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Abstract

For the last 40 years the authors have collaborated on trying to understand the complexities of 

human cancer by formulating testable mathematical models that are based on mutation 

accumulation in human malignancies. We summarize the concepts encompassed by multiple 

mutations in human cancers in the context of source, accumulation during carcinogenesis and 

tumor progression, and therapeutic consequences. We conclude that the efficacious treatment of 

human cancer by targeted therapy will involve individualized, uniquely directed specific agents 

singly and in simultaneous combinations, and take into account the importance of targeting 

resistant subclonal mutations, particularly those subclones with alterations in DNA repair genes, 

DNA polymerase, and other genes required to maintain genetic stability.
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Introduction

Until some twenty years ago it was commonly accepted that every cell in our body contained 

similar, if not identical, nuclear genomes. Obviously, there were exceptions– repetitive 

elements that expanded and contracted, line elements that duplicated, and telomeres that 

shrunk and elongated. But these were the exceptions. In contrast, the interrogation of 
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multiple genomes from the same individual by massively parallel next generation DNA 

sequencing (NGS) provided evidence of extensive multigenic mosaicism in cancers, and 

even in nonmalignant tissues. The low accuracy of routine NGS precluded the detection of 

rare subclonal mutations and prevented us from realizing the unanticipated plasticity of our 

genomes.

The recent award of the Nobel Prize in Chemistry for DNA repair brought into focus the 

extensiveness of DNA damage that occurs in human cells. Advances in chemistry have 

greatly extended our knowledge of the enzymology of DNA repair and the structure of 

intermediates in DNA damage repair; advances in DNA sequencing are making it possible to 

approach exciting biological questions surrounding DNA damage and mutagenesis. Tomas 

Lindahl calculated that each cell in our body undergoes some 50,000 DNA damage events 

per day [1]. There are multiple scenarios that could occur when the DNA replicating and/or 

repair apparatus encounters unrepaired DNA damage. Small lesions are frequently bypassed 

by DNA polymerases [2]. Larger DNA adducts are more likely to stall DNA replication [3], 

induce the SOS-response in bacteria, and increase the expression of the Y- family DNA 

polymerases in eukaryotic cells [4–6]. These specialized DNA polymerases have active sites 

that can encompass bulky lesions [7], allowing DNA synthesis to proceed.

The accuracy of DNA repair is governed by the ability of repair complexes to recognize 

distortions in DNA resulting from the presence of altered nucleoside bases and sugar 

residues. The pioneering work in the laboratory of Phil Hanawalt, along with that of others, 

established pathways for nucleotide excision repair, global excision repair [8] and 

transcription coupled repair [9], and consequences of deficiencies in these processes. The 

fact that biallelic mutations that inactivate many DNA repair enzymes are lethal 

substantiates the importance of DNA repair mechanisms [10]. Minor changes in the 

structure of these proteins result in decreased fidelity of DNA repair processes.

The accuracy of DNA replication also depends on both initial conformational recognition of 

correct base-pairs by the polymerase active site and subsequent proofreading steps [11–13]. 

The work of Sam Wilson established alterations in the structure of DNA polymerase β at the 

template-binding site as it encounters complementary or non-complementary nucleotides 

[14].

Until recently, DNA repair pathways and polymerases were not considered as primary 

targets for cancer therapy. There were no reports of mutations in DNA polymerase genes in 

the extensive databases compiled by analyzing DNA from human tumors [15]. Reanalysis of 

the same database unexpectedly provided extensive documentation that the major replicating 

DNA polymerases, Pol-δ and –ε were mutated in several human cancers [16]. Moreover, 

human colon cancers that have mutations in the Pol-δ or Pol-ε exonuclease domain have 

exceptionally high mutation frequencies throughout their genomes [17–18]. Patients with 

brain tumors that carry inherited biallelic mismatch repair mutations and develop somatic 

mutations in replicative DNA polymerases have the highest mutation frequencies reported, 

(>250/Mb) [19]. Similarly, only a limited number of mutations were reported in the multiple 

DNA repair pathways. However, recent reports indicate that 10% of metastatic prostate 

cancers contain inherited mutations in DNA repair genes [20]. From these studies we 
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conclude that DNA repair and DNA replication proteins are attractive targets for design of 

inhibitors of proliferation in human cancers.

This article presents our perspective on the association of spontaneous mutations with the 

initiation and progression of human cancers. It stems from collaborations that have been 

ongoing for more than 40 years on the pathways by which damaged DNA results in 

mutations in normal and malignant cells, including constructing mathematical models that 

probe the mechanism and the consequences of mutation for carcinogenesis, tumor evolution, 

and therapy. The mutator hypothesis [21] states that tumors are genetically unstable 

compared to normal tissue, and that this plays a critical role in carcinogenesis. The 

hypothesis of a mutator phenotype in human cancer is increasingly supported by the power 

of DNA sequencing to unveil the thousands and perhaps millions of changes in the 

nucleotide sequence of DNA present in the genomes of many cancer cells. [22].

In this commentary, we will focus on mutational diversity. We note that DNA mutations 

(single-base substitutions) are not the only clinically relevant source of phenotypic variation 

in human cancers. Chromosomal rearrangements, gene amplification, and stable epigenetic 

changes can also cause long-term phenotypic variation. Furthermore, short-term plasticity in 

gene expression can cause transient phenotypic variation within stable epigenetic or genetic 

states [23]. These latter phenomena are clearly important and can rapidly cause resistance to 

targeted therapy in a majority of cells within a tumor. The studies carried out in cultured 

cells and small animals are frequently of short duration and involve fewer cells compared to 

clinical cancers, and thus may preferentially score for the rapid onset of resistance that is 

often reversible. Resistance to therapy in humans resulting from DNA alteration is 

permanent, is observed late in the growth of tumors, and is likely to represent the emergence 

of pre-existing subclonal mutations [24].

Experimental Support for the Mutator Phenotype Hypothesis

Mechanistic studies of DNA replication, damage, and repair

Originally, the mutator hypothesis was framed around errors made by DNA polymerases 

during DNA replication [21]. However, with growing knowledge of DNA replication and 

repair, it became apparent that there are hundreds of genes involved in these processes, 

alterations of which could also result in enhanced mutagenesis [25]. We envisioned a 

cascade of mutation accumulation in cancer cells manifested by increasing heterogeneity 

with random mutations accumulating in DNA replication and repair proteins. It was 

postulated that amongst the earliest molecular events that initiated transformation of normal 

cells into premalignant cells was damage to critical genes required for maintaining genetic 

stability. The initial focus was on replicative DNA polymerases (Pol-α, -δ, and -ε) [13]; 

these enzymes are responsible for the accurate copying of some 6 billion nucleotides during 

each division cycle. Single amino acid substitutions in their catalytic sites result in increased 

errors in nucleotide incorporation. Mutations that reduce the accuracy of nucleotide selection 

or of exonucleolytic hydrolysis of mis-incorporated nucleotides without diminishing rates of 

polymerization could result in increased single-base substitutions throughout the genome. 

Some of these polymerase-induced mutations could occur in additional genes required to 
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maintain genetic stability. A cascade of mutations would ensue, resulting in progressive 

accumulation of mutations in human tumors (Figure 1).

In humans, the earliest mutations characterizing the transformation of normal cells into 

malignant cells occur prior to diagnosis and must be extrapolated from DNA obtained from 

clinical samples. Even with tumors in animals we lack adequate technologies to detect and 

analyze the earliest changes. The 50,000 lesions produced per cell per day as a result of 

spontaneous and/or endogenous chemical reactions [1] are not localized to specific genes but 

instead are distributed stochastically. Important sources of DNA damage include the 

chemical instability of the DNA helix by depurination [1, 26–27], deamination of cytidine to 

thymidine [28], and by cellular reactive molecules (eg, oxygen and nitrogen reactive species) 

[29]. Damage by environmental agents frequently involves similar chemical alterations, and 

in order to be a significant cause of human cancer must contribute a comparable number of 

lesions. If unrepaired these DNA altered up bases could increase the frequency of 

incorporation of non-complementary nucleotides during DNA replication.

Ordered models of carcinogenesis and tumor progression

The concept that malignant cells contained tens of thousands of mutations and that these 

mutations were major contributors to geographical diversity within a tumor and to 

therapeutic resistance was not widely accepted; there was scant evidence. Moreover, 

chemotherapy by a single agent, 5-fluorouracil, was found to be effective against human 

colon cancer [30]. The most prevalent concept was one in which tumors acquired critical 

mutations responsible for proliferation and survival in a specific order [31], successively 

empowering cancer cells with the ability to overcome micro-environmental challenges such 

as decreased nutrition, decreased oxygen supply, etc. Sequential evolutionary bottlenecks 

with “clonal sweeps” involving proliferation of specific mutations were postulated, and it 

was further claimed that these sweeps would “purify”, or reduce, the genetic diversity within 

the tumor [32]. These concepts were particularly attractive, in that they suggested that 

therapies directed against a limited number of targets could eradicate cancers, a hope that 

still flourishes within the pharmaceutical and biotechnology industries.

Evidence for the mutator hypothesis from The Cancer Genome Atlas

Ironically, the most compelling evidence supporting the mutator phenotype was the 

extensive catalog of single-base substitutions delineated by The Cancer Genome Atlas 

(TCGA) [15]. It was proposed that by performing whole exome DNA sequencing one could 

identify a small set of “driver” mutations that were unique to different tumor types. Instead, 

there ensued a progressively increasing number of mutated genes in each examined cancer. 

The number of verified mutations in gene-coding sequences ranges from 500 in acute 

myeloid leukemia to more than 100,000 in single melanomas of the skin [33–37]. Moreover, 

the most commonly mutated sites are not present in all types of cancer nor are they present 

in 100% of malignant cells within a tumor. Conventional NGS only detects mutations that 

are present in the majority of cells within a sample, and only those present at allele 

frequencies of greater than 1–5% are considered to be non-artifactual [37]. Mutations 

present at lower frequencies would be frequently missed by routine NGS.
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A few mutations may be necessary to avoid the detrimental consequences of environmental 

changes such as variations in climate, food supply, and threats from predators that have 

occurred throughout species evolution. Evidence indicates that there are approximately 40 

mutations in families between each generation [38]. Somatic cell mutagenesis is more 

prevalent; most are neutral or detrimental, but a few are advantageous and facilitate 

adaptation to environmental changes such as variations in the supply of nutrients and 

oxygen, as well as the threat of immune surveillance for variant cells. It is estimated that 

only one or two mutations occur each time a normal cell divides.

Theoretical Analysis of the Mutator Hypothesis and Implications for Tumor 

Evolution

Formulation using focused quantitative modeling

While it is feasible to measure the mutation burden in tumors, theoretical analysis of the 

mechanism of mutation is hampered by the lack of knowledge of mutation rates and tumor 

evolutionary histories in addition to mere mutation accumulation. Key parameters such as 

number of cell generations are invariably unknown. Furthermore, a variety of model 

structures or topologies are possible and different models may fit the same data. In order to 

investigate the truth or falsity of the mutator hypothesis, we employed focused and 

parsimonious models designed specifically to address this question, utilizing a minimum of 

variable parameters, and a minimum number of untestable assumptions. Systematic 

sensitivity analyses were conducted not only over parameter values, but also over types of 

models (i.e. different fundamental assumptions), and only conclusions that were robust to all 

these sensitivity analyses were reported. We call this approach “focused quantitative 

modeling” (FQM) [ 39].

Negative clonal selection and lethal mutagenesis

Three theoretical objections raised legitimate doubt about the mutator hypothesis when it 

was initially proposed. The first is that cell clones exhibiting a mutator phenotype would 

become extinct due to accumulation of mutations that reduced cellular fitness, “negative 

clonal selection” [40]. A cell would lose fitness if a mutation occurred in certain critical 

“reduced fitness” (RF) loci. RF loci could either be dominant (i.e., heterozygous mutation 

reduces fitness) or recessive (i.e., only biallelic mutation reduces fitness). Moreover, the 

model considered a worst-case scenario in which cells with a single RF mutation became 

extinct, when in fact such cells often have compensatory mechanisms, including defects in 

apoptotic processes. Thus, the model would overestimate the impact of negative clonal 

selection in the presence of a mutator phenotype. Key parameters in the model were the 

baseline mutation rate, the fold increase in mutation rate due to a mutator mutation, and the 

number of dominant and recessive RF loci (measured in template nucleotides). Key 

conclusions included: recessive RF loci are not important because biallelic random RF 

mutations are infrequent, and “negative clonal selection” only inhibits growth by several-

fold, except under extreme circumstances. These small effects might be overshadowed by 

more rapid acquisition of oncogenic mutations and this hypothesis was later confirmed (vide 

infra).
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A key prediction of this work was that there was a mutation threshold beyond which 

additional mutations would result in a net inhibition of growth. An upper limit to mutation 

tolerance has been established by a series of elegant experiments measuring the DNA 

sequence of singularly budded yeast [41–42] with mutations that inactivate multiple repair 

pathways. The upper limit of single-base substitutions is similar to that exhibited by neural 

tumors from patients with biallelic mutations in mismatch repair and acquired mutations in 

replicative DNA polymerases [19]. Ongoing are experiments to increase the mutation 

frequency past this error limit using nucleoside analogues that form non-canonical base-

pairings at high frequency, a treatment strategy termed “lethal mutagenesis” [43–45]. The 

success of this strategy may depend on a pre-existing mutator phenotype in the cancer cell, 

providing selectivity compared to normal cells.

Epidemiologic evidence and models of carcinogenesis

Models of epidemiologic data have shown that cancer incidence increased as the 2nd–12th 

power of age, most commonly the 6th power, and this was most commonly assumed to 

represent the number of mutations that were required for cellular transformation [46–49]. 

The subsequent papers of Hanahan and Weinberg involving transfection of cells with 

oncogenes, associated each oncogenic mutation with a fundamental essential characteristic 

of the malignant phenotype [50–51], and the six oncogenic mutations associated with 

essential phenotypes in [50] were considered to correspond to the six mutations derived 

from the epidemiologic analysis. Six independent oncogenic mutations at a wild type 

mutation rate of 10−9 per base per cell division is clearly not possible in the absence of 

selection, given the total number of cells in the human body, forming the basis of an 

argument that a mutator mutation is “necessary” for multistage carcinogenesis [52]. 

Conversely, it is possible to formulate a model in which each successive oncogenic mutation 

confers a fitness advantage without tumor initiation. These events would fit the 

epidemiologic data without postulating a mutator mutation, suggesting that a mutator 

mutation might not be necessary to explain the cancer incidence curves, and therefore 

comprising a second objection to the mutator hypothesis [53].

Efficiency of carcinogenesis

Comparisons of carcinogenesis models with cancer incidence data implicitly assume that the 

rate of forming founder cells is equal to that of cancer incidence, an assumption which may 

be questionable since many incipient cancers do not survive to be clinically detectable. 

Accordingly, instead of trying to determine whether mutator mutations were necessary to fit 

epidemiologic data, we asked what pathways for malignant transformation would be most 

efficient. We reasoned that all possible pathways to a cancer cell may in fact be in play, with 

or without mutator mutations, with varying degrees of selection. However, those 

evolutionary pathways that create transformed cells more efficiently would be more likely to 

be reflected in observed clinical cancers. Efficiency was defined as the average expected 

number of founder cells the evolutionary pathway would develop in the amount of time (in 

cell generations) generally associated with carcinogenesis. Of interest for the mutator 

hypothesis was the relative efficiency in generating malignant cells of an evolutionary 

pathway with a mutator mutation (occurring at any time during carcinogenesis) compared to 

the efficiency of the analogous pathway without a mutator mutation [54]. A ratio of > 1 
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would indicate mutator pathways were favored, whereas a ratio of < 1 would indicate the 

reverse.

In this framework, it was clear that a third objection to the mutator hypothesis needed to be 

considered. If multistage carcinogenesis occurs in a given number of stages, the mutator 

hypothesis adds an additional step, requiring a mutator mutation. Mutations are rare events, 

and the number of bases in the genome potentially resulting in a mutator phenotype is 

unknown. Even with no selection for cells with incomplete complements of oncogenes (the 

“constant fitness” case), would the low probability and rate of this additional step 

(acquisition of the mutator mutation) outweigh the advantage of more rapid acquisition of 

required oncogenic mutations?

A radically different model of carcinogenesis

In investigating these questions, we constructed a model [54] that was radically different 

from the accepted multi-stage carcinogenesis model with a fixed sequence of acquisition of 

mutations [31 ]. In our model, any oncogenic mutation as well as the mutator mutation could 

occur at any time during carcinogenesis. All carcinogenic pathways were “in play”, 

substantially increasing the potential complexity and diversity of cancer, with significant 

implications for tumor evolution and therapy. Furthermore, a particular malignant phenotype 

might be obtained from any of a number of alternative oncogenic mutations. For example, 

there might be twelve alternative mutations any one of which might result in an invasive 

phenotype. A tumor cell would need to have undergone mutations in at least one of the set of 

oncogenic genes that specify each critical phenotype. This effectively implied that 

convergent evolution would occur within tumors. We subsequently made this prediction 

explicit [39], and it was confirmed in a study of renal cell cancer in which convergent 

evolution was observed within single lesions where neighboring cells harbored different 

mutations conferring the same phenotype [55]. Given the competition between neighboring 

cells to acquire a full complement of oncogenic mutations inherent in our model, it is also 

not unreasonable to expect that in many instances more than one founder cell would be 

formed at approximately the same time. Currently, tumor evolution is thought of as a single 

branching evolutionary tree with a single trunk that might be targeted by therapy. We now 

predict the eventual discovery of small evolutionary forests with multiple trees and therefore 

multiple trunks, a prediction which is less clear in models which seek to impose a fixed 

order on the oncogenic process.

Robust predictions and experimental support

We first investigated the simple “constant fitness” case where partial complements of 

oncogenic mutations did not result in any increase in fitness. We then created more complex 

models encompassing several variations of selection during carcinogenesis, including a case 

with negative clonal selection, to investigate the second and first objections mentioned 

above, respectively [56]. Below we present the conclusions and predictions robust to all 

these different scenarios. A separate group using a different mathematical approach 

independently verified these calculations [57]. Key parameters in the models included the 

number of oncogenic mutations needed for full transformation, the number of oncogenic 

loci- (in bases) mutation of which could result in the oncogenic phenotype(s), the number of 
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loci (in bases)- mutation of which could result in a mutator mutation, the number of cell 

generations until tumor initiation, the wild type mutation rate per base per cell generation, 

and the fold increase in the mutation rate conferred by a mutator mutation. Representative 

results for the constant fitness case are shown in Figure 2.

The most robust result is that mutator pathways are favored by factors ranging from 

thousands to larger than billions. The extraordinary degree to which mutator pathways are 

favored by this analysis eliminates uncertainty in the major question despite uncertainty in 

parameter values. For example, we believe the assumption of 100–1000 base loci, mutation 

of which may result in mutator mutations, was reasonable given the number of known DNA 

replication and repair genes that affect mutation rates in yeast [25, 41–42]. However, if we 

were wrong and only one base in the entire genome could result in a mutator mutation, the 

major conclusion of this analysis would not change. This illustrates the advantage of FQM 

and calculations of rate ratios compared to attempts to parameterize models with many 

uncertainties in absolute rates.

Mutator pathways are invariably favored if 4 or more oncogenic mutations are required for 

cellular transformation. If 3 oncogenic mutations are required, the result is sensitive to the 

parameters of the models. If 1 or 2 oncogenic mutations are required, non-mutator pathways 

are favored. This makes sense intuitively; it may be counterproductive to first incur the delay 

of acquiring a mutator mutation in order to speed up the acquisition of only 1 or 2 oncogenic 

mutations. Retinoblastoma is a childhood tumor in which epidemiologic analysis has 

indicated that only two “hits” are required for cellular transformation [58]. Our model 

predicts a lower mutational burden for retinoblastoma, and this has been confirmed 

experimentally [59]. A recent paper attempts to determine the number of rate-limiting 

oncogenic mutations in solid tumors by epidemiologic comparisons of related variants of 

tumors with known differences in their mutation rates (colorectal cancer with and without 

mismatch repair deficiency, lung cancer in smokers and non-smokers), concluding colorectal 

and lung cancer have only three rate-limiting oncogenic mutational steps [60]. However, the 

analysis assumes a constant mutation rate throughout carcinogenesis, and would not be valid 

if the mutation rate were allowed to vary during carcinogenesis, as in our models. 

‘Biological analysis of required phenotypes for transformation suggests a larger number of 

mutations may be required [50, 51].

The models with positive selection of cells with a partial complement of oncogenic 

mutations show that mutator mutations still increase carcinogenic efficiency. Conversely, 

selection of these cells increases the efficiency of carcinogenesis as well, and is a very 

reasonable proposal especially for mutations that increase proliferation rates and/or decrease 

death rates. Thus, we consider that both enhanced mutation and selection of partial 

complements of oncogenic mutations are likely to be essential features of carcinogenesis.

The model with negative clonal selection in the presence of acquisition of oncogenic 

mutations [56] produced additional insights, in that it was possible to estimate bounds for an 

optimal mutation rate in carcinogenesis, depending on the parameter values. According to 

the parameter values considered, the optimal mutation rate could be as low as 2 × 10−10 if 

10% of genes were dominant in RF genes and only 2 oncogenic mutations were required for 
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transformation, a somewhat extreme case. In most cases the optimum was higher than the 

wild type mutation rate, ranging as high as 3.6 × 10−6 per base compared to 1 × 10−9 for 

wild type somatic cells. If the wild type mutation rate is assumed to be optimized for species 

evolution, we may consider that the optimal mutation rate for tumor evolution might be up to 

several orders of magnitude higher than that for species evolution, perhaps due to the fact 

that tumor cells are not constrained by normal homeostatic interactions.

Another prediction was that mutator mutations were more “beneficial” if they occurred 

earlier in carcinogenesis, increasing the opportunity to accelerate oncogenic mutations. 

Interestingly, this currently untested prediction would not be verifiable without very deep 

sequencing of early and late pre-malignant lesions. The models predict that the most 

efficient pathway would involve an initial mutator mutation in only a small minority of the 

cells. The incremental mutation burden may thus be invisible in a bulk sample. During 

carcinogenesis, daughter cells derived from the mutator clone would progressively be 

enriched in the bulk sample, and the mutator mutation would become detectable in the bulk 

only late in carcinogenesis. This would create the illusion that the mutator mutation occurred 

late, and is one of many examples of the customary bulk measurements at low depth 

potentially being misleading. The conclusion that mutator mutations are likely to be favored 

is also consistent with the high mutation burden observed in the TCGA project and 

elsewhere.

In summary, theoretical analysis of a variety of cases using focused quantitative modeling is 

in accord with the mutator phenotype hypothesis and clarified three objections. Cancer 

evolutionary pathways containing mutator mutations are very heavily favored as long as 4 or 

more oncogenic mutations are required for cellular transformation, and this finding is robust 

across multiple variations of the model. The mutator mutations are predicted to occur early 

in carcinogenesis. The model featured a highly flexible order of acquisition of oncogenic 

mutation and mutator mutations in contrast to prevailing ideas of a fixed order of these 

events. The model correctly predicted the observed high burden of mutations in cancers, the 

high incidence of mutator mutations in various genes responsible for genome maintenance, 

the lack of predominance of any gene (with the exceptions of APC and p53) in mutational 

spectra of cancers, the presence of convergent evolution within tumors, and the lower 

mutational burden of retinoblastoma, which requires less than 4 oncogenic mutations.

Neutral evolution, the “Big Bang” model, and clonal sweeps

Another aspect of the theoretical analysis relates to the pattern of evolution after the tumor is 

initiated by a founder cell(s). Our implicit assumption [54] was that once a tumor had a full 

complement of oncogenic mutations, it was fit and under minimal selective pressure as it 

could easily outcompete normal tissue. This suggested that other loci would evolve neutrally 

by random genetic drift. A comprehensive study examining 349 individual intestinal glands 

in 15 colorectal cancer patients modeled the patterns of geographic localization of mutations 

by the following approaches- whole exome sequencing, targeted deep sequencing to 600X, 

copy number variations, and variations in methylation patterns, and geographic localization 

of amplification of HER2 by fluorescence in situ hybridization [61]. The results supported 

their “Big Bang” model—similar in spirit to ours—in that there was uniform heterogeneity 
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everywhere, even within individual glands that might have been expected to “fix” more 

uniform genotypes according to the notion of clonal sweeps. Under neutral evolution, 

successive branches of the evolutionary tree acquire increasingly minor subclonal mutations. 

Increasing depth allows one to see forward in time from the clonal mutations which were 

present in the founder cells to increasingly rare subclonal mutations. No evidence of “clonal 

sweeps” was detected, although a depth of 600 represents only 600 cells in an entire tumor, 

perhaps not sufficient to see evidence thereof.

We believe it may be hard to characterize clonal sweeps in multicentric human tumors. First, 

clonal sweeps may be partial, resulting in incomplete expansion or diminution of a 

genotype. Secondly, subclonal sweeps may occur which are below the level of detection. 

Thirdly, if most loci are neutral, such sweeps, contrary to dogma, will not be enriching for 

most markers. If a subclone of n cells within a larger tumor of N cells grows to dominate the 

tumor, the marker that increased its fitness will indeed be purified. However, in growing 

from n to N cells, the subclone will undergo replication and DNA damage, and in the 

majority of neutral loci, regenerate a degree of diversity similar to the original. Evidence 

increasingly indicates that the majority of genes in the cancer genome evolve neutrally, 

despite the importance of the small minority that are positively or negatively selected [62–

66].

Deep Sequencing and Diversity

In the scenario in which evolution of an established tumor is neutral at most loci, with little 

in the way of “purifying selection”, we expect the diversity seen at low sequencing depth to 

be only the tip of the iceberg of genetic diversity. As the depth of DNA sequencing 

increases, rarer and rarer subclonal mutations will be detected.

Meaningful detection of extremely rare mutations requires very high accuracy to avoid false 

positives. This is true whether the sequencing is done on a bulk specimen or one cell at a 

time. We have pioneered a technique called Duplex Sequencing [24] in which the 

complementarity of sense and antisense strands is exploited to achieve unprecedented 

accuracy on the order of less than one error per 108 nucleotides sequenced. Mutations are 

called only if they are present on both strands of the same molecule, in opposite positions 

and are complementary. This allows one to correctly score mutations that are seen only once 

in the sequencing results (“singlets”). Our mathematical models of neutral evolution suggest 

that as much as 80% of potentially detectable mutations are lost when requiring that a 

mutation be seen multiple times (RA Beckman, unpublished). The background mutation 

frequency is less than or equal to 10−8, 10,000 to 100,000 less than routine next generation 

DNA sequencing, and thus offers the opportunity to accurately measure mutations at 

specified sites in single cells. The power of Duplex Sequencing is illustrated in Figure 3.

Clinical Consequences

Dynamic precision medicine

The remarkable genetic diversity of cancer provides a reservoir of possible resistance 

mechanisms and it is important to note that so-called “passenger” mutations, of little 
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importance to the cancer’s initial growth, may become critical variants when the cancer is 

confronted with the challenge of therapy [39].

Current precision medicine matches patients to therapies based on static consensus patterns. 

A sample, sometimes current but often from diagnosis, is analyzed in bulk, and the patient is 

treated with a therapy matching the sample’s consensus molecular characteristics. It is not 

surprising, given the subclonal heterogeneity and evolutionary dynamics of cancer, that even 

the most spectacular responses to targeted therapy have often been short-lived. Moreover, if 

the therapy is able to stabilize tumor growth or shrink the tumor, it is maintained “as long as 

the patient is benefiting”. The same process is repeated when tumor growth resumes or 

relapse occurs.

We have developed an alternative approach, which we term dynamic precision medicine [67, 

68]. This approach explicitly considers subclonal heterogeneity and evolutionary dynamics, 

and adapts therapy very frequently (as often as every 45 days) based on an evolutionary 

model. Frequent adaptation creates a jagged evolutionary landscape in which it is much 

harder to evolve resistance than the smooth evolutionary landscape corresponding to 

continuous unchanging therapy “as long as the patient is benefiting” [69]. Dynamic 

precision medicine also plans ahead, considering the prevention of resistance as a major 

priority equal to or greater than tumor size reduction. Further, it also indicates therapy based 

on the risk of states which are not directly observable.

The approach has been evaluated in simulations of up to 3 million virtual patients, where 

each virtual patient represented a different clinical presentation of relative abundance of 

sensitive and resistant subclones to available therapies, growth rates of the subclones, 

genetic/epigenetic evolution rates between phenotypic states of sensitivity or resistance, and 

levels of sensitivity and resistance. The range of these parameters was determined from an 

extensive review of preclinical literature and clinical experience, and the parameter space 

was meant to be a comprehensive representation across oncology. Thus, the input dataset 

was extremely large and was designed to maximize the generality of the result.

The original simulation [67] examined a system with two non-cross resistant therapies 

available, and phenotypic states corresponding to sensitive states, states resistant to either 

one of the therapies, and states simultaneously resistant to both therapies. Virtual patients 

could receive one of three alternatives: therapy 1, therapy 2, or a simultaneous combination 

at reduced dose (we note that simultaneous combination therapy frequently requires dose 

reduction), and the therapy choice was adjustable every 45 days. Each virtual patient was 

treated by 6 different strategies in parallel in a randomized in-silico study. A strategy was 

defined not as a specific therapy sequence, but rather an algorithm for determining 

individualized treatment sequences based on patient data, including a complete parameter set 

for the four phenotypic categories at diagnosis and updates on subclonal prevalence every 45 

days. Strategy 0 was the current personalized medicine strategy. All the other strategies used 

a mathematical model of evolution every 45 days to determine the therapy choice, which 

either minimized the expected total tumor burden or minimized the probability of forming a 

doubly resistant cell.

Beckman and Loeb Page 11

DNA Repair (Amst). Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The results (Figure 4) showed on average a doubling of survival and an increase in the cure 

rate from less than 1% to 17–20%. The survival curves for dynamic precision medicine, with 

long- term survivors, were more similar to immunotherapy survival curves. Indeed, the 

immune system is inherently adaptive and may present a multi-pronged attack against 

multiple subclones. The benefit was driven by 1 million of 3 million virtual patients who 

showed highly significant benefit. The other 2 million virtual patients showed equivalent 

results to current personalized medicine. The patients who benefited were broadly 

distributed across input parameter space, indicating very broad benefits across oncology. The 

average results were equivalent between strategies but different strategies performed better 

for different virtual patients. Achieving this kind of result today would require a paradigm 

shift and technological capabilities for frequent sampling at subclonal resolution.

Our simulation was unique among theoretical studies in that we allowed different subclones 

to have different mutation rates, reasoning that they would have different random mutations 

in DNA replication or repair enzymes. Indeed, we found that hypermutator subclones were 

particularly dangerous because of their ability to more rapidly evolve independent mutations 

providing resistance to multiple non-cross resistant therapies.

Complex therapy sequences interleaving combinations and high dose monotherapy;

Recent authors have stressed the importance of combination therapy to address intra-tumoral 

heterogeneity [70]. This idea has been extensively tested in oncology, having initial success 

in pediatric leukemias in the 1960s [71] and lymphomas in the 1970s [72]. HIV infection 

provides an example of successful combination therapy for a disease that evolves quickly but 

is less genetically complex than cancer, a disease of eukaryotic cells [73]. However, 

additional progress in other cancers using this idea has been mixed, largely because it is not 

possible to give simultaneous combinations of adequate complexity at meaningful doses. 

Due to robustness and redundancy within single genetic states, 3 or 4 agents may be required 

just to exterminate a single genetic state. With multiple genetic states with different 

phenotypic properties, effective simultaneous combinations may involve 10 or more agents 

given at effective doses, which is not feasible. Our simulations, however, indicate that highly 

complex regimens may be administered as 45-day pulses of single agents at full dose 

interleaved with combination pulses at lower dose. The sequences are highly individualized 

and too complex to be derived by intuitive reasoning [67, 68, 74]. We conclude that 

therapeutic regimens must be of sufficient complexity to counteract intra-tumoral 

heterogeneity, and simultaneous combinations may be an important component of such 

regimens.

Diversity as a therapeutic endpoint

Other pioneers have preceded us in proposing evolutionary strategies for therapy of cancer. 

Gatenby [75] has proposed an adaptive approach to cancer therapy based largely on the 

notion of pitting cancer subclones against each other. The approach aims to promote 

diversity and in particular, relies on sensitive cells to hold the growth of resistant cells in 

check by competition for a limited ecologic niche, thus advocating therapeutic doses that do 

not fully eradicate sensitive cells. In stark contrast, we believe that competition between 

subclones is far less important than cooperation between them [76], and we would seek to 
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limit diversity rather than encouraging it. Competition is restricted to a minority of larger 

lesions visible radiologically, whereas patient survival is limited by countless small 

metastases growing exponentially without competition. Observations that resistance became 

apparent after eliminating the sensitive cells are, in our view, based on the fact that pre-

therapy bulk measurements fail to detect resistant subclones that are already present and 

growing.

Summary and Conclusion

In summary, we must conclude that cancer biology is very complex, due to the extraordinary 

diversity between and within tumors, and to the continued evolution of tumors in response to 

therapy. Acknowledging and embracing this complexity, we have presented experiments and 

mathematical models of carcinogenesis that focus on deficits in DNA repair and alterations 

in DNA synthetic processes as an important contributor to the innumerable mutations that 

occur in most human cancers. Our mathematical models allow mutations to occur in any 

order during carcinogenesis, resulting in greater potential complexity and diversity than 

previous models seeking to impose a fixed order of mutation acquisition. Importantly, our 

mathematical model of therapy includes variable mutation rates of subclones existing within 

a single cancer, leading to much richer dynamics, especially in response to therapy. Finally, 

we include the large number of genes that can potentially affect mutagenesis. Other 

sophisticated mathematical models have also focused on targeting mutation-selection 

networks [77–80]. These models have generally assumed a constant mutation rate for all 

subclones, which we believe to be unrealistic based on the large number of genes that affect 

mutation rates. Further, our simulation shows that hypermutator clones are priority targets 

for therapy, even when present as rare variants (1:100,000). Drugs targeting mutant forms of 

DNA repair and replication proteins may permit specific targeting of hypermutator clones. 

We believe that approaches focused on the diversity and dynamics within cancers will have a 

major impact on patient outcomes.
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Figure 1. Mutational cascade during carcinogenesis as envisioned by the mutator hypothesis
During tumor progression there is a progressive increase in mutations resulting from 

unrepaired DNA damage. Most have no effect on cellular phenotypes (neutral), others 

enhance proliferation (drivers), and others cause increased mutagenesis (mutators). As the 

tumor encounters environmental restrictions such as reduced nutrition, inadequate 

angiogenesis, hypoxia, etc. specific mutations are selected. Circles represent mutations in 

genes that enhance mutagenesis, triangles indicate mutations selected that enhance 

proliferation under adverse conditions, and white rectangles represent passenger mutations 

of unknown functions. Note that many of the tumor cells contain multiple drivers and 

mutators. Also to be noted is that many topographically distinct mutations are maintained 

during tumor proliferation. Adapted from [22].
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Figure 2. Efficiency of carcinogenesis with and without a mutator mutant
Log Prel, the common logarithm of the relative efficiency of carcinogenesis with a mutator 

mutation compared to that without a mutator mutation, versus log α, the common logarithm 

of the fold increase in mutation rate due to a mutator mutation. Parameters in (A) were: 100 

base loci, mutation of which could lead to a mutator phenotype; and an initial mutation rate 

of 10−11 per base per cell generation. Parameters in (B) were: 1000 base loci; and an initial 

rate of 10−9 per base per cell generation; the number of cell generations to cancer is 170 

(brown, light blue, and magenta) or 5000 (purple, yellow and dark blue); the number of 

required oncogenic mutations for transformation is either 2 (lower lines), 6 (middle lines), or 

12 (upper lines). Log Prel > 0 indicates mutator mutations are favored, and by increasing 

powers of 10. Log Prel < 0 means non-mutator pathways are favored, again by increasing 

powers of 10 for more negative numbers. Adapted from [54].
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Figure 3. Duplex Sequencing eliminates artifacts
(A) The active site exons of the ABL1 gene were isolated by double-capture and sequenced 

by conventional NGS on an Illumina Hiseq 2500 (minimum Phred score=50). (B) The same 

DNA sample was subject to Duplex Sequencing, revealing only a single point mutation in 

ABL1 that confers resistance to Imatinib. Adapted from [24].
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Figure 4. Survival in a virtual clinical trial utilizing two non-cross resistant therapies
Approximately 3 million virtual patients were treated with each of these strategies. The x 

axis shows time (weeks) and the y axis shows surviving patient fraction. Strategy 0 (dark 

blue) is the current personalized medicine strategy: treatment with the best drug for the 

observed predominant cell type and switching to the alternative drug on tumor progression 

or relapse. Strategy 1 (green) minimizes total cell numbers at the next timepoint. Strategy 

2.1 (red) minimizes the chance of developing doubly resistant cells at the next timepoint 

unless the patient has detectable disease (109 cells); in that case, total cell number is 

minimized. Strategy 2.2 (light blue) minimizes the chance of developing doubly resistant 

cells at the next timepoint unless the patient has a large disease burden (1011 cells); in that 

case, total cell number is minimized. Strategy 3 minimizes the total cell population unless 

the predicted number of doubly resistant cells at the next timepoint is ≥ 1; then the 

likelihood of formation of doubly resistant cells is minimized. Strategy 4 (olive) predicts the 

time to mortality (1013 cells) and the time to doubly resistant cells, and prioritizes the most 

imminent threat. Adapted from [67].
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