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Abstract

Background—Childhood asthma morbidity has been associated with short-term air pollution 

exposure. To date, most investigations have used time-series models, and it is not well understood 

how exposure misclassification arising from unmeasured spatial variation may impact 

epidemiological effect estimates. Here, we develop case-crossover models integrating temporal 

and spatial individual-level exposure information, toward reducing exposure misclassification in 

estimating associations between air pollution and child asthma exacerbations in New York City 

(NYC).

Methods—Air pollution data included: a) highly spatially-resolved intra-urban concentration 

surfaces for ozone and co-pollutants (nitrogen dioxide and fine particulate matter) from the New 

York City Community Air Survey (NYCCAS), and b) daily regulatory monitoring data. Case data 

included citywide hospital records for years 2005–2011 warm-season (June – August) asthma 

hospitalizations (n = 2,353) and Emergency Department (ED) visits (n = 11,719) among children 

aged 5 to 17 years. Case residential locations were geocoded using a multi-step process to 

maximize positional accuracy and precision in near-residence exposure estimates. We used 

conditional logistic regression to model associations between ozone and child asthma 

exacerbations for lag days 0 to 6, adjusting for co-pollutant and temperature exposures. To 

evaluate the effect of increased exposure specificity through spatial air pollution information, we 

sequentially incorporated spatial variation into daily exposure estimates for ozone, temperature, 

and co-pollutants.

Results—Percent excess risk per 10 ppb ozone exposure in spatio-temporal models were 

significant on lag days 1 through 5, ranging from 6.5 (95% CI: 0.2 – 13.1) to 13.0 (6.0 – 20.6) for 

inpatient hospitalizations, and from 2.9 (95% CI: 0.1 – 5.7) to 9.4 (6.3 – 12.7) for ED visits, with 

strongest associations consistently observed on lag day 2. Spatio-temporal excess risk estimates 
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were consistently but not statistically significantly higher than temporal-only estimates on lag days 

0 to 3.

Conclusion—Incorporating case-level spatial exposure variation produced small, non-significant 

increases in excess risk estimates. Our modeling approach enables a refined understanding of 

potential measurement error in temporal-only versus spatio-temporal air pollution exposure 

assessments. As ozone generally varies over much larger spatial scales than that observed within 

NYC, further work is necessary to evaluate potential reductions in exposure misclassification for 

populations spanning wider geographic areas, and for other pollutants.
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BACKGROUND

There is substantial evidence linking short-term variation in ambient air pollution with acute 

asthmatic response in children (Akinbami et al. 2010; Babin et al. 2007; Dong et al. 2011; 

Halonen et al. 2010; Samoli et al. 2011; Sheffield et al. 2015; Silverman and Ito 2010; 

Strickland et al. 2010). Air pollutant concentrations can vary substantially within urban areas 

(Jerrett et al. 2005; Clougherty et al. 2013), and this exposure variation has been associated 

with asthma exacerbation risk (Lemke et al. 2014; Laurent et al. 2007). Further, because 

intraurban variation in ozone is driven by availability of nitrogen oxides and photochemical 

transformation, patterns of ozone exposures can differ substantially from those of other 

pollutants [e.g., nitrogen dioxide (NO2), fine particulate matter (PM2.5) (NYC DOHMH 

2009)], complicating the interpretability of associations between ozone concentrations and 

asthma outcomes. Despite these important challenges – and the tremendous public health 

burden of urban childhood asthma (CDC 2014; Akinbami et al. 2009) – few studies to date 

have been able to account for fine-scale spatio-temporal variation in ozone, temperature and 

co-pollutant exposures in analyses of childhood asthma exacerbation.

Case-crossover designs have been widely applied in epidemiology studies of acute air 

pollution exposures (Carracedo-Martínez et al. 2010), with certain advantages compared to 

time-series analyses. Specifically, because each case serves as their own control, time-

invariant case characteristics (e.g., race, sex) are controlled for by design (Maclure 1991). 

Further, selecting referent (non-case) days immediately before and/or after the case event 

day effectively accounts for seasonal patterns (Bateson and Schwartz 1999, 2001). To date, 

however, a key advantage of case-crossover design for air pollution epidemiology – the 

ability to incorporate case-level spatial exposure variation – has been under-explored 

(Carracedo-Martínez et al. 2010). This analytic advantage may be particularly important for 

reducing exposure misclassification arising from fine-scale spatial variation for short-term 

air pollution epidemiology.

While there is growing interest in methods for integrating temporal and spatial variation in 

air pollution exposure assessment (Özkaynak et al. 2014), there are relatively few examples 

using the case-crossover design. In one example, Delfino et al. (2014) observed significant 

effect modification of the association between daily air pollution levels (i.e., temporal 
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variation) and asthma morbidity across increasing levels of modeled near-residence traffic-

related pollution concentrations (i.e., spatial variation) across Orange County, California. 

Alternatively, approaches utilizing spatio-temporal exposure metrics (e.g., Ross et al. 2013; 

Johnson et al. 2013; Maynard et al. 2007) are well-suited to case-crossover design, but, to 

date, have also been underutilized.

Here we leverage highly spatially-refined air pollution data from the New York City 

Community Air Survey (NYCCAS) (Clougherty et al 2013; Matte et al. 2013) to incorporate 

individual-level spatial exposure variation in a case-crossover analysis of daily ozone 

exposure and childhood asthma exacerbation events in New York City (NYC). We compare 

percent excess risk estimates derived from aspatial vs. spatio-temporal exposure covariates 

to evaluate differences in magnitude and precision.

METHODS

Asthma case data

Emergency Department (ED) visit (outpatient) and hospitalization (inpatient) event data for 

asthma (ICD-9 code: 493) among children aged 5 to 17 years old in NYC from 2005 – 2011 

(June 1 – August 31) were obtained from the New York State Department of Health 

Statewide Planning and Research Cooperative System (SPARCS). Cases were limited to 

warm season months (June – August) to match the period over which the NYCCAS spatial 

ozone assessment occurred, and to capture annual-peak ozone levels resulting from higher 

rates of photochemical transformation (DOHMH 2009a). We excluded case events for 

children younger than 5 years, due to questionable reliability of asthma diagnosis among 

younger children (Potter 2010).

Air pollution data and exposure assignment

We estimated short-term near-residence exposures to ozone and co-pollutants by integrating 

temporally- and spatially-refined data sources. Spatial data consisted of fine-scale 

summertime O3 and co-pollutant (annual average NO2 and PM2.5) concentrations, derived 

from two years of NYCCAS monitoring data (2009 – 2010). NYCCAS is an on-going air 

pollution surveillance initiative of the New York City Department of Health and Mental 

Hygiene (NYC DOHMH), methods for which are detailed elsewhere (Matte et al. 2013; 

Clougherty et al. 2013). Briefly, two-week integrated street-level (10 – 12 feet above the 

ground) samples were collected at 150 monitoring locations across NYC. Land Use 

Regression (LUR) was used to predict fine-scale seasonal-average concentration estimates 

corresponding to 300m grid centroids, enabling fine-scale exposure estimates.

Temporal data included hourly monitoring data from five US Environmental Protection 

Agency Air Quality System (EPA AQS) regulatory monitoring stations in NYC, for the 

years 2005 – 2011 (May – September). Methods for constructing city-wide daily time-series 

are detailed elsewhere (Sheffield et al. 2015). Briefly, missing values were interpolated and 

daily 24-hour average O3 concentration values were computed for each regulatory monitor. 

We considered the spatial distribution of, and data density within, regulatory monitors to 

prevent biasing the citywide time trend. To enable adjustment for potential confounding by 
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co-pollutant exposures, fine particulate matter (PM2.5) and nitrogen dioxide (NO2) daily 

time series were constructed using the average of scaled daily values to account for between-

site differences in variance and mean of regulatory monitoring data, as in Schwartz (2000).

We combined these spatial and temporal air pollution data to estimate spatio-temporal near-

residence exposures. We first applied a multi-step validation and geocoding process, 

methods for which are detailed in Supplemental Materials. Briefly, our approach used three 

address locators – the geographic reference data that translate addresses to latitude and 

longitude point locations – to sequentially geocode addresses, allowing for maximal 

accuracy and match rates. This approach also enabled sensitivity analysis for geocoding-

induced exposure misclassification, wherein we re-fit all models including only the subset of 

subjects whose addresses were geocoded with the highest positional accuracy.

We estimated near-residence seasonal-average pollution exposures from NYCCAS spatial 

data as the mean concentration within a 300 m radial buffer around the geocoded point. To 

generate daily spatio-temporal exposure estimates, we multiplied daily EPA AQS 

concentrations by the ratio of near-residence (i.e., 300m buffer mean) concentration to the 

citywide average of NYCCAS concentrations across populated areas (i.e., census tracts with 

residential population > 20).

Meteorological covariates

Spatial temperature data consisted of a NYCCAS-derived fine-scale spatial temperature 

surface. NYCCAS temperature monitoring data included 15-minute measurements from 

continuous HOBO sensors (Pocasset, MA) deployed at each site throughout all sampling 

periods, averaged by hour and site. For calculating the spatial predictive surface, overnight 

(3 – 5 AM) averages (adjusted for trends at the five NYCCAS reference sites) were used as 

the dependent variable because they presented the most consistent spatial patterns across 

seasons. As such, overnight temperatures may be more indicative of consistent spatial 

differences in ambient temperature, compared to average or maximum temperature (due to 

localized intermittent shading in street canyons, etc.).

Temporal temperature data from the four meteorological stations in the NYC area (JFK 

International Airport, LaGuardia Airport, Central Park, Newark International Airport) was 

retrieved from the National Oceanic and Atmospheric Administration (NOAA) National 

Climatic Data Center (NOAA 2014a). Daily minimum temperature, average temperature 

(Tavg), daily maximum temperature (Tmax), and dew point temperature (TDP) were averaged 

across the four stations, and these values were highly correlated across stations: Tmin vs. 

Tavg rho = 0.93; Tmin vs. Tmax rho = 0.84. Relative humidity (RH) was calculated from Tavg 

and TDP using the standard NOAA equation (NOAA 2014b). To best match the spatial 

temperature surface, we created a daily time-series including 3 – 5 AM hourly average 

temperature from the four NOAA sites (hereafter Tmin). As with spatio-temporal air 

pollution exposure estimates, we adjusted the daily temperature time-series using the spatial 

ratio of near-residence (i.e., 300m buffer mean) Tmin to the citywide average Tmin for each 

case.
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Statistical analysis

We used conditional logistic regression with symmetric bi-directional referent sampling in 

the case-crossover design. Specifically, referent days were defined as the same day of week 

and year, +/− two weeks from the case event day (as in Bateson and Schwartz 1999), such 

that each case had four referent days. The functional form of model covariates was 

determined using Likelihood Ratio Test to compare fit across models of increasing 

complexity [i.e., linear form, natural spline (ns) with defined degrees of freedom (df), or 

penalized spline (ps) with unlimited df], one variable at a time. Temperature covariates were 

modeled using natural splines with 3 degrees of freedom, and co-pollutants were modeled 

using penalized splines.

Building upon previous analysis of this hospitalization and emergency visit data that did not 

include spatial exposure information (Sheffield et al. 2015), we estimated percent excess risk 

per 10 ppb change in estimated ozone exposure for lag days 0 to 6 to capture potential 

delayed effects of ozone beyond the lag period commonly investigated (e.g., Halonen et al. 

2010; Norris et al. 1999; Burnett et al. 1999; Jalaludin et al. 2008). Adjustment covariates 

included: same-day Tmin (ns, df = 3), lagged 6-day average Tmin (ns, df = 3), and 4-day 

average (lag days 0 – 3) of estimated PM2.5 exposures (ps, df = 3). NO2 was included in the 

sensitivity analysis detailed below.

To evaluate how incorporating individual-level (spatial) exposure information changed 

exposure-response relationships, we sequentially fit four models (A – D) moving from 

temporal-only (A) to spatio-temporal exposure covariates (D), as follows:

- Model A: Temporal O3 + Temporal Tmin + Temporal PM2.5

- Model B: Spatio-temporal O3 + Temporal Tmin + Temporal PM2.5

- Model C: Spatio-temporal O3 + Spatio-temporal Tmin + Aspatial PM2.5

- Model D: Spatio-temporal O3 + Spatio-temporal Tmin + Spatio-temporal PM2.5

Temporal therefore refers to the model or specific exposure estimates that include only the 

temporal variation component. Spatio-temporal includes both the temporal component (i.e. 

the estimate for the case day) adjusted spatially per the case residential address.

Analyses were conducted using R statistical package (version 2.14.0; R Development Core 

Team 2013).

Sensitivity analyses

To test the sensitivity of model results to covariate formulation, we re-fit all models with 4 

and 5 df and with 7-day average co-pollutant exposure estimates. In previous analyses 

(Sheffield et al. 2015), we observed no difference in case-crossover model results using the 

same temporal exposure data for temperature covariates at 3–5 df, or by replacing RH with 

dew point. Additionally, we re-fit all models with the subset of cases geocoded using the 

highest positional accuracy address locator (inpatient n = 2,251; outpatient n = 11,121). 

Because NOx is associated with ground-level O3 formation (as nitrogen oxides react with 

ambient ozone, producing localized ozone “scavenging” in very dense urban areas), treating 
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NO2 as a confounder may not be correct in this city-level domain, and as such we chose not 

to include NO2 exposures in our main models, but do explore its effect in sensitivity 

analyses.

All study protocols were reviewed and approved by the Institutional Review Boards of the 

University of Pittsburgh and Mount Sinai School of Medicine.

RESULTS

Our analyses included 2,353 asthma inpatient hospitalizations and 11,719 outpatient ED 

visits (Table 1). Overall, characteristics of in- and outpatient case events were similar. Case 

events were most common in the youngest age range (5–9 years), and among male children. 

Table 2 reports summary statistics for aspatial and spatio-temporal exposure estimates.

Table 2 summarizes distributions for temporal and spatio-temporal exposure distributions, 

across in- and outpatient populations. Table 3 reports correlations among air pollution and 

temperature exposure estimates among in- and outpatient cases, respectively. In both 

populations, temporal and spatio-temporal exposure estimates were highly-correlated (rho = 

0.99). Temporal and spatio-temporal ozone and Tmin exposures were correlated at 0.38 and 

0.36, respectively, in both in- and outpatient populations. Temporal and spatio-temporal 

ozone exposure estimates were more highly correlated with PM2.5 than with Tmin, in both 

case populations. Temporal and spatio-temporal ozone estimates were less correlated with 

NO2 (rho = 0.29 – 0.22 among inpatient cases; 0.27 – 0.19 among outpatient cases).

Spatial patterns of ozone ratios for ED visits and hospitalizations reflect the lower surface 

concentrations in the city core (Manhattan), and higher concentrations in the outer boroughs, 

as shown in Figure 1. As such, applying spatial ratios to daily regulatory concentrations 

resulted in lower spatio-temporal than temporal-only O3 exposure estimates, for 

approximately 90% of cases. Compared to ozone, PM2.5 and NO2 surface concentrations are 

higher in the city core, and more spatially-varying across boroughs.

Figures 2A and 2B report estimated percent excess risk of an event per 10 ppb increase in 

ozone exposure for models A – D, ordered from the fully temporal model (A), to the fully 

spatially-resolved model (D). Overall, trends in association across lag days were similar 

between in- and outpatient cases, with the strongest excess risk observed from one to three 

days following exposure (i.e., lags 1 – 3). For inpatient cases, highest percent excess risks 

were consistently observed on lag day 2, for which the fully spatio-temporal (model D) 

excess risk estimates were higher (+ 2.0%) than temporal (model A) estimates. Excess risk 

estimates did not, however, differ significantly between these models [13.0% (95% CI: 6.0 – 

20.6) vs. 11.0% (95% CI: 3.6 – 18.6), respectively]. For outpatient cases, strongest effects 

were also observed on lag day 2, at slightly lower magnitude and more narrow 95% CIs (due 

to higher statistical power) compared to inpatient cases. The difference in magnitude of 

excess risk estimates between models D and A was small (+ 0.3%) and not statistically 

significant [9.4% (95% CI 6.3 – 12.7) vs. 9.1% (95% CI 5.7 – 12.5), respectively].

When we considered the sequential incorporation of spatial information into each covariate, 

between-model differences were consistent, but not statistically significant. The largest 
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increase in effect estimates occurred after substituting spatio-temporal PM2.5 (model C to 

D). These differences were most pronounced on lag days 0 to 2, with the greatest increase on 

lag 1 of 3.2 and 1.6%excess risks among inpatient and outpatient populations, respectively. 

In contrast, substituting spatio-temporal Tmin (model B to C) produced differences in percent 

excess risk < 0.1. In addition, we observed small (≤ 1 % excess risk) but consistent gains in 

precision between model A and D on lag days 2 and 3.

In sensitivity analyses, all model results were robust to adjustment for NO2 as a co-pollutant 

confounder, to varying the functional form of co-pollutant covariates (i.e., three to five d.f.), 

and were consistent among the subset of cases geocoded using the most accurate geocoding 

method. Models using 7-day co-pollutant averages showed significant effects over shorter 

periods: lag 1 – 3 for inpatient, and lag 1 – 4 for outpatient, compared to 4-day averages in 

main models.

DISCUSSION

We incorporated residential-level spatial exposure contrasts into a case-crossover design, to 

reduce exposure misclassification in estimating short-term effects of ambient ozone on 

asthma exacerbation. We found significant positive associations on lag days 1 to 5, with the 

strongest effects on lag days 1 to 3, on which percent excess risk ranged from 10.2 – 13.0% 

among inpatient populations, and 7.3 – 9.4% among outpatient populations, in fully-adjusted 

spatio-temporal models. Our modeling approach enables a refined understanding of potential 

measurement error in temporal-only versus spatio-temporal air pollution exposure 

assessments.

Our comparison of temporal vs. spatio-temporal models found generally similar percent 

excess risks for short-term ozone exposures, with slightly higher estimates on lag days 1 and 

2 (+ 3.2 and 2.0 for inpatients, and + 1.6 and 0.3 for outpatients). The greatest (albeit small) 

change in effect estimates followed the substitution of spatio-temporal adjustment covariate 

PM2.5 (model D), into the model including spatio-temporal forms of ozone and other 

covariates. One potential explanation is that intra-urban concentration gradients within NYC 

are more spatially-varying for PM2.5 and NO2, compared to O3. Because the ozone gradients 

in dense urban areas is driven by scavenging, NOx and VOC availability, and transformation 

rates, the highest ozone concentrations occur in the outer-most, sparsely-populated areas of 

NYC, and in areas downwind of the metropolitan core. As such, adding spatial information 

on O3 into case-crossover studies may yield greater exposure contrasts across much larger 

and varied, regional-scale domains. Likewise, our results indicate that this approach for 

integrating temporal and spatial exposures in city-level studies may be particularly useful for 

reducing exposure misclassification for pollutants with more spatial variability.

Interestingly, we found that addition of spatial covariates resulted in a larger change in effect 

estimates for inpatient child asthma cases than for ED visits. This difference could be driven 

by underlying population differences, if younger children have more severe asthma and 

spend more time at home, improving precision in the spatio-temporal exposure estimates. 

Alternatively, this population may have greater susceptibility to ozone, given more severe or 

more poorly-controlled disease.
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Comparing our findings with the few studies on spatio-temporal ozone variation in relation 

to asthma exacerbation is challenging, due to differing exposure metrics (e.g., per 10 ppb vs. 

IQR-increase; single-day lags vs. multi-day moving averages), case definitions (e.g., age 

categories, ICD-9 codes), and study area characteristics (e.g., spatial variation in ozone; 

scavenging). In a similar case-crossover study examining summertime all-ages asthma 

hospitalization cases in NYC, Jones et al. (2013) compared daily O3 and residential census 

tract-level O3 variation [predicted by EPA’s Stochastic Human Exposure and Dose 

Simulation (SHEDS) model], and observed a high correlation between temporal and spatio-

temporal exposure estimates, and no difference between hazard ratios (HR) using each 

exposure metric (HR = 1.029 per IQR, 95% CI: 1.01 – 1.05). We sought further spatial 

refinement by using near-residence (300 m buffer) spatio-temporal estimates, and also found 

high correlations with temporal exposure estimates, but did observe small though non-

significant between-model differences. In a separate study utilizing temporal (Poisson) case-

crossover design to evaluate the association between 8-hr max ozone and asthma ED visits 

among children (aged 5 – 17), Strickland et al. (2010) observed elevated relative risk [RR = 

1.08 (1.04–1.12)] during warm season months. Because an IQR for the 3-day moving 

average in ozone, in their Atlanta study area, was reported as 29 ppb, this increased risk of 

8% appears substantially lower than our finding of 7.3% and 9.4% excess risk per 10 ppb on 

lag days 1 and 2, respectively, potentially due to unmeasured spatial exposure variation.

Limitations

Our exposure assignment has multiple limitations. First, near-residence exposure estimates 

do not capture the day-to-day activity patterns of individuals (e.g., travel to school), and we 

cannot know the degree of exposure misclassification induced, or whether it is non-

differential. In our integration of spatial and temporal exposure data, we assumed similar 

spatial variation in air pollution and temperature across study years, while the spatial data 

reflect seasonal (O3) and annual (temperature, NO2 and PM2.5) averages for 2008–2010. 

While spatial temperature data used overnight temperatures to reflect the most robust spatial 

pattern over time, season-specific patterns in maximum daytime temperatures vary and may 

represent different physiologic risk for acute health events, compared to minimum 

temperature. The choice of buffer size for exposure assignment is another potential source of 

error measurement, common in air pollution epidemiology. However, prior work with NO2 

and PM2.5 exposure assessment using NYCCAS data evaluated the effect of buffer size 

(address point, 300 m, and 800 m), and observed that health effects analyses would not be 

sensitive to buffer size within this near-residence range (Ross et al. 2013). Though between-

season differences in NO2 and PM2.5 are substantially less than for ozone (NYC DOHMH 

2009a, 2009b), we were not able to use summer seasonal average co-pollutant data. We were 

unable to account for the potential contribution of pollen to respiratory outcomes due to lack 

of data; limiting our analyses to June – August, however, effectively excluded peak spring 

pollen periods, which occur March – May in NYC (Sheffield et al. 2011). Finally, we were 

unable to account for potential “avoidance behaviors,” wherein people may change their 

behaviors (and resultant exposures) in response to air quality information (e.g., public 

alerts); controlling for these behavioral changes has been shown to increase observed 

strengths of associations (Neidell and Kinney 2010), presumably by reducing exposure 

misclassification.
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Strengths

The case-crossover design inherently controlled for individual-level time-invariant 

confounders (e.g., age, sex), and enabled incorporation of both spatial and temporal 

exposure information. A unique contribution of our study is the inclusion of spatial variation 

in temperature as an adjustment covariate. Our results were robust to a range of sensitivity 

analyses, and demonstrated consistent patterns between in- and outpatient case populations. 

Although our approach for reducing exposure misclassification did not reveal significant 

differences in effect estimates when incorporating spatial information on exposures, we 

developed a useful approach for case-crossover studies to distinguish relative contributions 

of information on spatial and temporal exposure variation.

CONCLUSIONS

Incorporating spatial information on variation in ambient ozone exposures slightly increased 

excess risk estimates in our study. As ozone normally varies over much larger spatial scales 

than that observed in NYC, further work is necessary to evaluate potential reductions in 

exposure misclassification for populations spanning wider geographic areas, and for other 

pollutants.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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EPAAQS US Environmental Protection Agency Air Quality System

ED Emergency Department

LUR land use regression

NO2 nitrogen dioxide

NOAA National Oceanic and Atmospheric Administration

NYC New York City

NYCCAS New York City Community Air Survey

O3 ozone

PM2.5 fine particulate matter

RH relative humidity
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SPARCS New York State Department of Health Statewide Planning and Research 

Cooperative System
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Highlights

1. We examined ozone exposure and child asthma ED visits and 

hospitalizations.

2. We compared temporal-only and spatio-temporal exposure estimates.

3. We observed significant excess risk on lag days 1 through 5, highest risk on 

lag day 2.

4. Spatial exposure variation produced small increases in excess risk estimates.
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Figure 1. 
Spatial ozone ratios for a) Inpatient (n = 2,353; range = 0.69–1.13) and b) Outpatient (n = 

11,719; range = 0.57–1.16).

Shmoola et al. Page 14

Environ Res. Author manuscript; available in PMC 2017 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
A. Percent excess risk of inpatient hospitalization for asthma, per 10 ppb increase in ozone 

exposure: comparison of models A – D.
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B. Percent excess risk of outpatient ED visit for asthma, per 10 ppb increase in ozone 

exposure: comparison of models A – D.
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Table 1

Population characteristics. Note that age groupings represent biologically-relevant categories for asthma 

etiology (Sheffield et al. 2015).

Inpatient (n = 2,353) Outpatient (n = 11,719)

N % N %

Age categories

 5 – 9 yrs. 1246 52.3 5809 49.6

 10 – 13 yrs. 645 27.4 3253 27.7

 14 – 17 yrs. 462 19.6 2657 22.7

Sex

 Female 1037 44.1 5108 43.6

 Male 1316 55.9 6611 56.4

Borough of residence

 Bronx 845 35.9 4241 36.2

 Brooklyn 764 32.5 3189 27.2

 Manhattan 281 11.9 2152 18.4

 Queens 405 17.4 1911 16.3

 Staten Island 54 2.3 226 1.9

Month of asthma event

 June 989 42.0 5004 42.7

 July 568 24.1 3178 27.1

 August 796 33.8 3537 30.2

Year of asthma event

 2005 423 18.0 2132 18.2

 2006 395 16.8 1863 15.9

 2007 328 13.9 1634 13.9

 2008 264 11.2 1516 12.9

 2009 432 18.4 1756 15.0

 2010 260 11.1 1428 12.2

 2011 251 10.1 1390 11.9
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