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ABSTRACT
The germline stem cells (GSCs) are critical for gametogenesis throughout the adult life. Stem cell
identity is maintained by local signals from a specialized microenvironment called the niche.
However, it is unclear how systemic signals regulate stem cell activity in response to environmental
cues. In our previous article, we reported that mating stimulates GSC proliferation in female
Drosophila. The mating-induced GSC proliferation is mediated by ovarian ecdysteroids, whose
biosynthesis is positively controlled by Sex peptide signaling. Here, we characterized the post-
eclosion and post-mating expression pattern of the genes encoding the ecdysteroidogenic
enzymes in the ovary. We further investigated the biosynthetic functions of the ovarian ecdysteroid
in GSC maintenance in the mated females. We also briefly discuss the regulation of the
ecdysteroidogenic enzyme-encoding genes and the subsequent ecdysteroid biosynthesis in the
ovary of the adult Drosophila.

KEYWORDS
Drosophila; ecdysone;
Halloween gene; mating;
steroid hormone; sex peptide

Introduction

In many animals, sperm and egg production requires a
robust stem cell system that balances self-renewal with
differentiation.1 Germline stem cells (GSCs) produce
progeny germ cells that differentiate into gametes and
replicate themselves to maintain the generative cell
population. The balance between self-renewal and dif-
ferentiation of GSCs is important because perturba-
tion of this balance causes germ cell depletion,
infertility or tumorigenesis.1,2 GSCs are maintained by
a specialized microenvironment called the niche.3 The
niche provides local signals to maintain stem cell iden-
tity.4 Furthermore, GSC number is also controlled by
systemic signals, including the insect steroid hormone
ecdysteroids,5-11 which are also known as “molting
hormones.” In the larval stage, ecdysteroids are bio-
synthesized from dietary cholesterol through several
catalyzed steps in the specialized endocrine organ
called the prothoracic gland. Recently, molecular stud-
ies have identified several ecdysteroidogenic enzymes
such as Noppera-bo,12-14 Neverland,15-17 Non-molting
glossy/Shroud,18 CYP307A1/Spook,19,20 CYP307A2/

Spookier,19 CYP306A1/Phantom,21,22 CYP302A1/Dis-
embodied,23-25 CYP315A1/Shadow,24 and CYP314A1/
Shade26 (Fig. 1A). Molecular genetics has revealed
that ecdysteroid signaling is indeed active in adult
insects, and is involved in controlling multiple steps
during adult oogenesis, including egg chamber devel-
opment and vitellogenesis,27,28 follicle growth and sur-
vival,9,29 and stem cell niche formation.9 In addition,
certain genes encoding the ecdysteroidogenic enzymes
are required for egg development after stage 8,19,26 egg
production,30 and border cell migration.31

It is well-documented that, for the regulation of molt-
ing and metamorphosis, the biosynthesis and signaling
of ecdysteroids are coordinately modulated in response
to various environmental cues such as nutrition, photo-
period, and temperature.32,33 Therefore, it is possible
that the environmental cues are also reflected in egg pro-
duction processes such as in the control of GSC number.
However, the mechanism by which ecdysteroids regulate
GSCs in response to environmental cues is unclear.

One of the major environmental cues that affect egg
production is the mating stimulus. In the Drosophila

CONTACT Ryusuke Niwa ryusuke-niwa@umin.ac.jp Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki
305-8572, Japan
Extra view to: Ameku T and Niwa R. Mating-induced increase in germline stem cells via the neuroendocrine system in female Drosophila. PLOS Genet 2016; 12:
1006123. doi:10.1371/journal.pgen.1006123.
© 2017 Taylor & Francis

FLY
2017, VOL. 11, NO. 3, 185–193
https://doi.org/10.1080/19336934.2017.1291472

https://crossmark.crossref.org/dialog/?doi=10.1080/19336934.2017.1291472&domain=pdf&date_stamp=2017-08-09
https://doi.org/10.1371/journal.pgen.1006123
https://doi.org/10.1080/19336934.2017.1291472


Figure 1. Transcriptional regulation of ecdysteroidogenic enzyme genes in the ovary. (A) The ecdysteroid biosynthesis pathway. Choles-
terol is converted into 20-hydroxyecdysone (active form of ecdysone) by several ecdysteroidogenic enzymes (Shown in bold). (B) Tem-
poral changes in ecdysteroidogenic enzyme genes in virgin female flies in post-eclosion period (n D 4). Most of the genes showed
higher expression levels at 6 hours or 15–21 hours post-eclosion (nobo, nvd, sro, spo, phm, and shd). (C) Relative changes in ecdysteroi-
dogenic enzyme gene expression in ovary. Ovaries were dissected from age-matched virgin and mated females at 16 hours post-mating.
Some genes showed significant increase in mated female flies compared to virgin female flies (sro, spo, phm, sad, and shd). These
increased expressions after mating were suppressed when female flies mated with SP null male flies (except for spo). Values are pre-
sented as the mean with standard error of the mean in B. For statistical analysis, t-test with Holm’s correction was used for B, Student’s
t-test was used for C. ���P � 0.001, ��P � 0.01, �P � 0.05, NS, non-significant (P > 0.05).
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female, mating induces dramatic changes in reproduc-
tive behavior such as increased egg laying and
decreased mating behavior.34,35 The post-mating
response is triggered by the male’s Sex peptide (SP),
which is present in the seminal fluid and transferred
to the female during copulation.36-38 Because mating
functions as a switch for reproductive activation, the
demand for gametes increases during mating to gener-
ate more offspring. Therefore, it is possible that mat-
ing modulates GSC activity to activate gametogenesis
and increase the supply of eggs. This is indeed the
case, as our previous study has demonstrated that
GSC number increases in response to mating.30 More-
over, we also found that the mating-induced GSC
increase is mediated by ovarian ecdysteroids.30 In con-
trast, the underlying mechanisms that control ovarian
ecdysteroid biosynthesis in virgin and mated females
are still unknown.

In this Extra View, we extend our previous findings
by characterizing the expression pattern of the ecdys-
teroidogenic enzyme-encoding genes in the ovary in
the post-eclosed and post-mated periods. In addition,
we show that ovarian ecdysteroid biosynthesis has a
long-term effect on GSC maintenance in the mated
female flies.

Results and discussion

Expression of ecdysteroidogenic enzyme-encoding
genes in the ovary of virgin females

In our original paper, we have demonstrated that ovar-
ian ecdysteroid biosynthesis is activated by mating
stimuli, and the level of the ovarian ecdysteroid in the
mated females is significantly higher than that in the
virgin females.30 In addition, our data suggest that this
activation, at least in part, results from transcriptional
upregulation of ecdysteroidogenic enzyme-encoding
genes.30 On the other hand, several previous studies
have reported that the ovarian ecdysteroid is detected
in virgin females.39,40 Specifically, Tu et al. describe the
changes in ecdysteroid level in the wild type ovary 0–
48 hours after eclosion without mating. Interestingly, a
peak in the levels of the ovarian ecdysteroid is
observed in virgin female flies approximately 18 hours
after eclosion, which may be required for initiating
oogenesis.40 This observation suggests that the expres-
sion of the genes encoding the ecdysteroidogenic
enzymes fluctuate temporally even in virgin females.
However, this scenario has not yet been tested.

We therefore investigated the transcription pattern
of the ecdysteroidogenic enzyme-encoding genes,
including noppera-bo (nobo), neverland (nvd), shroud
(sro), spook (spo), phantom (phm), disembodied (dib),
shadow (sad), and shade (shd) (Fig. 1A) in virgin
females. The ovaries of the virgin females were dis-
sected at 3-hour intervals within the first 6 to 27 hours
post-eclosion. We observed that the expression levels
of certain genes, namely, nobo, nvd, sro, and phm,
gradually decreased after eclosion, while there was no
significant change in the temporal expression of dib
and sad (Fig. 1B). However, we observed a significant
increase in the spo and shd mRNA abundance at 15–
21 hours post-eclosion (Fig. 1B). Taken together, most
of the genes were highly expressed until 18 hours after
eclosion. We speculate that the expression of the
ecdysteroidogenic enzyme-encoding genes might be a
preparation to achieve the highest level of ovarian
ecdysteroids at 18 hours post-eclosion.40 In contrast,
most of the genes involved in biosynthesis showed
lower expression levels 18–21 hours after eclosion and
later, when the virgin females had lower ecdysteroid
levels in the ovary.40 These results suggest that the
ecdysteroidogenic enzyme-encoding gene expression
is regulated not only in the mated females but also in
the virgin females, implying that unknown tropic
stimuli, other than the mating stimuli, may be
involved in controlling the ovarian ecdysteroid bio-
synthesis in the post-eclosion period. However, it
should be noted that the physiological relevance of the
temporal change in individual ecdysteroidogenic
enzyme-coding genes is unclear so far.

Sex peptide and its receptor up-regulate the
expression of the ecdysteroidogenic enzyme-
encoding genes differently

We have previously found that the mating-induced
ecdysteroid biosynthesis is mediated by the male-
derived SP and its receptor SPR, the components of a
canonical neuronal pathway that induces a post-mat-
ing behavioral switch in females.30,37,41,42 Moreover,
we have described that flies with a loss of SPR function
exhibit significant reduction in nvd and phm expres-
sion.30 To further investigate how SP signaling affects
the expression of the ecdysteroidogenic enzyme-
encoding genes in the ovary, we examined their
expression levels in wild-type female flies that were
mated with the SP null mutant males (the ligand

FLY 187



mutant).41 We found that the female flies that mated
with the control males showed increased expression of
certain ecdysteroidogenic enzyme-encoding genes,
including sro, spo, phm, sad, and shd, compared to
those in the virgin female flies (Fig. 1C). However,
mating with the SP null mutant males did not induce
any increase in transcript levels of most of the genes
except for spo (Fig. 1C). These results suggest that
mating up-regulates the transcription of the ecdyster-
oidogenic enzyme-encoding genes in the ovary via SP
from the male’s seminal fluid. In addition, it is note-
worthy that SP appears to influence the expression of
more ecdysteroidgenic enzyme-encoding genes than
SPR.30 These results imply that SP might affect the
expression of the ecdysteroidogenic enzyme-encoding
genes in the ovary via both the SPR-dependent path-
way and an unknown SPR-independent pathway.

Ovarian ecdysteroid biosynthesis and GSC
maintenance

While our previous study has revealed an indispensable
role of ecdysteroids in GSC proliferation within 24 hours
after mating, other studies have demonstrated that the
ovarian ecdysteroid signaling and its downstream cas-
cade are essential for many aspects of oogenesis,9,27-29,43

particularly GSC maintenance,5-10 over a week and
more after mating. Therefore, we examined the effect of
ecdysteroid biosynthesis on oogenesis, including stem
cell regulation, over a longer period after mating. We
have previously reported that mating increases GSC
number and this increase is maintained after 6 days
from the first mating.30 To confirm the role of the ovar-
ian ecdysteroid in GSC maintenance for over a week,
we dissected ovaries from 2-week-old females at 1 week
after mating (Fig. 2A).

To generate the ovary in which ecdysteroid biosyn-
thesis is impaired, we knocked down nvd, which enco-
des the ecdysteroidogenic enzyme responsible for
catalyzing the first step of the ecdysteroid biosynthesis
pathway,16,17 by transgenic RNA interference (RNAi)
with the c587-GAL4 driver. While the c587-GAL4
driver is known to be active in adult ovarian somatic
cells, including escort cells and follicle cells, but not in
nurse cells, we have previously found that the c587-
GAL4-driven nvd RNAi (c587>nvd RNAi) efficiently
leads to a significant reduction of NVD protein levels
in both follicle and nurse cells for unknown reasons.30

In addition, we have reported that c587>nvd RNAi

leads to reduction in ovarian ecdysteroid levels com-
pared to those in control animals.30

In the experimental flies that underwent the mating
protocol shown in Figure 2A, we found that the
c587>nvd RNAi female flies had significantly less
GSCs (1.90 GSCs on average) compared to that in the
control female flies (2.13 GSCs on average) (Fig. 2D,
left). To eliminate the possibility of developmental
defects in oogenesis caused by this genotype (c587-
GAL4 is already active in somatic cells at the larval
stage),44 we confirmed that the number of GSCs in the
female flies were not affected by the c587>nvd RNAi
condition 1 day after eclosion compared to those in
the control flies (Fig. 2D, right). Second, there were no
differences in GSC number between the c587>nvd
RNAi and control pre-mating flies, which were at 1
week after eclosion (Fig. 2D, right). These results sug-
gest that c587>nvd RNAi does not affect GSC estab-
lishment during either pre-adult oogenesis or pre-
mating ovarian maturation. In other words, our data
strongly support our hypothesis that ovarian ecdyste-
roid biosynthesis in the adult stage is required for
GSC maintenance in the mated females. We also
tested whether ecdysteroid biosynthesis affects the
process of germ cell differentiation in the germarium.
However, we did not observe any changes in the num-
ber of germ cells in the cystoblast, 2-cell cyst, 4-cell
cyst, 8-cell cyst, and 16-cell cyst (Fig. 2B) in the
c587>nvd RNAi female flies (Fig. 2E). In addition, the
number of egg chambers in each stage (Fig. 2C) was
not affected by the downregulation of nvd in the ovary
(Fig. 2F). Taken together, ovarian ecdysteroid biosyn-
thesis controls the number of GSC, but not the num-
ber of differentiating germ cells and stage of the egg
chamber.

We next examined whether the GSC maintenance
phenotype in the c587>nvd RNAi is caused by a
reduction in ovarian ecdysteroid levels. We measured
the ovarian ecdysteroid levels in the c587>nvd RNAi
female flies. We found that knocking down of nvd
resulted in reduced ovarian ecdysteroid levels com-
pared to that in the control female flies (Fig. 2G). To
confirm whether this reduction is caused by a decrease
of NVD enzymatic activity, we performed a transgenic
rescue experiment in the c587>nvd RNAi back-
ground. As expected, the levels of the ovarian ecdyste-
roid were restored upon overexpression of the wild-
type nvd ortholog of the silkworm Bombyx mori (nvd-
Bm[wt]), but not its enzymatically dead form (nvd-Bm
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[H109A]) (Fig. 2G), suggesting that the reduction in
ecdysteroid level is not caused by any off-target effects
of the transgenic RNAi. Consistent with this data, the
GSC phenotype in the c587>nvd RNAi flies was also

rescued by co-expression of the wild-type nvd-Bm, but
not the enzyme-dead form (Fig. 2H). To further inves-
tigate the role of ecdysteroid on the regulation of GSC
maintenance, we performed a feeding rescue

Figure 2. The role of ecdysteroid biosynthesis on the regulation of GSC maintenance. (A) Protocol for all experiments in this figure. One-
week-old females were mated with males and used for the assay 1 week after mating. (B) Drosophila germarium. Germline stem cell
(GSC) resides in a niche, comprising somatic cells called cap cells, terminal filament, and escort stem cells. GSCs are identifiable by their
typical spectrosome morphology and their location (adjacent to the niche cells). GSC produces one self-renewing daughter and one cys-
toblast (CB) that differentiates into a germline cyst. The cystoblast divides four times with incomplete cytokinesis (2 cc: 2-cell cyst, 4 cc:
4-cell cyst, 8cc: 8-cell cyst and 16 cc: 16-cell cyst). (C) Drosophila ovary is composed of 15–20 ovarioles. The continuous developing egg
chamber is divided into 14 stages. (D) Left: Frequencies of germaria containing zero, one, two and three GSCs (left y-axis), and average
number of GSCs per germarium (right y-axis) in mated females. Ovarian neverland (nvd) knockdown in ovarian somatic cells (escort cells
and follicle cells, using c587-GAL4) reduced average GSC number as compared to the control (P D 0.006145). Right: Temporal change in
GSC number in virgin females (1-day-old and 1-week-old) and mated females (2-week-old), (n � 94). (E and F) The average number of
germline cyst (E) and egg chamber in each stage (F) was not changed in ovarian nvd RNAi female flies (c587>nvd RNAi). (G) UAS-nvd-
Bm [wt] and UAS-nvd-Bm [H190A] were used for overexpressing the wild-type form and enzymatic inactive form of Bombyx mori nvd
transgenes, respectively. Ovarian ecdysteroid decreased in c587>nvd RNAi female flies as compared to the control flies (P D 0.0233).
This reduction was restored by overexpressing UAS-nvd-Bm [wt] but not UAS-nvd-Bm [H190A]. (H) GSC phenotype in c587>nvd RNAi ani-
mals was restored by overexpressing UAS-nvd-Bm [wt] but not UAS-nvd-Bm [H190A]. (I) GSC phenotype in c587>nvd RNAi flies was res-
cued by oral administration of 20E or 7dC. Values are presented as the mean with standard error of the mean in G. The numbers of
samples examined are indicated in parentheses in D, E, F, H and I. For statistical analysis, Wilcoxon rank sum test was used for D, E and
F. t-test with Holm’s correction was used for G. Steel-Dwass test was used for H and I. ���P � 0.001, ��P � 0.01, �P � 0.05, NS, non-signif-
icant (P > 0.05).
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experiment using 7-dehydrocholesterol (7dC), the
downstream metabolite generated by NVD. We found
that the c587>nvd RNAi females fed with 7dC did not
show a significant decrease in GSC number than the
control female flies. (Fig. 2I). In addition, the GSC
number in c587>nvd RNAi flies was rescued by the
oral administration of 20-hydroxyecdysone (20E), the
biologically active ecdysteroid. These data suggest that
ovarian ecdysteroid biosynthesis plays an important
role in controlling GSC proliferation and long-term
GSC maintenance in the mated female flies (Fig. 3).

Outlook

In conjunction with our previous study,30 our data
suggest that ecdysteroid biosynthesis in the ovary is
differentially regulated in the different life-stages of
the female adult fly, including the post-eclosion and
pre-mating stage, the post-mating early stage, and the
post-mating late stage (Fig. 3). In every stage, ecdyste-
roid biosynthesis plays essential roles in controlling
oogenesis, especially GSC proliferation and/or mainte-
nance. We have confirmed that ecdysteroid-depen-
dent GSC proliferation in the post-mating stage is
controlled by the SP-SPR signaling pathway, which
stimulates the ovarian ecdysteroid biosynthesis via
regulation of the expression of the ecdysteroidogenic
enzyme-encoding genes. In contrast, the identity of
the genes and signaling pathways that influence the
expression of the enzyme-encoding genes and the

subsequent ecdysteroid biosynthesis in the ovary are
unclear. Moreover, the cause of the fluctuation in
ovarian ecdysteroid biosynthesis during the female
adult lifespan is not yet clear. This is in contrast to the
fluctuation of ecdysteroid titer that is observed during
the embryonic, larval, and pupal development.32,33,45

It should be remembered that studies on the role of
steroid hormone biosynthesis in sexual maturation
and gametogenesis in the postnatal stage of mammals
has received more attention.46 In this sense, further
studies on ovarian ecdysteroid biosynthesis in Dro-
sophila and other insects would be intriguing to com-
prehensively understand the roles of steroid hormone
biosynthesis across the animal phyla in the future.

Materials and methods

The flies were raised on cornmeal-agar-yeast media at
25�C. yw was used as the control strain. SP0 and SPD

(41) were gifts from Nobuaki Tanaka (Hokkaido Uni-
versity, Japan). c587-GAL447,48 was a gift from Hiroko
Sano (Kurume University, Japan). Other strains used
were UAS-nvd-IR, UAS-nvd-Bm [wt], UAS-nvd-Bm
[H190A] (16). Staining of GSCs with the 1B1 anti-
body,49 quantitative reverse transcription-polymerase
chain reaction, and ecdysteroid measurements were
performed as previously described.30
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Figure 3. Model for this study. Ecdysteroid biosynthesis in the ovary is differentially regulated in different adult life stages, including the
post-eclosion and pre-mated stage (upper column), the post-mating early stage, and the post-mating late stage (lower column). In post-
eclosion stage, ecdysteroidogenic enzyme gene expression is regulated by unknown tropic stimuli and may be involved in controlling
the ovarian ecdysteroid biosynthesis to initiate oogenesis. In post-mated early stage, SP stimulates ecdysteroid biosynthesis via upregu-
lation of biosynthesis enzyme gene expression, which control GSC proliferation. Ovarian ecdysteroid biosynthesis is also required for
GSC maintenance in post-mated late stages.
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