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Constructing ordinal partition 
transition networks from 
multivariate time series
Jiayang Zhang1, Jie Zhou1, Ming Tang2, Heng Guo1, Michael Small   3,4 & Yong Zou1

A growing number of algorithms have been proposed to map a scalar time series into ordinal partition 
transition networks. However, most observable phenomena in the empirical sciences are of a 
multivariate nature. We construct ordinal partition transition networks for multivariate time series. 
This approach yields weighted directed networks representing the pattern transition properties of time 
series in velocity space, which hence provides dynamic insights of the underling system. Furthermore, 
we propose a measure of entropy to characterize ordinal partition transition dynamics, which is 
sensitive to capturing the possible local geometric changes of phase space trajectories. We demonstrate 
the applicability of pattern transition networks to capture phase coherence to non-coherence 
transitions, and to characterize paths to phase synchronizations. Therefore, we conclude that the 
ordinal partition transition network approach provides complementary insight to the traditional 
symbolic analysis of nonlinear multivariate time series.

Nonlinear time series analysis and complex network theory are widely considered to be established fields of com-
plex systems sciences with strong links to nonlinear dynamics and statistical physics. There has been a growing 
body of literature aimed at the utilization of complex network methods for characterizing dynamical systems 
based on time series. There are various ways to transforming a given time series to a network representation 
and then to do network analysis. Here we give a few typical examples. Recurrence network approaches com-
pare the closeness of time points in phase space, which have been applied to climate data analysis1, 2, chaotic 
electro-chemical oscillators3, fractional Brownian motion4, and oil-water two phase transitional flow behavior5–7. 
Some basic network motif structures have been identified in musical data8, which has been further character-
ized by revised recurrence approaches9. A series of visibility graph algorithms and their variants10–12 have been 
proposed to transform a given time series by computing a so-called linear visibility condition between each pair 
of two sampled points, which have been successfully applied to hurricane data in the US13, financial market14, 
sunspot time series15, 16, correlated stochastic17 and multi-fractal stochastic processes18, providing novel insights 
from a complex systems perspective. Several other methods have been discussed in refs 8, 19 and 20. For instance, 
the idea of cycle network is proposed for mapping a time series to a network21. Characterizing the order of motifs 
is helpful to distinguish high-dimensional chaos from low-dimensional chaos22. In addition, one can monitor the 
evolutionary behavior of a time series by mapping segments of a time series to a visibility graph and linking the 
successive states to a state network23, 24.

Recently, there is a growing number of works in transforming time series into networks by ordinal partitions 
of time series25, 26. A series of systematic investigations of ordinal methods has been conducted in irregularly 
sampled time series27–29, which shows high potential for studies of experimental observation data from climate 
sciences30. In this method, the first step is to embed a one-dimensional time series into phase space by using 
techniques from traditional time delay embedding. Then, embedded points in phase space are mapped to nodes 
in the network space and links are allocated between nodes based on temporal succession on the trajectory. The 
resulting network is a Markov chain representation of the time series in phase space. The interesting point of 
network analysis is that rather simple network measures including even mean degrees can track the dynamical 
transitions comparable to the largest Lyapunov exponent25.
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The basic idea of ordinal partition network method can be traced back to identifying ordinal patterns of time  
series31, 32. Considering a one-dimensional time series = …x t{ ( )}t L1, ,  comprising of L points from a dynamical 
system, the original phase space can be reconstructed by time delay embedding τ→ = + …x t x t x t( ) [ ( ), ( ), , 

τ+ −x t D( ( 1) )]x  with dimension Dx
33, 34. The next step is to compute the rank order of τ+ …x t x t( ), ( ), , 

τ+ −x t D( ( 1) )x  based on relative amplitudes, which is conveniently represented by a symbol πx(t). When slid-
ing windows from t = 1 to N = L − (Dx − 1)τ in the embedded space, a symbolic representation of the trajectory 
πx(t) is produced. One traditional approach, following the symbolic representations, is to compute permutation 
entropy based on the frequency plot of order pattern which yields very well established statistical measures in 
nonlinear time series analysis31. In the recent decades, ordinal symbolic representation of time series has found a 
number of interesting applications in science and engineering, for instance, biomedical recordings35, finance36, 
climate sciences37. Some recent progress has been comprehensively reviewed in ref. 35. However, the transition 
behavior between ordinal patterns remains largely unclear. The recent ordinal partition network representations 
capture the evolutionary behavior of the ordinal patterns25, 26, which sheds novel insight on the standard ordinal 
symbolic analysis of time series.

For a given embedding dimension Dx, there are a total of Dx! unique ordinal patterns that can possibly occur 
in a time series, neglecting equality. A stochastic process of stationary increments fulfils P(xt = xt+τ) = 0 and there-
fore the probability to have ties xt = xt+τ is zero. For empirical time series, we can avoid ties by adding a tiny 
white noise with continuous distribution38. Therefore, the original phase space is decomposed into Dx! equivalent 
partitions31. It is intuitive that all Dx! patterns almost occur with equal frequencies in a time series generated by a 
stochastic process for N → ∞. However, a set of patterns may never occur in a time series produced by determin-
istic dynamics. Therefore, it is possible to quantify determinism in time series data by counting the forbidden pat-
terns. However, complications arise in real time analysis. For instance, missing ordinal patterns might be related 
to finite time length during the period of observation and correlated stochastic processes, which require some 
revised methods for the detection of determinism in relatively short noisy data39–43. From the viewpoint of ordi-
nal partition networks, both the frequencies of order patterns and the transitions between different patterns are 
inhomogeneous. Therefore, network properties thus obtained are sensitive to different system dynamics, which 
successfully characterize the difference between healthy and patients from EEG data25, 26.

Most of the recent works have focused only on univariate time series {x(t)}. The embedding dimension Dx and 
time delay τ are two important parameters for constructing ordinal partition networks, in particular having cru-
cial impacts on the appearance of forbidden order patterns27–29. However, the generalization to multivariate time 
series remains largely untouched5, 44. Most of the observable phenomena in the empirical sciences are of a multi-
variate nature. For instance, assets in stock markets are observed simultaneously and their joint development is 
analyzed to better understand tendencies. In climate science, multiple observations (temperature, pressure, pre-
cipitation, human activities etc, from different locations) are the basis of reliable predictions for the future climate 
conditions. We propose to construct ordinal partition transition networks from multivariate data.

Results
Ordinal pattern definitions.  Given a scalar time series {x(t)} which is produced by a deterministic dynam-
ical system, the order structure of the time series depends on the embedding dimension Dx and time delay τ33, 34. 
Let us start with Dx = 2. Neglecting equality, we have two relations between x(t) and x(t + τ), namely, two symbol 
sequences representing order patterns πx:

π τ
τ

=
< +
> + .{t x t x t

x t x t
( ) 1 if ( ) ( ),

0 if ( ) ( ) (1)x

For dynamical systems with continuous distributions of the values, we can neglect equality because the Lebesgue 
measure of ties is zero31. In addition, a large amount of numerical simulations suggest that the results do not 
change qualitatively and it does not matter whether we count x(t) < x(t + τ) or x(t) ≤ x(t + τ)38, 45. In the practical 
application, we may easily test for < and ≤. Therefore, we follow the routine as suggested in ref. 45 and do not 
separately consider equalities. Time delay τ is chosen as 1 in this work. By this choice, the order pattern πx

1 cap-
tures the increasing trend, respectively, πx

0 corresponds to the decreasing trend of the time series. This definition 
is equivalent to considering the signs of the increments Δx(t) = x(t + 1) − x(t) by a first-order difference of the 
original series. In other words, the associated order patterns capture the variations of x(t) in its velocity space, 
showing dynamic rather than static information based on the displacement directly.

When generalizing the above idea to two dimensional time series (x(t), y(t)), we restrict our discussion on 
embedding dimension Dx = Dy = 2 for individual variable. Therefore, we have four different combinations of 
order patterns depending on the signs of increments (Δx(t), Δy(t)) (Table 1): In the phase space of (x(t), y(t)), we 
have order pattern Π(t) ∈ (π1, π2, π3, π4) which captures the increasing or decreasing behavior. The example of 
Fig. 1(a,c) shows the construction of ordinal patterns for two dimensional series (x(t), y(t)). In a full analogy, 
based on increments (Δx(t), Δy(t), Δz(t)), ordinal pattern π πΠ ∈ … = …  t i( ) ( , , ), 1, , 8i1  of a three dimen-

Π π1 π2 π3 π4

X π +,x
1 π +,x

1 π −,x
0 π −,x

0

Y π +,y
1 π −,y

0 π +,y
1 π −,y

0

Table 1.  Order patterns in two dimensional time series (x(t), y(t)).
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sional time series (x(t), y(t), z(t)) is enumerated in Table 2 and visualized in Fig. 1(b,d). Therefore, the dimension 
of order pattern Π(t) for an n-dimensional time series …x t x t({ }( ), , { }( ))n1  is D = 2n since each component has 
either increasing or decreasing trend at time t.

Note that, in this work, we do not apply time delay embedding technique to obtain the multi-dimensional 
phase space from one univariate time series. Instead, given multi-variate time series, we consider the increments 
between two consecutive time points of each measurement in the space of multi measurements. In other words, 
our approach captures the dynamic properties of the multi-variate time series in its associated velocity space 
(difference space). Therefore, time delay τ in the order pattern definition (Eq. (1)) has rather a different interpre-
tation with the time delay that is often used in embedding. Traditionally, one chooses appropriately an embed-
ding dimension and time delay to reconstruct phase space from a given univariate time series. We can certainly 
generalize the discussion to the case of time delays larger than 1 (i.e., τ > 1) and embedding dimension Dx > 2 for 
each variable (measurement), but we think that the physical meaning in terms of dynamics becomes ambiguous 
for multivariate time series.

Ordinal partition transition networks.  Given a multi-variate time series, for instance, the two dimen-
sional case of (x(t), y(t)), we denote the frequency of the i-th pattern πi as p(πi) which is computed over the time 
interval = …t N1, , . One important property is that ordinal patterns from a deterministic process have different 
frequencies p(πi). Permutation entropy O is then introduced to characterize the inhomogeneous appearance of 
ordinal patterns as following

 ∑ π π= −
=

p p( ) log ( ),
(2)O

i
i i

1

2

2

n

where the sum runs over all D = 2n permutations. We use log2 and hence the units of O  are bits. For a 
n-dimensional independent identical distributed stochastic process, one obtains the largest entropy  = nO  since 
each of D = 2n ordinal patterns is expected to have the same frequency.

We illustrate the above algorithm by using a toy model of three dimensional identical independent periodic 
time series in Fig. 2. Different combinations of periods of the 3D periodic series often yield different values of 
permutation entropy O. In addition, the limited number of possible ordinal patterns (forbidden patterns) are 
widely observed reflecting the determinism of the series.

Most of the current studies focused on the computation of permutation entropy O considering the frequen-
cies of order patterns, which do not disclose the transition behavior between order patterns. Therefore, O is 
static. For instance, the details of the dynamics remain unclear in Fig. 2(b,c) provided only with the values of 

= .1 92O , because O  does not disclose the unique transition properties of Fig. 2(b) from (c). From the view-
point of visualization, the difference of transitions between order patterns are conveniently shown in Fig. 3(a,b). 

Figure 1.  Order pattern definitions for (a) two dimensional series (x(t), y(t)) and (c) its increment series 
(Δx(t), Δy(t)). (b) Three dimensional series (x(t), y(t), z(t)) and (d) the corresponding increment series  
(Δx(t), Δy(t), Δy(t)). Signs of the increment series and the ordinal patterns are respectively indicated in (c,d).

Π π1 π2 π3 π4 π5 π6 π7 π8

X π +,x
1 π +,x

1 π +,x
1 π +,x

1 π −,x
0 π −,x

0 π −,x
0 π −,x

0

Y π +,y
1 π +,y

1 π −,y
0 π −,y

0 π +,y
1 π +,y

1 π −,y
0 π −,y

0

Z π +,z
1 π −,z

0 π +,z
1 π −,z

0 π +,z
1 π −,z

0 π +,z
1 π −,z

0

Table 2.  Order patterns in three dimensional time series (x(t), y(t), z(t)).
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Comparing to a 3-dimensional uncorrelated independent identical distributed random uniform noise, the ordi-
nal partition network is a complete connected graph (Fig. 3(c)). In addition, we indicate each directed link by its 
transition frequency wij = p(πi → πj), following the time iterations of the series. Finally, we come up with a 
weighted directed network characterized by a weighted adjacency matrix W = {wij}, i, j ∈ [1, 2n]. The matrix W 
fulfils the normalization ∑ =w 1i j ij,

2n
. Here, based on W, the regularity of the order pattern transition properties is 

quantified by the Shannon entropy T, which is

∑= −
=

w wlog ,
(3)

T
i j

ij ij
, 1

2

2

n



where the sum runs over all possible 22n transitions. In a full analogy to O , for a n-dimensional independent 
identical distributed stochastic process, one obtains the largest entropy = n2T .

It is rather straightforward to compute T  for time series produced by stochastic processes. However, we need 
to pay attention to the case of continuous systems, which yield a larger proportion of self-loops in the resulted 
networks as will be illustrated below. Here we take the chaotic Rössler system as an example which reads

ω
ω

= − −
= +
= . + − .







x y z
y x ay
z z x

,
,

0 4 ( 8 5), (4)

where a = 0.165, and ω = 1.0. The Eq. (4) are numerically integrated by the fourth-order Runge Kutta method 
with integration step h = 0.01. The first 10000 transient data points are discarded and time series consisting of 
N = 500000 data points are analyzed. Short segments of time series (x, y, z) are shown in Fig. 4(a). Due to the 

Figure 2.  A toy model of periodic 3D series (x(t), y(t), z(t)) and its associated histogram of order patterns.  
(a) x(t), y(t), and z(t) has the same period 2. (b) x(t) and y(t) have period 2, but z(t) has period 3. (c) x(t) has 
period 2, y(t) and z(t) have period 3. (d) x(t), y(t) and z(t) have the same period 3. The respective frequency plot 
of the ordinal patterns is shown below the time series and entropy values O are indicated in the legends.
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continuity property of the system, there are many plateaus reflecting the invariance of the order patterns dur-
ing certain time intervals (Fig. 4(b)). These plateaus are reflected by self-loops in the resulting transition net-
works (Fig. 4(c)). In most of the existing studies of complex networks, self-loops are avoided because of both 

Figure 3.  (a) Ordinal partition transition networks for periodic processes of Fig. 2(b), and respectively, (b) is 
for Fig. 2(c). Panel (c) corresponds to a 3D independent identical distributed random uniform noise where link 
arrows (bidirectional) are suppressed for the ease of visualization.

Figure 4.  Chaotic Rössler system (a = 0.165): (a) short segments of time series (x, y, z), (b) temporal variation 
of order patterns corresponding to the particular time window of (a,c) ordinal pattern transition network with 
self-loops, = .2 283O , and (d) without self-loops, = .2 585T , where the transition route 
π1 → π5 → π6 → π8 → π4 → π3 → π1 is observed. The values on links represent the corresponding transition 
frequencies of the ordinal patterns. Note that N = 500000 data points are used in obtaining (c,d).
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the computational simplicity and theoretical concerns46. In the case of the Rössler system, there is about 99% 
self-loops and only about 1% non-self-loops (as indicated by the arrows in Fig. 4(c)).

The weighted adjacency matrix W can be split into diagonal and off-diagonal entries. Taking into account the 
numerical observations that the diagonal elements of W (self-loops) are much larger than the off-diagonal ones, 
Eq. (3) is simplified to

 ∑ ∑

∑

∑ π π

= − −

≈ −

= − .

= ≠ = =

=

=

w w w w

w w

p p

log log ,

log

( ) log ( )
(5)

T
i j i j

ij ij
i j i j

ij ij

i
ii ii

i
i i

, 1,

2

2
, 1,

2

2

1

2

2

1

2

2

n n

n

n

Therefore, we obtain  ≈T O for a continuous system when self-loops are considered. In this case, the transi-
tions between different ordinal patterns are hard to be captured by T.

In order to emphasize the importance of non-self transitions between ordinal patterns, we remove the 
self-loops as shown in Fig. 4(d) by setting the diagonal values to be 0 in W. This is typical of most research work 
on complex networks46. Furthermore, we remove self-loops before computing the weighted matrix W to keep the 
normalization ∑ =w 1i j ij,

2n
. Note that self-loops should not be expected with large amounts in stochastic 

processes.

Ordinal pattern partitions of phase space.  Ordinal pattern transition networks provide us with an alter-
native for phase space partitions, which utilizes nullclines of the systems. Here we show two examples covering 
discrete and continuous dynamical systems.

Example (1): the Hénon map

+ = + − .
+ = .

x t y t x t
y t x t
( 1) ( ) 1 1 4 ( ),
( 1) 0 3 ( ), (6)

2

is chosen as an example for a chaotic two-dimensional map. The order pattern partitions of the attractor are 
shown Fig. 5(a), which is color coded by different order patterns. A segment of time series is shown in Fig. 5(b). 
The histogram of order patterns (Fig. 5(c)) discovers that π4 are forbidden patterns of the system, which yields 

Figure 5.  Hénon map: (a) attractor, (b) segments of time series, (c) histogram of order patterns leads to 
= .1 5O , and (d) ordinal pattern transition network removing self-loops which yields  = .1 76T .
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 = .1 50O . The corresponding ordinal partition transition network is shown in Fig. 5(d) and the frequency of 
each link is indicated in the figure, which yields  = .1 76T .

According to the order pattern definitions in Table 1, the phase space partitions of the Hénon map are delin-
eated by nullclines as follows:

+ − . − =
. − = .

L y t x t x t
L x t y t

: ( ) 1 1 4 ( ) ( ) 0,
: 0 3 ( ) ( ) 0 (7)

1
2

2

These two lines are shown in Fig. 5(a), where we find no points of the attractor lying in the region of order pat-
tern π4 no matter with the iteration steps. The disappearance of π4 pattern suggests that there is no intersection 
between the π4 partition and the attractor, except for the unstable fixed point of (0.63, 0.19) (intersection of L1 
and L2).

Example (2): the Rössler system, Eq. 4 is chosen as a continuous dynamical system. When the parameter 
a = 0.165, the attractor is shown in Fig. 6(a) with phase space points being further color-coded by ordinal pat-
terns. The boundaries of each partition are determined by the corresponding nullclines, i.e., dx/dt = 0, dy/dt = 0 
and dz/dt = 0. The ordinal pattern transition network is shown in Fig. 4(d). In this case, neither π2 nor π7 appears, 
which is explained as follows47. When transforming phase space into ordinal partition transition network, we 
associate to each state (x, y, z) with an order pattern such as (+, −, +) (as listed in Table 2). This 3-dimensional 
ordinal pattern describes which variables of (x, y, z) are increasing and which are decreasing at a given time. 
Taking variable x as an example, both y and z are repressors to x because of the negative signs in the Jacobian (−ω, 

Figure 6.  (a) Rössler attractor (a = 0.165) in phase space color coded by ordinal patterns, which are indicated 
by legends. Patterns π2 and π7 are not observed. (b) Upper panel is the activation-repression relationship 
between variables x, y and z, where activation is denoted by a normal arrow, and repression by a barred 
arrow47; lower panel represents all allowed (not necessarily observed) pattern transitions of the system. The 
corresponding ordinal partition transition network is shown in Fig. 4(d). Panel (c) is the same as (a) with 
a = 0.26, where a significant number of π2 patterns are highlighted, and (d) is the ordinal partition transition 
network (self-loops are excluded), where an alternative transition from π4 → π2 → π1 has been observed.
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and −1). However, x is an activator for variable y because the element of the Jacobian matrix is ω being positive 
everywhere in phase space. The scheme of activation and repression of the Rössler system is shown in Fig. 6(b).

The condition that the trajectory can cross a nullcline meaning a change from increasing to decreasing (or vice 
versa) are equivalent to determining local maximum or minimum. Because of the continuity of the system, we 
have the following rules to have a maximum or minimum47: (i) a variable cannot have a maximum if all its repres-
sors are decreasing and all its activators are increasing; (ii) a variable cannot have a minimum if all its repressors 
are increasing and all its activators are decreasing. These two rules yield all possible transitions between different 
order patterns as shown in Fig. 6(b). However, the transition network observed for a typical trajectory in phase 
space is determined by the given set of parameters a and ω. For the case a = 0.165 and ω = 1, we only find the 
transition route π1 → π5 → π6 → π8 → π4 → π3 → π1 (shown in Fig. 4(d)), and meanwhile π2 and π7 are forbidden 
patterns. Increasing the value a to 0.26, the Rössler system presents screw-type chaotic oscillations with irregular 
kicks, which yield an alternative transition from π4 → π2 → π1 as highlighted in Fig. 6(c). Therefore, we observe 
two transition routes of the patterns from π4 to π1 (Fig. 6(d)), while π7 remains to be absent. In other words, the 
appearance of π2 pattern suggests that the changes of the ordinal patterns are sensitive to the geometric changes 
of the attractor.

Identifying dynamical transitions.  We apply ordinal partition transition networks to identify dynamical 
transitions in two different cases: (i) phase coherence to non-coherence transition which is a weak chaos-chaos 
transition, (ii) paths to phase synchronization transitions. In both examples, we show frequency plots of ordinal 
patterns (without self-loops), complexity entropy measures of O  (with self-loops) and T  (without self-loops). 
In addition, we compare the case (i) to coherence index (CI), and case (ii) to mean rotation frequency of each 
oscillator Ωi.

Example (1) shows phase coherence to non-coherence transitions in the chaotic Rössler system (Eq. (4)), where 
the parameter a is systematically varied in the range [0.15, 0.25]. As it has been systematically shown in ref. 48, 
this parameter range comprises different kinds of dynamics, including periodic windows, phase coherent chaos 
(existence of a well-defined rotation center in phase space) as well as non-phase coherent chaotic oscillations (lack 
of a distinct center of rotation). The transition between phase coherence and non-phase coherence chaos occurs 
at ac ≈ 0.206. More specifically, for a < ac, the chaotic attractors are always phase coherent, whereas they are 
non-phase coherent for a > ac. We refer readers to ref. 48 for further discussion on various measures to detect this 
chaos-chaos transition as well as periodic windows, ranging from traditional measures of phase coherence factor, 
phase diffusion coefficient, recurrence quantification based discriminators, and recurrence network based meas-
ures. In this work, in order to avoid repetitions we only discuss the capabilities of ordinal pattern changes and 
entropies O and T in detecting the transition from phase coherent to non-coherent chaos by comparing to the 
measure of phase coherence index (see Methods).

Figure 7 shows the bifurcation diagram when the parameter a is changed. First, the frequency of ordinal pat-
tern π2 is zero (f(π2) = 0) when a < ac, and becomes positive when a > ac. In contrast, f(π3) decreases when a > ac 
(Fig. 7(a)). Much smaller changes are observed for the other ordinal patterns π1, π4, π5, π6 and π8. Pattern π7 does 
not appear in the entire interval of a. Ordinal patterns π2 and π3 are sensitive to the geometric changes of the 
attractor, capturing the transition from phase coherent to non-coherent regime.

In addition, O shows rather small changes while T is a constant value when a < ac (Fig. 7(b)). The behavior 
of O and T  has been confirmed by the coherence index (see Methods) as shown in Fig. 7(c). Meanwhile, we 
find some discrepancies for these measures when the control parameter a increases towards the transition point 
between phase coherence and non-coherence regimes. In particular, both O  and the coherence index increase 
slightly before the transition point ac, while T  increases sharp at ac, as highlighted by vertical dashed lines in 
Fig. 7. This is because of the homo-clinic point at the origin. As the control parameter a increases within the phase 
coherent regime, the attractor successively grows and finally extends to the vicinity of the origin shortly before the 
transition to the funnel regime, where a unique rotation center of trajectories in phase space is lost. The dynamics 
in the (x, y)-plane becomes very slow whenever a trajectory gets close to the homo-clinic point. As a consequence, 
there is a high density of sampled points on a trajectory in the neighborhood of the origin. By the same time, these 
re-injection to and ejection from the origin are rather irregular events, which introduce fluctuations in the com-
putations of O and the coherence index. In contrast, when computing T, the local velocities change direction 
from increasing to decreasing (or vise versa) only after the transition to the non-phase coherent regime. Therefore, 

T  shows good sensitivity on the change of the local velocity space when the control parameter a passes the tran-
sition from phase coherent to non-coherent regime, which are shown in Fig. 7.

Note that all measures of O, T  and coherence index show pronounced local maxima in periodic windows 
(for instance, at a = 0.227 and a = 0.245)48.

Example (2) shows paths to phase synchronization, which are demonstrated by three diffusively coupled Rössler 
systems via x component49. The equations read
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where k = 1, 2, 3 and κ is the coupling strength. We consider non-identical oscillators by choosing ω1 = 0.98, 
ω2 = 1.02, ω3 = 1.06. The parameter a is chosen as 0.165 such that the subsystems are in the phase coherent regime 
(Fig. 6(a)). The oscillator k = 2 is bidirectionally coupled to both k = 1 and k = 3, whereas there is no direct cou-
pling between k = 1 and k = 3. The Eq. (8) are numerically integrated by the fourth-order Runge Kutta method 
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with integration step h = 0.01. The first 10000 transient data points are discarded and time series consisting of 
150000 data points are analyzed. We construct ordinal pattern transition networks from the xk components, 
namely, (x1, x2, x3), following the same pattern definitions as shown in Table 2.

Our motivation of using Eq. (8) is to study the variations of ordinal patterns on the paths to phase synchroni-
zation, focusing on the evolutionary process of the transition networks with different regimes of synchronization, 
which is more complex than the case of a single Rössler system. The results are shown in Fig. 8. Furthermore, the 
results of Fig. 8 have been averaged over 50 random initial conditions when integrating Eq. (8).

In the regime of no synchrony (κ < κc1 = 0.036), three oscillators evolve almost independently such that all 
ordinal patterns have the same frequencies of 0.125. There are rather small gradual changes only when κ 
approaches to κc1 (Fig. 8(a)). The entropy value T is more sensitive to these gradual changes showing a pro-
nounced decreasing trend, while O  seems to be a constant (Fig. 8(b)). The average rotation frequencies Ωk (see 
Methods) of each oscillator are shown in (Fig. 8(c)), which confirms no synchrony in this coupling regime.

In the regime that phase synchronization appears between oscillators k = 1 and k = 2, but not with k = 3 
(κ κ κ∈ = . .[ , ] [0 036, 0 077]c c1 2 ), we observe monotonic increasing trends for order patterns π1, π2, π7, and π8 
(Fig. 8(a)). In addition, we find relatively slower increasing trends for patterns of π4 and π5. In contrast, some 
monotonic decreasing trends are found for π3 and π6. The changes in the frequencies of order patterns are cap-
tured by both entropy values O  and T , showing gradual decreasing trends (Fig. 8(b)). The average rotation 
frequencies Ωk are shown in Fig. 8(c), where k = 1 and k = 2 are phase locked to the same rotation frequency but 
not with k = 3.

In the regime with all oscillators in phase synchronization (κ > κc2 = 0.077), we find that frequencies of pat-
terns π1, π2, π4, π5, π7, π8 converge to the same value f(πi) = 1/6, while π3 and π6 are absent (Fig. 8(a)). In other 
words, forbidden patterns of π3 and π6 are observed if all oscillators are synchronized. The entropy O  shows 
parabola-like trends (increasing first and then decreasing slowly), but T  is a constant of 2.585 (Fig. 8(b)). All 
mean rotation frequencies converge to the same value since three oscillators are phase locked (Fig. 8(c)).

From the viewpoint of high dimensional systems of coupled oscillators, in the process from non-synchrony to 
phase synchronization we find that the transition networks have experienced rather random transitions between 
all possible ordinal patterns to a state of transitions between a limited number of ordinal patterns as shown in 
Fig. 9. In addition, we find π3 and π6 are forbidden patterns if all three oscillators are synchronized.

Figure 7.  Phase coherence to non-phase coherence transition for the Rössler system as a function of the 
parameter a (error bars indicate standard deviations obtained from 100 independent realizations of the system 
for each value of a: (a) frequency of each ordinal pattern f(πi), where π1, π4, π5, π6 and π8 are overlapped in the 
entire range of a. (b) Entropy values O and T , (c) coherence index (CI). The transition from phase coherent 
to non-coherent is highlighted by the vertical dashed lines.
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Conclusions
In this work, we have proposed to construct ordinal partition transition networks from multivariate time series, 
which help us to analyzing the interaction patterns between different components. The basic idea is to capture the 
directions of changes in the associated velocity space, which yields dynamic instead of static information in the 
original phase space. The resulting ordinal partition transition networks are weighted directed networks, which 
are fundamentally different to recurrence networks19 and visibility graphs10. For time series from both discrete 
and continuous dynamical systems, we find that the frequencies of observed ordinal patterns are inhomogeneous 
which is quantified by the entropy O. In addition, the transition frequencies between different ordinal patterns 
are inhomogeneous as well, which is characterized by the entropy T . Note that no essential difference between 
O and T  is expected for discrete systems, however for continuous systems, T is a better way to characterize 
the ordinal partition transition networks because O  is more influenced by self-loops as shown in Fig. 4.

The ordinal partition transition network utilizes nullclines to generate partitions, resulting in a Markov chain 
representation of the time series in phase space. The transition between two ordinal patterns is determined by 
the changes of signs of the increments of the variables. As we have demonstrated in the chaotic Rössler system, 
this definition is sensitive to capture the geometric changes in phase space, for instance, from phase coherence to 
non-coherence transition.

Note that our ordinal partition transition network generation algorithm is different to the recent work on 
constructing temporal networks to capture the memory effects50. It will be a future subject to characterize the 
memory effects by means of ordinal partition transition networks. In addition, we have focused on embedding 
dimension Dx = 2 and delay τ = 1 for each variable which captures either increasing or decreasing trends of a time 
series in differenced space. One can certainly generalize the algorithm to higher values of Dx and τ, however, it is 
computationally more demanding. For instance in a n-dimensional multivariate series …x t x t[{ }( ), , { }( )]n1 , there 
are (3!)n ordinal patterns if = = =D D 3x x{ } { }n1

 is used. Additionally, the dimension of the transition matrix 
W is (3!)n × (3!)n. Meanwhile, the increase of dimension Dx requires longer time series in order to estimate the 
transition frequencies of ordinal patterns more reliably. From the view point of the algorithm, no computational 
complexity is introduced by using a large time delay τ > 1, which, however, lacks a proper interpretation in terms 
of velocity of the variable. There is one open problem to estimate the ordinal partition transition matrix reliably 
from short time series, especially when noise plays a significant role.

Figure 8.  Phase synchronization transitions of three coupled Rössler systems. (a) Frequency of each ordinal 
pattern f(πi), (b) entropy values O and T , (c) mean rotation frequency Ωi of each oscillator. Subsystem k1 and 
k2 are synchronized at κc1 = 0.036, and k3 joins the synchronization only at a stronger coupling strength 
κc2 = 0.077. Both critical coupling values are highlighted by vertical dashed lines.
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We have applied ordinal partition transition networks to investigate the paths to phase synchronization, show-
ing that a dominant transition route emerges in the networks when the coupling strength is increased undergo-
ing different synchronization transition regimes. As the degree of synchronization is strengthened, dynamics of 
the coupled systems are locked to the synchronization manifold which yield a dominant transition route in the 
resulting ordinal partition networks. Before the appearance of synchronization, another challenging task is to 
distinguish the indirect from direct coupling directions49, 51, which is very common in climate data analysis, i.e., 
extracting network interaction patterns from multi-channel time series from distant places52. In the case of three 
coupled Rössler subsystems as we considered (Eq. (8)), the oscillator k = 2 is bidirectionally coupled to both k = 1 
and k = 3, whereas there is no direct coupling between k = 1 and k = 3. It is possible to introduce ordinal recur-
rence plots45 to tackle this problem.

Traditionally, the computation of permutation entropy based on ordinal symbolic representation of time series 
does not include pattern transition behavior following the trajectory in phase space. In contrast, ordinal partition 
transition network approaches take into account the time evolution information explicitly, which hence provide 
much complementary insights to the traditional symbolic analysis, showing high potentials for experimental time 
series analysis.

Methods: Phase coherence index
Here we summarize the major steps in computing phase coherence index as we have done in ref. 48. We restrict 
our attention in this work to the standard analytical signal approach. Here, a scalar signal x(t) is extended to the 
complex plane using the Hilbert transform

∫π
= . .

−
−−∞

∞
y t

x t x
t s

ds( ) 1 ( )
, (9)P V

where P V. . denotes Cauchy’s principal value of the integral, which yields the phase

φ = .t y t
x t

( ) arctan ( )
( ) (10)

The above definition is straightforward for phase coherent dynamics. In the regime of non-phase coherent 
dynamics, an alternative phase definition has been proposed based on the local curvature properties of the ana-
lytical signal53, i.e.,

φ = . t dy t dt
dx t dt

( ) arctan ( )/
( )/ (11)

Since in the standard Hilbert transform-based definition, the phase variable φ(t) does not necessarily increase 
monotonously in time, we quantify this monotonicity in order to obtain a simple heuristic order parameter for 
phase coherence, which we will refer to as the coherence index

∫ φ= Θ −
→∞

∞
CI

T
t dtlim 1 ( ( )) (12)T 0

Figure 9.  Ordinal transition networks on the path to phase synchronization of Eq. (8), for three typical coupling 
strength. (a) Random transitions in the non-sync regime of κ = 0.02 < κc1, (b) dominant structure appears in the 
regime that oscillators k = 1 and k = 2 are phase synchronized, but not with k = 3, κ = 0.06 ∈ [κc1, κc2], (c) only 
one transition route of ordinal patterns is observed when all three oscillators are phase locked κ = 0.08 > κc2. 
Thickness of links are determined by the associated frequencies in the transition networks and self-loops are 
removed. In (a,b), link arrows are suppressed for the ease of visualization.
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with φ φ= t d t dt( ) ( )/ . Furthermore, the instantaneous frequency of a chaotic oscillator is then defined as the 
derivative of the phase variable with respect to time. Averaging this property over time yields the mean 
frequency

π
φ

Ω = .
d t

dt
1

2
( )

(13)
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