell-death 1 (PD-1) or cytotoxic T-lymphocyte antigen 4 (CTLA-4)). d | 

Armoured CAR T cells are engineered to express proteins that overcome 

immunosuppression associated with the TME (such as CD40L, IL-12 or TNFSF9 

(4-1BBL)). Ag, antigen; APC, antigen-presenting cell; CD40L, CD40 ligand; Cy, 

cyclophosphamide; DC, dendritic cell; Flu, fludarabine; GITR, glucocorticoid-induced 

TNFR family related protein; GITRL, GITR ligand; HMGB1, high mobility group 1 protein; 

LAG-3, lymphocyte activation gene-3; PSer, phosphatidyl serine; scFv, single-chain variable 

fragment; TCR, T-cell receptor; TIGIT, T-cell immunoreceptor with immunoglobulin and 

ITIM domains; TIL, tumour -nfiltrating lymphocyte; TIM-3, T cell immunoglobulin and 

mucin domain 3.
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Figure 2. Neoantigen presentation in the tumour microenvironment
a | Tumour cells can avoid elimination by immunoediting because of low neoantigen 

presentation (neoAglow). This occurs as a result of a low level of somatic mutations, or 

because tumour cells might downregulate antigen processing or presentation. NeoAglow 

tumours might escape detection by endogenous CTLs early in tumorigenesis, and therefore 

would expand without the pressure to co-evolve within an immunosuppressive 

microenvironment. This is the ideal setting for CAR T cells to direct a robust antitumour 

response. b | Tumours that present a high neoantigen burden (neoAghigh) can be eliminated 

during the immunoediting process (far right). Alternatively, neoAghigh tumour cells might 

co-evolve within an immunosuppressive tumour microenvironment (TME) that mediates 

avoidance of T-cell surveillance. This setting is the ideal situation for immune-modulating 

therapies with monoclonal antibodies to direct a robust antitumour response. c | Tumour 
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types can be ranked by their relative presence of somatic mutations209, and this classification 

can be used to indirectly estimate neoantigen burden. Tumours can be stratified on the basis 

of somatic mutation prevalence; tumour types with the most robust clinical responses to 

CAR T-cell therapy (red) or immune modulating mAbs (blue) are stratified by somatic 

mutation prevalence. ALL, acute lymphoblastic leukaemia; AML, acute myeloid leukaemia; 

CAR, chimeric antigen receptor; CLL, chronic lymphocytic leukaemia; CTL, cytotoxic T 

cell; mAb, monoclonal antibody; MDSC, myeloid-derived suppressor cell; neoAg, 

neoantigen; PD-1, programmed cell death 1; PD-L1, programmed cell death 1 ligand 1; 

TAA, tumour-associated antigen; TAM, tumour-associated macrophage; TCR, T-cell 

receptor; TIL, tumour infiltrating lymphocyte; TREG cell, regulatory T cell. Image 

reproduced from Alexandrov, L. B. et al. Signatures of mutational processes in human 

cancer. Nature 500, 415–421 (2013),
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Table 1

Adverse events associated with immune-checkpoint blockade

Immune-mediated adverse event Manifestations Management

Enterocolitis Diarrhoea, abdominal pain, mucus or blood in stool Antidiarrhoeals followed by systemic 
corticosteroids if persistent; infliximab if 
refractory

Pneumonitis Dyspnoea, cough Systemic corticosteroids

Hepatitis ALT/AST, bilirubin elevation Systemic corticosteroids; mycophenolate 
mofetil if refractory

Dermatitis Pruritic/macular/papular rash, Stevens–Johnson 
syndrome (rare), toxic epidermal necrolysis (rare)

Topical betamethasone or oral 
antihistamines; systemic corticosteroids if 
refractory

Neuropathy Sensory/motor neuropathy, Guillain–Barre syndrome 
(rare), myasthenia gravis (rare)

Systemic corticosteroids

Endocrinopathy Hypothyroidism, hyperthyroidism, hypopituitarism, 
adrenal insufficiency, hypogonadism, Cushing’s 
syndrome (rare)

Systemic corticosteroids, appropriate 
hormone replacement (potentially long-term)

Other irAEs Arthritis, nephritis, meningitis, pericardidits, uveitis, 
iritis, anaemia, neutropenia

Organ-system specific

Severe immune-mediated adverse events require permanent discontinuation of therapy and initiation of high-dose systemic corticosteroids. Therapy 
should be withheld for moderate immune-mediated adverse events or symptomatic endocrinopathy. Non-immune aetiology should be ruled out 
when possible, and manufacturer recommendations should be reviewed for the latest guidance and dosing information. ALT, alanine 
aminotransferase; AST, aspartate aminotransferase; irAEs, immune-related adverse events.
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Table 3

Clinical outcomes of CD19-targeted CAR-T-cell therapy for patients with B-ALL

Study/CAR design Conditioning/CAR-T-cell dose Patient population Clinical responses CAR-T-cell persistence

Fred Hutchinson139

FMC63-BBζ
• Cy 60 mg/kg + Flu 

25 mg/m2 daily × 
3–5 (46%) or other 
Cy-based 
conditioning 
(54%)

• 0.2–20 × 106 CAR 
T cells/kg

• n = 24 
adults 
with R/R 
disease

• Age 
range: 22–
71 years

• 91% CR

• 87% MRD 
(by PCR)

• 29% sCRS

• Persistence 
in 
responding 
patients >1 
month

• Improved 
with Flu 
conditioning

MD Anderson140

FMC63-28ζ
• No conditioning

• 1–500 × 106 CAR 
T cells/m2

• n = 10

• Post-
alloHSCT 
uniquely, 
no active 
disease

• 5 month 
DFS: 30%

• No GVHD 
or sCRS

Detectable up to 3 months

MSKCC122,134,135

SJ25-28ζ
• Cy 1.5–3 g/m2 × 1 

dose

• 1–3 × 106 CAR T 
cells/kg 
(fractionated over 
2 days)

• Adults 
with R/R 
disease

• Median 
age: 45 
years (22–
74 years)

• n = 38 
evaluable 
for safety 
(n = 28 
evaluable 
for 
response)

• 87% CR

• 81% MRD-
negative 
(by deep 
sequencing)

• Median 
time to CR: 
23 days

• 6-month 
DFS: 50%

• 6-month 
OS: 59%

• 14% CD19-
negative 
relapses

• 23% sCRS

• Peak day: 
7–14

• Persistence 
1–3 months

NCI131,138

FMC63-28ζ
• Cy 900 mg/m2 × 1 

dose + Flu 25 
mg/m2 × 3 doses

• 1–3 × 106 CAR T 
cells/kg

• Paediatric/
young 
adults 
with R/R 
disease

• Median 
age: 13 
years (1–
30 years)

• n = 21 (n 
= 20 with 
B-ALL)

• Uniquely 
reported 
intention-
to-treat-
analysis

• 67% CR

• 10-month 
OS: 52%

• Two CD19-
negative 
relapses

• 29% sCRS

Detectable up to day 68 
(by qPCR)

UPenn/CHOP124,141,142

FMC63-BBζ
• Variable 

conditioning:>50% 
received Flu 30 
mg/m2 daily ×4 
doses + Cy 500 

• Paediatric 
patients 
with R/R 
disease

• 94% CR

• 82% MRD-
negative 
(by flow 
cytometry)

Range detectable:1 
month–2 years (by qPCR)
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Study/CAR design Conditioning/CAR-T-cell dose Patient population Clinical responses CAR-T-cell persistence

mg/m2 daily × 2 
doses

• 0.76–20.6 × 106 

CAR T cells/kg

• Median 
age: 11 
years

• n = 48 
evaluable

• 6-month 
DFS: 76%

• 6-month 
OS: 78%

• 67% CD19-
negative 
relapses

• 29% sCRS

alloHSCT, allogeneic haematopoietic stem cell transplantation; B-ALL, B-cell acute lymphoblastic leukaemia; CAR, chimeric antigen receptor; 
CHOP, Children’s Hospital of Philadelphia; CR, complete response; Cy, cyclophosphamide; DFS, disease free survival; Flu, fludarabine; Fred 
Hutchinson, Fred Hutchinson Cancer Center; GVHD, graft-versus-host disease; MD Anderson, MD Anderson Cancer Center; MRD, minimal 
residual disease; MSKCC, Memorial Sloan Kettering Cancer Center; NCI, National Cancer Institute; OS, overall survival; PCR, polymerase chain 
reaction; qPCR, quantitative PCR; R/R; relapsed and/or refractory; sCRS, severe cytokine-release syndrome; UPenn, University of Pennsylvania.
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