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We present the Mesoscopic Membrane with Proteins (MesM-P) model, an extension of a previ-
ously developed elastic membrane model for mesoscale simulations of lipid membranes. MesM-P
employs a discrete mesoscopic quasi-particle approach to model protein-facilitated shape and topology
changes of the lipid membrane on length and time scales inaccessible to all-atom and quasimolecular
coarse-grained molecular dynamics simulations. We investigate the ability of MesM-P to model the
behavior of large lipid vesicles as a function of bound protein density. We find four distinct mech-
anisms for protein aggregation on the surface of the membrane, depending on membrane stiffness
and protein spontaneous curvature. We also establish a connection between MesM-P and the results
of higher resolution coarse-grained molecular dynamics simulations. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4993514]

I. INTRODUCTION

The inherent multiscale nature of many biological pro-
cesses, e.g., those that take place on the cell membrane,
presents great challenges for computational modeling tech-
niques. Highly coarse-grained (CG) modeling provides a way
of overcoming the challenge of simulating systems that man-
ifest at large time and length scales. A highly CG model can
either be derived from finer resolution atomistic simulations (a
bottom-up approach)1–6 or by reproducing a set of experimen-
tal observations (top-down approach).7,8 In principle, the two
approaches can be combined to produce a set of models that
span the range from near-atomistic to mesoscopic resolutions,
consistent with both all-atom simulations and experimental
results. While the finer-grained models can provide detailed
information on atomistic and molecular interactions under-
lying the phenomenon of interest, the coarser (mesoscopic)
description of the system will provide at least a qualitative
understanding of the system on large time and length scales.
In such a hierarchical setup, the information from all-atom
simulations and experiments can be passed back and forth
from one scale to another to ensure consistency and to enable
the understanding of the underlying processes from multiple
perspectives.

A problem that is particularly suited for such a multi-scale
approach is the remodeling of lipid membranes under the influ-
ence of proteins. Protein-driven membrane remodeling plays
important roles in many biological processes such as intra-
cellular trafficking, endocytosis, cell division, etc.9–13 While
occurring on relatively larger length scales (typically 100s of
nm or larger), membrane remodeling is initiated and largely
influenced by much smaller interactions at the protein-lipid
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interface. One of the best-known membrane remodeling pro-
teins are a family of Bin/Amphiphysin/Rvs (BAR) domain
proteins that have an elongated, crescent-shaped structure.
They bind to the membrane by a combination of electro-
static interactions between lipids and BAR domain, and in
most cases by a shallow insertion of the protein’s amphi-
pathic helices.14,15 Despite the similarities in their structure,
there is a large diversity among BAR domains based on
length, charge, and the intrinsic curvature of the BAR domain.
They can roughly be classified as three groups: BAR/N-
BAR, F-BAR, and I-BAR domains. BAR/N-BAR and F-BAR
domains induce positive membrane curvature, while I-BAR
domains induce negative membrane curvature.14,15 However,
the mechanism by which they generate complex membra-
nous structures has only recently begun to emerge. A key
understanding of their mode of action is that the way they
operate depends on physical parameters, such as protein sur-
face density, membrane tension, or membrane shape;16 there-
fore, the same BAR protein may have a sensing role in
one process and a curvature-generating or scission role in
others.17

In light of recent advances in our understanding how mem-
brane proteins assemble and influence membrane behavior,
developing large-scale simulation models is key. While many
CG models that represent lipids and proteins at molecular
resolution1–3,5,6,18 have been developed, a number of models
that operate beyond molecular resolution have also been pre-
sented in the recent years. For example, Ramakrishnan et al.
model the membrane as a dynamically triangulated surface
that can couple with an in-plane nematic field that represents
anisotropic inclusions, such as BAR proteins.19–21 In another
work, Noguchi et al. model a solvent-free membrane using
a collection of spin particles, embedded by banana-shaped
rods representing BAR proteins.22–25 The elastic membrane
version 2 (EM2) model,26–29 developed in our group prior to
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the aforementioned papers, is largely based on Smooth Particle
Applied Mechanics (SPAM).30–33 SPAM is a closely related
method to Smooth Particle Hydrodynamics (SPH).30,34,35

However, it avoids instability and consistency issues related
to SPH and can be more naturally linked to molecular dynam-
ics.26 EM2 provides a computationally tractable approach
for solving continuum equations in a grid-free way. The
membrane and the surrounding solvent are partitioned into
a collection of particles that each represent the properties of
the volume they occupy, such as position, mass, and veloc-
ity. However, they are also characterized by protein density
and lipid composition that can be exchanged with nearby
particles, thus giving a more realistic model of a fluctu-
ating membrane and its underlying molecular composition.
EM2 has been shown to model large-scale membrane topo-
logical changes,28,29,36 lipid domain formation,26 as well as
the coupling between them through a free-energy formal-
ism. Moreover, the inclusion of explicit mesoscopic solvent
provides the correct hydrodynamic description and makes
it possible to study protein density variations around the
membrane.

Here, we present a new development of the EM2-like
approach, which we also extend and re-implement in a
computationally efficient and highly scalable manner in the
framework of the widely used LAMMPS open source molec-
ular dynamics (MD) package.37 This new model that we
call Mesoscopic Membrane with Proteins (MesM-P) enables
us to study protein assembly and its effect on membrane
shape on experimental length and time scales and under
a wide variety of conditions, such as different membrane
composition, membrane stiffness, and protein concentration.
In particular, modeling membranes at intermediate protein
concentrations was a key limitation of the previous model;
only simulations with maximal protein coverage were pos-
sible. Thus, in this work we study the assembly of proteins
on large lipid vesicles at low protein concentrations, sim-
ilarly to previous CG MD simulations of N-BAR proteins
on the membrane.38,39 Unlike the molecular-based CG mod-
els, with the MesM-P model, we do not need to undergo
complex CG parameterization each time when changing the
protein or studying different membrane compositions and
so we can explore a much wider range of experimental
systems.

The remainder of this paper is organized as follows: Sec. II
gives the detailed description of the model and the simula-
tion setup, and it emphasizes the novelties of the MesM-P
framework. Section III presents results from the MesM-P sim-
ulations at low protein concentration and compares them to our
previously published highly CG simulations of N-BAR pro-
teins on the membrane. Section IV provides further discussion
and conclusions.

II. METHODS

The MesM-P model is based on the EM2 model26–29 that
successfully represented topological remodeling of the mem-
brane at maximal protein densities.29 Here, we give a detailed
description of the MesM-P model, emphasizing the changes
and additions we have made.

A. MesM-P model

In the MesM-P model, the membrane and the surround-
ing solvent are represented by a collection of quasi-particles
that, in a sense, constitute a movable grid that evolves with the
motion of the individual quasi-particles. Each quasi-particle
carries information on the physical properties of the medium
with a corresponding set of variables. The quasi-particles
associated with the membrane, besides mass, position, and
velocity, are described with a normal and an in-plane vec-
tor, as well as with the protein and lipid composition fields.
The normal vector, Ω̂, gives the local orientation of the mem-
brane that is used to calculate the instantaneous local curvature
in a corresponding area of the membrane (Fig. 1). The in-
plane vector, n̂T, signifies the average orientation of proteins
along which the spontaneous curvature is applied (Fig. 1).
The protein and lipid composition fields (denoted as φB and
φM , respectively) represent the local protein density and the
local charged lipid density, respectively. They take values
from �1 to 1, with �1 corresponding to the largest possi-
ble density and 1 to the absence of proteins in the case of
φB or minimally charged membrane in the case of φM . The
quasi-particles that represent the solvent are only character-
ized with mass, position, velocity, and the protein composition
field.

1. Hamiltonian

The dynamics of the system are determined by the
following Hamiltonian:

H
(
rN , {Ω̂}

NM , {n̂T
}
NM , {φM }

NM , {φB}
N
)

= Hexcl + Hbend + Hcoupl + Hφ + Holig + Hp−bias. (1)

Here, N is the total number of membrane and solvent quasi-
particles (N = NM + NS), while rN are their positions.

Below we present and describe in detail each term of
Eq. (1).

2. Excluded volume interactions

The excluded volume potential, Hexcl, includes a 2-16
Lennard-Jones term that acts between membrane quasi-
particles and a soft repulsion term for solvent-solvent and

FIG. 1. Schematic representation of the MesM-P model, where each quasi-
particle is characterized by its position, normal and in-plane vectors (Ω̂ and
n̂T, respectively), protein density (φB), and lipid composition (φM ).
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membrane-solvent interactions that is based on a Lucy func-
tion,30

Hexcl = HLJ216 + HLucy. (2)

The former has the following form and sets the size of the
quasi-particles that constitute the membrane:

HLJ216 = 4εLJ216

NM∑
i=1

NM∑
j=i+1

uLJ216, (3)

uLJ216 =

(
σLJ216

rij

)16

−

(
σLJ216

rij

)2

, (4)

where rij =
���ri − rj

��� is the distance between quasi-particles i

and j. The 1/r16 term makes membrane quasi-particles incom-
pressible, while the 1/r2 term, in principle, allows for for-
mation of holes and defects on the membrane that makes it
possible to model topology breaking, as seen in the transforma-
tion of membrane vesicles into tubular networks.36 TheσLJ 216

parameter defines the quasi-particle size and must be equal to
discretization length σ in Hbend (see below).

The functional form and strength of the membrane-
membrane excluded volume interaction must be chosen so
that it does not affect the rigidity of the membrane, which
should instead be controlled by the Hbend term (see below).
In the previous formulation of the model, the strength of
the HLJ 216 term was modulated by a high protein concen-
tration. While coupling high protein concentration with this
term does not pose an issue at a maximal (and thus uniform)
protein concentration, at low protein densities on the mem-
brane, such dependence has undesirable consequences: (1)
the excluded volume interactions themselves stiffen the mem-
brane in the areas of higher protein concentrations, and (2)
it influences the influx of proteins to the membrane. Thus,
here we use membrane-membrane excluded volume inter-
actions that are independent of protein concentration, with
membrane stiffness and protein coverage controlled by other
terms in the Hamiltonian. The parameter εLJ 216 was chosen to
be 6.5 kJ/mol for this study, which gives reasonable stability
to the membrane while allowing for ruptures and topological
transformations.

The HLucy terms allow for overlap between two quasi-
particles, allowing free movement of solvent in the media,

HLucy = ε
(1,2)
Lucy

NM∑
i=1

NS∑
j=1

WL

(
rij

)
+ ε(2,2)

Lucy

NS∑
i=1

NS∑
j=i+1

WL

(
rij

)
, (5)

WL

(
rij

)
=




(
1−

rij

σLucy

)3 (
1 + 3

rij

σLucy

)
, if rij < σLucy

0, if rij ≥ σLucy

. (6)

Based on the previous studies, we have chosen ε(1,2)
Lucy

= 5 kJ/mol, ε(2,2)
Lucy = 1 kJ/mol, and σLucy = 9.0 nm, where

the latter defines the discretization length scale for composi-
tion fields.26 In terms of the former, it is more energetically
unfavorable for a solvent particle to overlap with a membrane
than with other solvent particles.

An important consequence of using the two potentials
above is that the membrane in the MesM-P model has a well-
defined area and is practically incompressible beyond it, while

the soft Lucy potential allows for a change in volume for a
closed membrane system.

3. Bending potential

Bending energy, Hbend , is a discretized version of a con-
tinuum elastic description of the membrane that accounts for
symmetry breaking due to the presence of membrane inclu-
sions.40 The detailed derivation of Hbend expression can be
found elsewhere.27 We also briefly discuss this derivation in
the Appendix. Similar to EM2, in the MesM-P model Hbend

has the following form:

Hbend =

NM∑
i=1

NM∑
j=i+1

∆uij, (7)

∆uij = 4εbendϕij

(
σ

rij

)2

, (8)

ϕij =

(
Ω̂i · r̂ij −

γrij

2

)2
+

(
Ω̂j · r̂ij +

γrij

2

)2
, (9)

γ = C0fij
1
2

((
r̂ij · n̂

T
i

)2
+

(
r̂ij · n̂

T
j

)2
)

, (10)

fij =
1
2

(
fφb

(
φB,i

)
+ fφb

(
φB,j

))
, (11)

fφB

(
φB,i

)
=

1
2

(
1 − φB,i

)
, (12)

where r̂ij is a unit vector in the direction of rij and σ is the dis-
cretization length scale. It can be shown that Ω̂i · r̂ij � δθij/2;
Ω̂j · r̂ij � −δθij/2; δθij/rij = 1/Rij = Cij, where δθij is the
angle between Ω̂i and Ω̂j (see Fig. 1), and 1/Rij = Cij is
the local curvature. The term C0 is the spontaneous curva-
ture at maximal protein concentration and optimal alignment.
Changing its value essentially changes the type of protein
modeled. We will refer to C0 as “spontaneous curvature coef-
ficient” for simplicity. The formula given in Eq. (10) for γ
expresses the fact that the effective spontaneous curvature
increases with increasing density of proteins and as proteins
align in the same direction in nearby cells represented by
quasi-particles i and j. It is worth noting that the function fφB

here is different from the one used in the previous work,29

where fφB was set to zero if protein local density was smaller
than 50% of the maximal value. By contrast, here the sponta-
neous curvature gradually increases in the full range of protein
densities.41

The discretization length σ was chosen here to equal
6.8 nm, in line with previous work.28 However,σ can be varied
to model the membrane at different resolutions, if necessary.

The overall strength of the bending energy is given by
εbend that can be expressed in terms of the protein density
dependent bending modulus, kc, as

εbend =
2kc

(
φB,i, φB,j

)
ρANc,iσ2

, (13)

where ρA = Nm/A is the initial area density of the membrane,
and Nc ,i is the average number of quasi-particles found within
the interaction cutoff near the quasi-particle i. The bending
modulus, kc, depends on protein density in a linear manner,



044101-4 Davtyan, Simunovic, and Voth J. Chem. Phys. 147, 044101 (2017)

consistent with the previous work,

kc

(
φB,i, φB,j

)
= kc,0

(
1 + k0

1
2

(
max

(
−φB,i, 0

)
+ max

(
−φB,j, 0

)))
. (14)

In the current work, we choose k0 = 1, implying that the mem-
brane gradually becomes stiffer when protein concentration
exceeds 50% of the maximal density. However, both positive
and negative values of k0 can be considered, while the bend-
ing modulus can vary in the full range of the protein density,
if needed.

For future discussion, we also define the protein density
independent parameter ε0

bend as

ε0
bend =

2kc,0

ρANc,iσ2
,

which we further refer to as the “strength of the bending
energy,” for simplicity. In the current work, we have exten-
sively studied the effect of ε0

bend and C0 on protein aggregation
and associated membrane remodeling (see Results and Dis-
cussion and Table I), as they represent the two most important
parameters that define the physical properties of the membrane
and proteins, respectively, in this case.

4. Coupling potentials

The Hcoupl term represents various coupling mechanisms
between the membrane and the proteins, namely, intrinsic cur-
vature coupling (IC), and composition coupling (CC). In case
of IC, the coupling is achieved through the curvature of the
membrane. In other words, the proteins have a higher affinity
to the areas of the membrane that have their preferred curva-
ture. In the case of CC, the coupling is through charged lipid
distribution on the membrane. This corresponds to the fact
that many membrane-binding proteins have positively charged
residues on their binding surfaces, and, thus, the distribution
of negatively charged lipids will play a role in the positioning
of the proteins on the membrane. Below we give the explicit
expressions for IC and CC coupling potentials.

The IC potential has the following form:

HIC = Λ
H
M

NM∑
i=1

φB,i − Λ
H
k

NM∑
i=1

NM∑
j=i+1

(
φB,i

Nc,i
+
φB,j

Nc,j

)
ϕij

1

r2
ij

, (15)

TABLE I. MesM-P model parameters.

εLJ 216 6.5 kJ/mol σLJ 216 6.8 nm

ε
(1,2)
Lucy 5 kJ/mol σLucy 9.0 nm

ε
(2,2)
Lucy 1 kJ/mol

εE 12
a 5 kJ/mol σE 12 5.0 nm

ε0
bend 5�100 kJ/mol σ 6.8 nm

C0 0.07�0.40 nm�1 k0 1.0

ΛH
M 0.251 kJ/mol ΛH

k 5 nm2 kJ/mol

εξ ,B 1 nm2 kJ/mol εwell ,B 0.001 kJ/mol

εξ ,M 1 nm2 kJ/mol εwell ,M 0.001 kJ/mol

εO 5�15 kJ/mol ν 1 or 2

aBy E12 we denote the 1/r12 excluded volume potential between membrane and solvent
quasiparticles that acts at shorter distance.

where Nc ,i is the instantaneous count of quasi-particles that
are within the cutoff distance from particle i, while ϕij is the
same as defined in Eq. (9).

The IC potential consists of two terms. The first term
is responsible for a uniform attraction of proteins to the
membrane, which is usually due to the electrostatic interac-
tions. The second term explicitly couples the protein com-
position to the membrane curvature. The relative strength
of those two terms, controlled by parameters ΛH

M and ΛH
k ,

will decide if protein density is uniform over the surface of
the membrane or if proteins aggregate in the areas where
the curvature matches the intrinsic (spontaneous) curvature
of the proteins. In line with previous work, we have chosen
ΛH

M = 0.251 nm2 kJ/mol and ΛH
k = 5 nm2 kJ/mol that favor

the aggregation of proteins at corresponding curvature on the
membrane.29

The CC potential has the following form:

HCC = −εCC

NM∑
i=1

ζB
(
φB,i

)
ζM

(
φM,i

)
, (16)

ζB
(
φB,i

)
=

1
2

(
φB,i − 1

)
− ζ0, (17)

ζM
(
φM,i

)
=

1
2

(
φM,i − 1

)
− ζ0, (18)

where εCC defines the strength of the coupling and ζ0 is a non-
negative constant that describes the uniform attraction of the
proteins to the membrane. For ζ0 = 0, there will be no influx of
proteins to an uncharged membrane. However, for any value
of ζ0, the CC potential will favor higher protein concentration
in the areas of the membrane with higher density of negatively
charged lipids, while this difference will relatively decrease
with increasing ζ0.

In the current work, we only use the IC coupling. While
either IC or CC coupling can be used, it is also theoretically
possible to use them at the same time and this will be explored
in the future.

5. Composition potentials

A discretized form of the Landau model42 is employed
to represent the energy (which is in fact a free energy) as
a function of the spatial variation of membrane and protein
composition fields. The corresponding expressions for protein
density and lipid composition are

HφB =

N∑
i=1

[
εξ ,B

(
∇φB,i

)2 + εwell,B

(
φ6

B,i + φ2
B,i

)]
, (19)

HφM =

NM∑
i=1


εξ ,M

(
∇φM,i

)2 + εwell,M

φ10
M,i

10


, (20)

where the first terms, that have square of φ gradients, drive the
system to uniform composition (i.e., φ = 0), while the second
terms represent the tendency of the system to mix or phase sep-
arate. In this paper, we are not interested in spontaneous phase
separation neither in protein or lipid compositions; single well
potentials centered at φ = 0 were chosen in accordance to
the previous work.29 However, if the phase separation behav-
ior in the effective binary system is of interest, double well
potentials can be used instead. The overall strengths of HφB
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potentials must be chosen so that the spatial distributions of
protein and charged lipid densities are consistent with the char-
acteristic behavior of the system at hand in the absence of
coupling and other composition-dependent terms. The rela-
tive values of εξ and εwell can be chosen based on quantitative
experimental observables, such as the width of the interface
between phases.29 Here, we used values of 1 nm2 kJ/mol and
0.001 kJ/mol for εξ and εwell, respectively. We have also tested
values within two orders of magnitude difference from those
and did not find any significant effect on our findings. This is
expected for the study carried out here because in the absence
of a CC potential, the membrane composition does not play any
role and because the dynamics of protein density is dominated
by IC and bending terms.

The gradients in Eqs. (19) and (20), as was shown in
Ref. 26, can be calculated as

(∇φi) =
N∑

j=1
j,i

m
ρij

(
φj − φi

)
∇iW

(���ri − rj
���
)
, (21)

where N is either N or NM , m is the mass of the quasi-
particle, ρij = 0.5(ρi + ρj) is the average density with ρi = ρ(ri)
=

∑
j

mW
(���ri − rj

���
)
, and W (r) is a smooth weight function, for

which the Lucy function30 is used,

W(r) =




A

(
1 −

r
σLucy

)3 (
1 + 3

r
σLucy

)
, if r ≤ σLucy

0, if r ≥ σLucy,
(22)

where σLucy is a fundamental length scale and A is a normal-
ization constant.

6. Oligomerization potential

The oligomerization energy favors the alignment of pro-
teins on the surface of the membrane at their high densities. It
has the following form:

HO = εO

NM∑
i=1

NM∑
j=i+1

fO
(
φB,i, φB,j

) 1
ν

(
nT

i · n
T
j

)ν
, (23)

where f O(φB ,i, φB ,j) is defined as

fO
(
φB,i, φB,j

)
=




−1, if φB,i <−0.8 and φB,j <−0.8

0, otherwise
, (24)

and ν is an integer that takes values of 1 and 2, where ν = 1
favors the alignment of the in-plane vectors in the same direc-
tion, while for ν = 2, both parallel and anti-parallel alignments
are likely.

In the current study, we have tried a number of combi-
nations of εO and ν values, as indicated in Table I (results
not shown). However, we did not find this term to have a
statistically significant effect on our results, which is due
to the fact that the protein field (represented by the orien-
tations of in-plane vectors) was already well aligned due
to the anisotropic form of bending and curvature coupling
potentials. In the future, however, this potential can be
modified to favor different alignments of the proteins, for
example, to distinguish between end-to-end and side-by-side
oligomerization.

7. Biasing protein density on the membrane

Hp�bias is a new potential that is added here to control (or
bias) the total protein coverage on the surface of the membrane
relative to the maximal value. The coverage is defined as

η =
1

NM

NM∑
i=1

(
1 − φB,i

)
2

(25)

and takes the values from 0 to 1. It equals 1 only if φB ,i

= 1 for all quasi-particles associated with the membrane. The
potential itself has the following simple form:

Hp−bias = εp−bias(η − η0)2, (26)

where εp�bias is the strength of the bias, and η0 is the target
value (that also takes values from 0 to 1).

8. System evolution in time

The MesM-P system is propagated in time by calculat-
ing forces and torques using the Hamiltonian described above
and by varying the composition fields according to Landau-
Ginzburg (LG) dynamic equation43 that is given in Lagrangian
form26 as

dφi

dt
= −Γ

δH
δφi

+ vi · ∇φi − α. (27)

Here, Γ is a positive phenomenological coefficient that must
be chosen to have the maximum value that results in sta-
ble dynamics. vi is the velocity of the quasi-particle. Finally,
α is a so-called “composition-stat” that constrains the total
composition of the system to be constant. The LG dynam-
ics themselves do not conserve the composition; thus, α term
has to be added, which evolves according to the following
equation:

dα
dt
=

Q
N

N∑
i=1

φi, (28)

where Q is a constant that defines the relaxation rate of total
composition to the average value of zero.

In the current work, the Nose-Hoover integration
scheme (similar to the one implemented in LAMMPS under
ASPHERE package) is used to propagate the translational
and rotational degrees of freedom associated with the quasi-
particles based on calculated forces and torques.

It is worth noting that composition field dynamics given
by Eq. (28) is deterministic, and in the absence of spatial
movement, it will drive the system to the free-energy min-
ima. However, a noise term can be explicitly added to Eq. (28)
that will introduce thermal fluctuations in accordance to the
fluctuation-dissipation theorem. At the given quasi-particle
resolution, we expect those fluctuations to be negligible rela-
tive to the indirect thermal driving from the translational and
rotational degrees of freedom. We will explore the possibility
of including explicit thermal fluctuations in the LG dynamics
in the future.

B. New features of MesM-P

The MesM-P addresses the biggest limitation of the EM2
model by allowing for simulations of membrane remodel-
ing under a wider range of protein densities, which is very
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important for modeling various experimentally relevant situ-
ations. With the EM2 model, only two situations could have
been modeled, namely, when the spontaneous curvature of the
proteins was suited for binding onto the membrane, giving
close to 100% coverage, and when the spontaneous curvature
was too high and the coverage was zero.36 Besides adding an
explicit potential that can control the amount of protein on the
membrane, which corresponds to an experimental setup where
limited number of proteins are injected near the membrane and
their binding is directly observed, a number of changes have
been applied to MesM-P potentials (that are described in Sub-
section II A) that allow simulating the dynamic binding of
proteins at low concentrations, relevant for endocytosis and
many other membrane-remodeling phenomena.

Several other additions have been made that naturally fol-
lowed from either the new implementation of the model or its
integration into LAMMPS.37 Below we list some of them:

1. It is now possible to have more than one type of mem-
brane and solvent quasi-particles. One example of how
this can be used is to have two types of solvent, where
one can carry protein density, while the other one cannot.
This capability was used here to model a typical exper-
imental situation when proteins are present only on one
side of the membrane.

2. The MD integration for MesM-P was implemented as
a collection of separate modules that can be individu-
ally controlled and turned on or off, allowing for the use
of different integration schemes depending on the prob-
lem. Moreover, this can be combined with other standard
LAMMPS modules. One important implication of this is
the ability to now perform constant NPT (constant num-
ber of particles, pressure, temperature) simulation of flat
membranes using the combination of MesM-P specific
modules and the pressure controls native to LAMMPS.

3. The MesM-P potential was implemented as LAMMPS
pair style (which does not necessarily mean that all inter-
actions are pairwise), in a highly scalable and modular
way. Besides accelerating the computations orders of
magnitude, this makes it possible to individually switch
on and off any of the terms and combine the MesM-P
potential with other standard or custom potentials.

4. Along with the MesM-P force field and integration rou-
tines, a number of supporting compute modules were
implemented that allow an on-the-fly computation and
output of different observables. Examples of such observ-
ables are the per-term energy, the total protein density on
the membrane, the per-particle composition gradient, or
normal and in-plane vectors.

C. Simulation setup

The simulations reported below were performed with
LAMMPS open source MD package,37 using custom imple-
mentations of MesM-P interaction potentials, correspond-
ing atom vector style, integration routines, and various
supporting compute procedures. The MesM-P source code
is available for download as open source software from
https://github.com/uchicago-voth/MesM-P/.

The vesicle simulations were run in a cubic box with
dimensions of 360 nm, under constant volume and constant

temperature of 308 K. The system contained 95 016 quasi-
particles in total, 5882 of which belonged to the membrane.
For stability purposes, the temperature control was performed
separately for the translational degrees of freedom of sol-
vent quasi-particles, the translational degrees of freedom of
membrane quasi-particles, and the rotational degrees of free-
dom associated with the membrane, using the Nose-Hoover
thermostat.

As was described above, two different types of solvents
were used in the vesicle simulations. The solvent that was
enclosed inside the membrane could not carry protein density,
while the solvent outside the membrane could. An additional
1/r12 excluded volume potential that acted only at very short
distances was added between the membrane and the solvent
quasi-particles to prevent the solvent from crossing the mem-
brane. Also, in the initial configuration, the protein density on
the membrane was zero (φB ,i = 1 for all i = 1 . . . NM ), while
the lipid composition on the membrane and the protein density
in the outer solvent were randomly assigned values from �1 to
1. Starting from a spherical membrane configuration, with a
diameter of 300 nm, each simulation was performed for half a
million time steps. All simulation parameters are summarized
in Table I.

III. RESULTS AND DISCUSSION

We have performed MesM-P simulations of a mem-
brane vesicle, starting from a membrane devoid of proteins
on its surface. We varied membrane stiffness and the spon-
taneous curvature coefficient associated with the proteins to
simulate different lipid compositions and essentially different
membrane-curving proteins. Two sets of results will be dis-
cussed; for the first set, the protein spontaneous curvature was
always positive, while for the second set, it was negative. The
motivation behind each case will be discussed below.

A. Case of positive spontaneous curvature

Many proteins, including N-BAR and F-BAR, are known
to exert positive membrane curvature along their principle axis.

FIG. 2. Dependence of the total protein density on the surface of the vesicle
at equilibrium on membrane bending energy strength (ε0

bend ) and spontaneous
curvature coefficient (C0).

https://github.com/uchicago-voth/MesM-P/
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Here, we model such a simple case of positive curvature induc-
tion. We varied the stiffness of the membrane by taking values
of the strength of the bending energy ε0

bend from 5 kJ/mol to
100 kJ/mol. Simultaneously, we also varied the spontaneous
curvature coefficient C0 from 0.07 nm�1 to 0.4 nm�1.

For all combinations of the parameter values, we found
that the local protein density was well correlated with the local
curvature of the membrane, with areas of the membrane with
higher positive curvature typically having higher protein con-
centration. Also, the distribution of proteins on the membrane
surface dynamically changed over the course of the simula-
tions as the shape of the vesicle was changing. Additionally, we
found that, in the absence of any control over the protein cov-
erage on the membrane (i.e., when Hp�bias was off), the total
protein density on the surface after the equilibrium was estab-
lished varied in the approximate range from 5% to 25% for
different values of the parameters. As this range corresponds to
the protein densities that are often studied experimentally,44–46

we decided not to use any explicit control over the mem-
brane coverage for this case. Thus, the total density of the
proteins bound to the membrane varied according to the shape
changes that the membrane was undergoing. Another approach
where the total protein density is controlled will be discussed
in Subsection III B.

According to our model, the total bound protein density
inversely correlates with ε0

bend and C0, as shown in Fig. 2.
Under the same simulated conditions, the stiffer membranes
will be more difficult to bend and therefore attract less of the
curvature-sensing proteins. At the same time, highly curving
proteins are less likely to find the optimal or near-optimal bind-
ing spot. In both cases, this will result in a decrease in binding
of the proteins to the membrane. However, it is worth not-
ing that the situation described here, where there is no initial
protein density on the membrane, is different from in vitro
experiments that are done at some quasi-static protein density.
In this setup, when the membrane has initial protein density

FIG. 3. The evolution of membrane vesicle and local protein density (reddish shading) on its surface for the cases of (a) ε0
bend = 5 kJ/mol and C0 = 0.20 nm�1,

(b) ε0
bend = 10 kJ/mol and C0 = 0.07 nm�1, (c) ε0

bend = 25 kJ/mol and C0 = 0.40 nm�1, and (d) ε0
bend = 40 kJ/mol and C0 = 0.20 nm�1. For (a) the

semi-regular protein mesh forms from initially disconnected oligomers that span the whole surface of the vesicle. At this relatively low membrane stiffness, the
mesh transforms the membrane both locally and globally. At the local scale, the aggregation of the protein results in positive curvature and budding, while the
areas of the membrane that are enclosed in the mesh bend inwards, giving rise to negative curvature. The total protein density for the final state is about 15%. For
(b), the interconnected protein mesh forms from the very start and coarsens over time. The total protein density for the final state is about 26%. For (c), the small
amount of protein aggregates form on the membrane in the beginning, giving rise to oligomerization. However, the influx of the protein is not enough to form an
interconnected mesh. Toward the end of the simulation, the long oligomers, with length scale comparable to vesicle diameter, form and break dynamically. The
total protein density for the final state is only about 5%. For (d), the short oligomers that first appear start to interconnect into a mesh that spans the whole surface
of the vesicle. The areas that are encircled by such mesh start to bend inward. As time progresses, the mesh continues to evolve and the areas with negative
curvature tend to aggregate into larger ones. Towards the end of the simulation, the global equilibrium is established, while protein density continues to evolve
locally on the membrane surface. The total protein density for the final state is about 9%. The time progresses from left to right. The label in the top left indicates
the step in thousand time steps (in some time units τ). The areas of the membrane with non-zero protein local density are colored red, while the rest is colored
blue. The scale bar marks 100 nm.
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FIG. 4. The final configuration of the vesicle for ε0
bend

= 10 kJ/mol and C0 values of 0.07, 0.09, 0.12, 0.15,
0.17, 0.20, 0.30, and 0.40 nm�1, which appear from left
to right and top to bottom, respectively. The areas of the
membrane with non-zero protein local density are colored
red, while the rest is colored blue. The scale bar marks
100 nm.

and proteins are not allowed to bind and unbind (or bind-
ing/unbinding events are rare), the proteins may even break
the membrane and cause a topological transformation.28,29,36

As we will show later, the same happens when protein density
is biased to a specific value in our simulations.

Remarkably, in all cases of positive spontaneous curva-
ture, therefore representing BAR/N-BAR and F-BAR pro-
teins, protein density on the membrane formed distinct linear
aggregates and meshes at lower and higher protein densities,
respectively, similarly to highly CG molecular-scale MD sim-
ulations of N-BAR proteins on membranes.38,39 This observa-
tion confirms that the MesM-P model captures the collective
molecular-level behavior of the CG model and, importantly,
it further demonstrates the physical robustness of the linear
aggregation phenomenon. Nevertheless, some differences in
the way the proteins aggregate and the membrane is locally
bent are seen for various cases of stiffness and spontaneous
curvature.

For the case of ε0
bend = 5 kJ/mol and C0 = 0.20 nm�1,

the proteins induce high local membrane curvature, result-
ing in a positively curved budding [Fig. 3(a)]. Initially, the
proteins form disconnected, but tightly packed oligomers that
rapidly grow both in length and width, connecting into a semi-
regular mesh [see the left two snapshots of Fig. 3(a)]. The
surface enclosed by the mesh is usually flat or has small
negative curvature. With time, the proteins continue to aggre-
gate, transforming the membrane both locally and globally
into a highly irregular shape [see the right two snapshots of
Fig. 3(a)].

For the case of ε0
bend = 10 kJ/mol and C0 = 0.07 nm�1,

proteins bind and form the mesh more rapidly than in the pre-
vious case. This mesh coarsens with time, where the sizes of
the protein-free and the protein-rich areas grow [see the left
two snapshots of Fig. 3(b)]. The membrane covered by the
proteins becomes positively curved, while the areas devoid
of proteins bend toward the interior, thus giving rise to neg-
ative curvature [see Fig. 3(b)]. Over the time, the sizes of
protein-rich (positively curved) and protein-free (negatively
curved) domains grow even further. However, at longer times,
a dynamic equilibrium establishes between the protein-free
and protein-rich domains that split and join over time [see the
right two snapshots of Fig. 3(b)].

For the case of ε0
bend = 25 kJ/mol and C0 = 0.40 nm�1,

proteins bind much slower than in the cases above, and the total
density after reaching the equilibrium is below 5%. We initially
see the formation of very short oligomers that dynamically
move around the membrane [see the left two snapshots of Fig.
3(c)]. At longer times, the oligomers that came into close prox-
imity to each other merge, forming longer linear oligomers and
“Y” shaped formations. This eventually results in a dynamic
equilibrium, where longer oligomers form and break, occa-
sionally giving rise to circular structures and oligomers with
length scales on the order of the vesicle diameter [see the right
two snapshots of Fig. 3(c)].

Finally, for the case of ε0
bend = 40 kJ/mol and C0

= 0.20 nm�1, like in the previous case, we initially see the
formation of short oligomers, although comparatively faster
with significantly longer chains appearing on the same time

FIG. 5. The final configuration of the vesicle for ε0
bend

= 25 kJ/mol and C0 values of 0.07, 0.09, 0.12, 0.15,
0.17, 0.20, 0.30, and 0.40 nm�1, which appear from left
to right and top to bottom, respectively. The areas of the
membrane with non-zero protein local density are colored
red, while the rest is colored blue. The scale bar marks
100 nm.
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FIG. 6. The final configuration of the vesicle for ε0
bend

= 40 kJ/mol and C0 values of 0.07, 0.09, 0.12, 0.15,
0.17, 0.20, 0.30, and 0.40 nm�1, which appear from left
to right and top to bottom, respectively. The areas of the
membrane with non-zero protein local density are colored
red, while the rest is colored blue. The scale bar marks
100 nm.

scale [see the left snapshot of Fig. 3(d)]. However, unlike the
previous case, those oligomers start to interconnect, forming
regions of negative curvature, outlined by linear protein aggre-
gates [see the second snapshot from the left of Fig. 3(d)]. At
later times, the protein density evolves into a sparse network
that outlines larger areas of inwardly bent buds. Also, contrary
to the previous case, the protein network reaches a global equi-
librium, maintaining its shape, while local variations in protein
density occur [see the right two snapshots of Fig. 3(d)].

Next, we tested how changing the spontaneous curvature
and the membrane’s bending stiffness affects protein distri-
bution on the vesicle. We found that with increasing ε0

bend
from 5 kJ/mol to 25 kJ/mol, proteins form a more regular
mesh, with fewer loose proteins (Figs. 4 and 5). Interestingly,
this tendency starts to reverse with increased bending stiffness
(Figs. 6 and 7). Most likely, this behavior is a consequence of
fewer proteins in general binding to stiffer membranes. Finally,
while locally the membrane becomes smoother, i.e., the cur-
vature variation is smaller at short length scales, its global
shape, generally, becomes less regular with increasing ε0

bend .
This effect can be seen by comparing simulations with dif-
ferent values of ε0

bend while keeping the same C0. However,
one can see that for ε0

bend = 100 kJ/mol and C0 values of 0.30
and 0.40 nm�1, the membrane shape is nearly spherical. This
result is not surprising as the final protein density on the mem-
brane was low, 1%-2%, therefore in line with experimental
observations.44–46

In experiments, at high enough protein surface density
and low enough membrane tension, BAR proteins induce

tubules from the surface of the membrane.45 In our simu-
lations, we did not observe tubule formation following the
protein assembly. One possibility is that our simulation time
scale is below the multi-second time scales at which tubules
are formed in vitro. Another important thing to consider is
that curvature sensing of BAR proteins depends on their sur-
face density in a non-trivial way and the formation of tubules
may be a consequence of localized aggregation. Modeling this
behavior in our simulation method will be a subject of future
investigation.

B. A case of negative spontaneous curvature

To simulate the assembly of I-BAR proteins on the mem-
brane, we used negative C0, while assuming that the in-plane
vector points perpendicularly to the protein’s main axis. Also,
to closer mimic the experimental system where an equilibrium
protein density was ensured by encapsulating the protein in a
giant vesicle,47 we biased the total protein density at 10% and
20% (see Sec. II A 7 in Methods).

For the case of the lower protein density, where the aver-
age density settled at ∼7.5%, and for C0 ranging from �0.07
to �0.17 nm�1, we mostly see long oligomers that extend to
the scale comparable to the vesicle diameter, with shorter ones
appearing as well (Fig. 8). At a higher protein density (Fig. 9),
∼17%, a mesh appears as seen with positively curving proteins
and in CG MD simulations. In both cases of the negative cur-
vature here and in the CG MD simulations, the membrane
has a negative curvature in the vicinity of protein aggre-
gates, perpendicular to the direction of oligomerization, while

FIG. 7. The final configuration of the vesicle for ε0
bend

= 100 kJ/mol and C0 values of 0.07, 0.09, 0.12, 0.15,
0.17, 0.20, 0.30, and 0.40 nm�1, which appear from left
to right and top to bottom, respectively. The areas of
the membrane with non-zero protein local density are
colored red, while the rest is colored blue. The vesicle
shape becomes more asymmetric with increasing protein
density (decreasing C0). The scale bar marks 100 nm.



044101-10 Davtyan, Simunovic, and Voth J. Chem. Phys. 147, 044101 (2017)

FIG. 8. The final configuration of the vesicle for ε0
bend = 15 kJ/mol, η0

= 0.1, and C0 values of �0.07, �0.09, �0.12, �0.15, �0.17, and �0.20 nm�1,
which appear from left to right and top to bottom, respectively. The areas of
the membrane with non-zero protein local density are colored red, while the
rest is colored blue. The scale bar marks 100 nm.

FIG. 9. The final configuration of the vesicle for εbend = 15 kJ/mol, η0 = 0.2,
and C0 values of �0.07 and �0.09 nm�1, which appear from left to right. The
areas of the membrane with non-zero protein local density are colored red,
while the rest is colored blue. The scale bar marks 100 nm.

forming positively curved buds in the areas between the
oligomers or encircled by the mesh (see Figs. 8 and 9). Lastly,
for smaller negative C0, the membrane breaks in one or mul-
tiple locations (see last snapshots of Figs. 8 and 9), starting to
role on itself. In other words, the membrane undergoes a topo-
logical transition due to an excessive local buildup of proteins.
Such a possibility was discussed in Subsection III A.

IV. CONCLUSIONS

In this work, we have presented a new generation of a
mesoscopic simulation model for membrane-protein systems,
termed MesM-P, and its highly scalable and computationally
efficient implementation. The MesM-P model extends on the
EM2 model; however, it is better suited for simulations at any
protein density. Moreover, new capabilities of MesM-P allow
for a more realistic modeling of a typical experimental setup.
For example, the P-Bias potential allows for an explicit control
of protein density on the surface of the membrane, while two
types of solvent particles can be used to model the asymmetric
composition of solutions inside and outside the vesicle.

By simulating positively and negatively curving pro-
teins interacting with a lipid vesicle at lower protein con-
centrations, we found that MesM-P simulations recapitulate
the membrane-mediated formation of linear aggregates as

observed for N-BAR proteins using molecular-scale CG MD
simulations.38,39 Going beyond that study, we show that linear
aggregation takes place over a wide range of protein sponta-
neous curvature and membrane bending stiffness, albeit with
different binding and assembly dynamics. Therefore, we con-
firm the prediction39 that essentially all BAR proteins should
show the same assembly behavior, although forming oligomers
at different length scales.

Some differences were observed when varying membrane
and protein physical parameters. Namely, the shape of the
membrane enclosed by protein aggregates appeared different
than in CG MD simulations. There are two important dif-
ferences stemming from the molecularity between CG MD
and MesM-P simulations: (1) the in-plane vectors for quasi-
particles with non-zero protein density align parallel to one
another, corresponding to side-by-side oligomerization rather
than end-to-end in CG MD and (2) the CG simulations showed
that protein oligomers induce negative local curvature in a per-
pendicular direction and alternating positive and negative local
curvatures at length scale of one protein in a parallel direc-
tion (that is positive on average). We tested the influence of
directionality of oligomerization in the case of negative C0

where the curvature was set perpendicular to the oligomers,
ultimately recapitulating the same budding behavior as seen
in CG MD.

Our results also have a certain resemblance to the find-
ings of dynamically triangulated surface models that repre-
sent anisotropic protein inclusions using membrane-surface
nematogens. The recent extension of such models to inho-
mogeneous protein concentrations at fixed surface coverage
in some cases show similar aggregation behavior for cor-
responding surface coverage as we have explored above.20

However, there are a number of critical differences between
the two models, most importantly, including explicit isotropic
and anisotropic interactions between nematogens in dynami-
cally triangulated surface models and the ability of MesM-P
to model a variable protein coverage on the surface of the
membrane that we have explored in this paper.

MesM-P, unlike CG models, is easier to parameterize in
order to phenomenologically model different kinds of proteins
or membrane compositions, thus making it possible to simu-
late a wide range of experimental systems. MesM-P and EM2
also accurately model the hydrodynamic behavior, protein, and
lipid diffusion on mesoscopic scales, and permit topological
transitions by using a grid-free and bond-free approach. These
advances open possibilities to realistically simulate a variety
of interesting systems that have been inaccessible to previous
mesoscopic or CG models as well as to attain unprecedented
length and time scales for them.

However, perhaps the biggest potential of the MesM-P
approach is in its role as a link between molecular interac-
tions and macroscopic phenomena. It has been previously
demonstrated how molecular details of large scale membrane
remodeling can be understood using a combination of bottom-
up CG and mesoscopic modeling.48 While the molecular-level
CG description does not allow for a direct observation of
shape and topology changes that the membrane undergoes on
realistic (experimental) length and time scales, the packing
and molecular interactions of proteins and proteins with the
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membrane can be studied quantitatively using the membrane
conformations obtained from mesoscopic simulations. This is
done by back-mapping parts of the system that are of interest
to CG representation and equilibrating them. The obtained CG
system can then be used to study molecular details, including
of protein aggregation and membrane-protein interactions.48

This approach in essence transfers high length scale infor-
mation obtained from mesoscopic simulations back to the
molecular scale CG model. However, the opposite can also
be done. If the CG model was obtained using a bottom-up
approach and recapitulates the important details of the atom-
istic system, one can imagine passing those details further
into the mesoscopic model by their systematic incorporation
into MesM-P. This can be done by either reparameteriza-
tion of the existing parts of MesM-P Hamiltonian or by the
addition of the new terms into it that control “short-range”
properties of the system, such as protein oligomerization or
local curvature generation and sensing. Together, those two
approaches will allow for a deep understanding of phenomena
such as protein-facilitated membrane remodeling both qual-
itatively and quantitatively. This will be a subject of future
research.
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APPENDIX: DERIVATION OF MesM-P

Similar to its predecessor EM2, the MesM-P model can
be derived from the continuum elastic model of the membrane
using the SPAM framework. Such a derivation was discussed
in detail in several of the previous publications.26,27 Here,
we briefly describe the continuum field-theory model that
MesM-P is based on and discuss its derivation.

The free energy of undulating membrane with protein
inclusions can be written as

F = FH + FD + Fλ + Fφ + Fφ,H , (A1)

where the first three terms describe the elastic properties
of the membrane and correspond to mean and deviatoric
(Gaussian) bending energies, and bulk expansion/contraction
contribution, respectively,26,27,40,49

FH =

∫
dAm

kc

2
(2H − nC0)2, (A2)

FD =

∫
dAm

Ba

2
(c1 − c2)2, (A3)

Fλ =
∫

dA0
λh
2

[2ε]2. (A4)

In Eq. (A2), kc is the bending modulus, c1,2 = 1/R1,2 are the
two local principal curvatures, H = (c1 + c2)/2 is the mean
curvature, and C0 is the spontaneous curvature. For n = 2,
the spontaneous curvature, C0, is isotropic, applied equally
to all the directions, while n = 1 corresponds to the case of
anisotropic spontaneous curvature that is applied only in the
direction of in-plane vector n̂T. For C0 = 0, Eq. (A2) provides
the free-energy of the membrane relative to its flat conforma-
tion. In Eqs. (A3) and (A4), Ba is the deviatoric modulus, λ is
the bulk modulus, h is the thickness of the membrane, and 2ε
is the local, in-plane, strain, which is zero for flat membrane.
It is worth noting that the integrals in Eqs. (A2) and (A3)
are calculated in some local coordinate system defined at the
area element dAm, while the integral in Eq. (A4) is evaluated
along the initial flat membrane (thus the area element dA0) is
used.

Equations (A2)–(A4) can be discretized by defining the
local density of the initially flat membrane as

ρ(r) =
NM∑
i=1

δM (r − ri), (A5)

where δM (r � ri) is the weight function that satisfies the con-
dition ∫ drδM (r � ri) = 1 and NM is the number of mesoscopic
quasi-particles that will be used to represent the membrane.
The exact expression for δM (r � ri) does not matter as long as
it becomes zero beyond some distanceσ from ri, which defines
the fundamental discretization length scale of the membrane.
Then, with the assumptions of nearly uniform density, ρ(r)/ρ0

' 1, and flat membrane, C0 = 0, the effective discretized
expressions can be obtained,27

Heff
bend

(
rij, Ω̂i, Ω̂j

)
=

1
2

NM∑
i=1

Nc,i∑
j,i

8kc

ρANc,i

×

[(
Ω̂i · r̂ij

)2
+

(
Ω̂j · r̂ij

)2
]

r2
ij

, (A6)

Heff
λ

(
rij

)
=

1
2

NM∑
i=1

Nc,i∑
j,i

2π
(
r0

ij

)2
hλ

Nc,i


2 *

,

rij − r0
ij

r0
ij

+
-



2

, (A7)

where ρA = Nm/A is the initial area density of the membrane,
Nc ,i is the average number of quasi-particles found within
the interaction cutoff near quasi-particle i, and rij and rij

0 are
the instantaneous initial separations between quasi-particles i
and j.

Equation (A6) represents contributions from both mean
and deviatoric bending energies28 [Eqs. (A2) and (A3)], and
Eq. (A7) corresponds to the bulk expansion/contraction energy
given in Eq. (A4). Then, the effect of anisotropic inclusions can
be added in a straightforward manner to obtain the expression
given in Eqs. (7)–(12). The quadratic form of Eq. (A7) implies
a harmonic bonding between the nearest quasi-particles. How-
ever, such a bonding term will be prohibitive for topological
transformation of the membrane and it is more general to
replace it with a dissociable potential, like the one given in
Eqs. (3) and (4).
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The term Fφ in Eq. (A1) represents the free energy of
spatially varying protein and lipid composition fields that are
given by the standard Landau model,

Fφ =
∫

dAm

[
ξ2

2
|∇φ|2 + V (φ)

]
, (A8)

where the first term always drives the system to the uniform
composition, while the second term can be chosen to represent
the tendency of the system to either mix (presented by a single
well form) or phase separate (two- or multi-well form). Similar
to the previous case, Eq. (A8) can be discretized by defining
a local density function. Using a specific form of the density
function defined as

ρ(r) =
N∑

i=1

mW
(���ri − rj

���
)

(A9)

with W (r) as a Lucy function30 [see Eq. (22)], one can obtain
Eqs. (19) and (20).26 The last term in Eq. (A1), Fφ ,H , is
responsible for coupling between the protein composition and
curvature,26

Fφ,H =

∫
dAm ΛφH2. (A10)

Being quadratic in curvature and linear in composition, this
term does not favor either direction of bending. Its contribution
is divided between the modulation of the bending stiffness
of the membrane [see Eq. (14)] and IC potential [Eq. (15)].
The former represents the membrane stiffening or softening
under the influence of the proteins, while the latter creates a
feedback between membrane bending and local concentration
of the proteins.
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