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ABSTRACT Mycobacterial 6-kDa early secreted antigenic target (ESAT-6) system (ESX)
exporters transport proteins across the cytoplasmic membrane. Many proteins trans-
ported by ESX systems are then translocated across the mycobacterial cell envelope
and secreted from the cell. Although the mechanism underlying protein transport
across the mycolate outer membrane remains elusive, the ESX systems are closely
connected with and localize to the cell envelope. Links between ESX-associated pro-
teins, cell wall synthesis, and the maintenance of cell envelope integrity have been
reported. Genes encoding the ESX systems and those required for biosynthesis of
the mycobacterial envelope are coregulated. Here, we review the interplay between
ESX systems and the mycobacterial cell envelope.
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Bacterial protein transporters are large molecular machines that assemble within the
cytoplasm and bacterial cell envelope, which generally consists of the cytoplasmic

membrane (CM) and extracytoplasmic compartments. All bacteria use protein secretion
systems to actively transport protein substrates and/or nucleic acids from the bacterial
cytoplasm to extracytoplasmic environments (1). In diderm-lipopolysaccharide (LPS)
(Gram-negative) bacteria, which have an inner membrane (IM) and an outer membrane
(OM) containing LPS, there are nine types of secretion systems (types I to IX) (1). Types
I through VI, the most characterized systems, promote the secretion of proteins across
the IM and the OM (recently reviewed in reference 2). In monoderm (Gram-positive)
bacteria, which have only a CM, there are eight secretion systems that promote protein
secretion across the CM (reviewed in reference 1). Based on microscopy studies and
lipid analysis, mycobacteria are considered to be diderm bacteria (1, 3–5). However, the
mycobacterial cell envelope contains a mycolate-OM (MOM), which differs in lipid
content from other diderm OMs (Fig. 1) (reviewed in references 1 and 6 to 8). As such,
mycobacteria are classified as diderm-mycolate bacteria (1).

Hundreds of mycobacterial proteins are routinely observed on the cell surface or in
the culture medium during in vitro growth (9–12). As with other OMs, the MOM is
frequently regarded as a permeability barrier (13–15). Yet, it is unknown how any
mycobacterial proteins are secreted across the MOM (15). In contrast to secretion,
export is the transport of substrates from the cytoplasm across the cytoplasmic membrane.
The general secretory pathway (Sec) and the twin-arginine transporter (TAT) are
well-characterized examples of protein exporters (1). In mycobacteria and several
monoderm bacteria, there is a unique family of protein exporters referred to as 6-kDa
early secreted antigenic target (ESAT-6) system/WXG-100 secretion system (ESX/WSS)
or type VII secretion systems (16–21). There is no known ESX counterpart in diderm-LPS
bacteria. However, proteins with WXG motifs, which are a hallmark of substrates of the
ESX/WSS, have been described in diderm-LPS bacteria (22).

As of yet, there is no evidence that the ESX apparatus spans the envelope. Therefore,
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we refer to ESX-mediated protein transport as export. Yet, ESX substrates are secreted
from the mycobacterial cell. Therefore, either the export machinery or the substrates
themselves likely intimately interact with the MOM. Several recent studies have re-
ported connections between ESX systems and the cell envelope in different mycobac-
terial species (23–25), prompting us to revisit the literature linking ESX systems with the
mycobacterial cell envelope. Here, we focus on protein transport across the envelope,
interaction between ESX proteins and the cell envelope, links between ESX and cell
envelope integrity, and coregulation of the ESX systems and components of the cell
envelope.

OVERVIEW OF MYCOBACTERIAL ESX SYSTEMS

Mycobacteria have several ESX systems encoded within the genome or on conju-
gative plasmids (26–29). Up to five ESX systems can be encoded in the genome (ESX-1
to ESX-5). Protein transport has been demonstrated for the ESX-1, ESX-5, and ESX-3
systems but not for the ESX-2 and ESX-4 systems (18, 30–32). ESX systems generally
include ESX conserved components (Ecc proteins), a mycosin serine protease (MycP),
and a pair of small secreted antigenic proteins with WXG-100 motifs (Esx proteins) (16,
17, 26). Interestingly, outside the conserved components, ESX systems vary in genetic
composition and function across diverse mycobacterial species. In this section, we
highlight the five ESX systems encoded in the mycobacterial genome and how these
systems vary functionally in mycobacteria. The molecular details and functions of the
ESX systems have been more comprehensively reviewed elsewhere (18, 33–36).

The genes encoding ESX systems are conserved across diverse mycobacterial spe-
cies (27, 29). Mycobacterium tuberculosis is the causative agent of human tuberculosis
(37). Because M. tuberculosis grows slowly and must be used in a biosafety level 3
facility, additional mycobacterial species have served as model systems to define

FIG 1 ESX exporters in the mycobacterial cell envelope. The model shows a cartoon representation of the
complex mycobacterial cell envelope, spanning from the cytoplasmic membrane through the mycolate
outer membrane (MOM) and capsule. Proteins are excluded from the cell envelope, other than ESX
proteins, for simplicity. Components of the envelope are not drawn to scale. For a recent review on the
mycobacterial cell envelope, please see references 7, 80, and 81. The ESX membrane complex and MycP
are indicated in the cytoplasmic membrane (striped). The dotted line in the Ecc protein refers to the fact
that specifically in the ESX-1 system, the EccC protein is split into two proteins (EccCa1 and EccCb1).
Additional ESX proteins required for transport are excluded for simplicity (Esp and additional Ecc
proteins, PE and PPE). For recent reviews on the molecular mechanisms of ESX export, please see
references 33 to 36. The cartoon was based on schematics in references 80 and 144. Ecc, ESX-conserved
component. Large arrow indicates that proteins traverse the cell wall via an unknown mechanism.
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mechanisms and functions of the ESX systems (18, 37–41). Importantly, studying ESX
systems in distinct mycobacterial species has provided insight into the function of ESX
exporters that would have been otherwise missed by studying a single mycobacterial
species.

In M. tuberculosis and other mycobacterial pathogens (M. marinum and M. bovis), the
ESX-1 and ESX-5 systems are required for virulence (30, 31, 42–45). The loss of ESX-1 or
ESX-5 genes in pathogenic mycobacteria causes attenuation in cellular and animal
models of infection (30, 31, 42–51). Pathogenic mycobacteria use the ESX-1 system to
damage the phagosomal membrane while residing within phagocytes (52–56). The
ESX-5 system, which is restricted to slow-growing mycobacterial species, likely pro-
motes the uptake of nutrients essential for mycobacterial survival in the phagocyte (27,
50, 57, 58). Relative to the ESX-1 system, the ESX-5 system secretes a large number of
proline-glutamate/proline-proline-glutamate (PE/PPE) proteins which promote viru-
lence (51, 59–62). ESX-5 is also unique in that it is a modular system; accessory
components outside the conserved locus promote the secretion of a specific subset of
ESX-5 substrates (36, 63).

In Mycobacterium smegmatis, two ESX systems promote atypical conjugation (64–
67). Conjugation is a process by which genetic material is transferred directionally from
a donor cell to a recipient cell. M. smegmatis undergoes distributive conjugal transfer,
in which donated DNA is integrated in an unpredictable genome-wide manner. Inter-
estingly, in addition to regulating conjugation, genes encoding ESX-1 confer mating
type designations (donor versus recipient) in M. smegmatis (66, 68). Recently, Gray et al.
(67) found that the ESX-4 system was required for conjugation specifically in recipient
strains. Moreover, expression of ESX-4 genes was induced in recipient cells in an
ESX-1-dependent manner during donor-recipient coculture experiments. Therefore, in
M. smegmatis, ESX-1 and ESX-4 systems coordinate communication between mycobac-
terial cells (67). In support of these findings, a recent study by Boritsch et al. indicated
that a similar process of horizontal gene transfer was observed in Mycobacterium
canettii, a close relative of M. tuberculosis. Although the dependence of the observed
DNA transfer on the ESX-1 and ESX-4 systems was not tested, this study indicates that
horizontal gene transfer is likely widespread in mycobacteria (69).

ESX-3 systems have two independent functional roles in mycobacteria. First, ESX-3
systems promote metal homeostasis (32, 70–74). Although ESX-3 promotes
siderophore-mediated iron and zinc acquisition in M. tuberculosis (70, 71), in M. smeg-
matis, the ESX-3 system promotes iron homeostasis only (71, 72). Underscoring the
importance of metal homeostasis, ESX-3 genes are essential in M. tuberculosis; survival
in the absence of ESX-3 genes can be restored with metal supplementation (73).
Second, the ESX-3 system promotes virulence of M. tuberculosis (73, 75). The ESX-3
substrate EsxH directly interacts with host endosomal sorting complexes required for
transport (ESCRT) machinery, preventing phagosomal maturation and antigen presen-
tation during macrophage infection with M. tuberculosis (75, 76).

Compared to the other ESX systems, little is known about ESX-2. Like ESX-5, ESX-2
systems are restricted to slow-growing mycobacterial species (27). ESX-2 genes are
transcriptionally coregulated in M. tuberculosis with genes encoding additional ESX
systems and were identified in a screen for genes necessary for survival in dendritic cells
(77–79).

MYCOBACTERIAL CELL ENVELOPE

After crossing the CM, secreted proteins must transit several layers that form the
mycobacterial envelope, including a covalently linked structure of peptidoglycan,
arabinogalactan, and mycolic acids (Fig. 1) (7, 80). Because the mycobacterial pepti-
doglycan structure was recently reviewed by Alderwick et al., we will not discuss it in
detail here (81). Covalently attached to the peptidoglycan is arabinogalactan, a mac-
romolecule consisting of a chain of galactan that is modified with 2 to 3 branched
arabinan chains (reviewed in references 6 and 80).

The MOM is linked to the arabinogalactan via covalent bonds between mycolic acids
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and the arabinan units of arabinogalactan (6). Mycolic acids and extractable lipids and
glycolipids form the MOM. Other mycobacterial lipids may include, but are not limited
to, trehalose-containing lipids (e.g., sulfolipids, polyacyltrehalose [PAT], diacyltrehalose
[DAT], and lipooligosaccharide [LOS]), phthiocerol dimycocerosates (PDIM), and phe-
nolic glycolipids (PGLs) (reviewed in reference 80). The mycobacterial cell envelope also
includes a capsule layer (4).

Although many lipid biosynthesis genes are conserved among mycobacterial spe-
cies, the lipid content of the envelope varies (82). PDIM and PGL biosynthesis genes are
conserved in M. tuberculosis and in M. marinum but not in M. smegmatis (83). M.
smegmatis has glycopeptidolipids (GPLs) on the cell surface (80). M. tuberculosis pro-
duces sulfolipids, which are not present in M. marinum (84, 85). M. marinum produces
LOS, which are not found in M. tuberculosis (86–88). There are even differences in lipid
content between isolates of the same species. For example, although the M. tubercu-
losis genome contains genes required for PDIM and PGL synthesis, some isolates of M.
tuberculosis do not make PGLs (89). The differences in the mycobacterial cell envelope
are important because a variety of ESX systems must interact with each unique cell
envelope.

The mycobacterial cell envelope functions as a major virulence determinant. Patho-
genic mycobacteria with mutations in PDIM biosynthesis genes are attenuated in
cellular and animal infection models (90–92). Glycolipids can interact directly with host
immune receptors (reviewed in reference 93). Many mycobacterial lipids are antigens
that can activate CD1-restricted T cells (94). Intriguingly, it has been suggested that
mycobacterial lipids may also insert directly into host cell membranes, altering mem-
brane fluidity and affecting phagocytosis and trafficking (reviewed in references 94 and
95).

CELL WALL SYNTHESIS AND ESX SYSTEMS

ESX systems have been repeatedly linked to envelope biogenesis, primarily at the
level of gene expression. Several transcription factors regulate the genes required for
both cell wall processes and ESX transport. For example, the MprAB two-component
system responds to cell envelope stress and regulates ESX-1 genes (96–99). Sodium
chloride stress pathways influence the expression of genes required for cell wall
remodeling and of ESX-1 genes (espACD) in M. tuberculosis CDC1551 (100). EspR is a
transcriptional regulator of the ESX-1 system (77, 101). Loss of espR expression abro-
gates ESX-1 secretion and attenuates M. tuberculosis (101). In addition to the ESX-1
system, EspR regulates many cell wall genes, including those responsible for PDIM
production, PE/PPE genes, and genes at the ESX-2 and ESX-5 loci (reference 77 and
reviewed in reference 102). PhoP is part of a two-component system that regulates
several virulence pathways in M. tuberculosis, including biosynthetic genes of the M.
tuberculosis-specific lipids, sulfolipid, DAT, and PAT (103). In addition to regulating lipid
biosynthesis genes, PhoP also regulates whiB6 and works directly with EspR, and both
regulate ESX-1 gene expression (96, 104, 105). Therefore, under many of the conditions
in which cell envelope remodeling may be occurring or where cell wall genes are
regulated, ESX genes are also regulated.

Links between the regulation of genes encoding ESX systems and the cell envelope
have been extended to cellular models. A 2015 study by Mendum et al. found that
lipids (PDIM, TDM, sulfolipids, and PGL), ESX systems (ESX-1, ESX-2, and ESX-4), and
ESX-related genes (PPE proteins) were prominent pathways needed for survival in
dendritic cells (79). In a macrophage infection model, the expression of PDIM-related
genes was downregulated during infection, while the expression of other lipid biosyn-
thesis genes (including those encoding sulfolipids, DAT, and PAT), ESX-1-related genes,
and espR was induced (106).

In addition to regulatory linkages, ESX-1 proteins have been linked directly to lipid
composition and metabolism. In 2012, Joshi et al. (107) demonstrated that EccA1, an
ESX-1-associated protein (44, 49), complexes with mycolic acid (Pks13, KasB, KasA, and
MmaA4) and PDIM/PGL synthesis (Mas, Pks15/1, PpsD, and PpsE) proteins in M. mari-
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num. Disruption of the eccA1 gene resulted in a 30 to 40% reduction in mycolic acid in
M. marinum, suggesting that EccA1 promotes mycolic acid synthesis (107).

A recent study examined metabolic changes in the presence and absence of ESX-1
genes in M. smegmatis (23). ESX-1-deficient strains showed significantly elevated levels
of 22 metabolites compared to the wild-type strains under growth on a variety of
carbon sources (23). Several of the identified metabolites were linked to cell envelope
biogenesis, including mycolic acid synthesis, peptidoglycan biosynthesis, and arabi-
nogalactan and arabinomannan biogenesis (23). Metabolic changes were not ad-
dressed in a complemented strain, leaving some possibility that the metabolic changes
were not due to a loss of ESX-1 export. Nevertheless, this study is consistent with the
study linking EccA1 to mycolic acid biosynthesis (107).

Mycobacterial species can exhibit a smooth or rough colony morphology when
grown on agar. Disruption of some individual genes required for lipid biosynthesis
results in changes to colony morphology (from smooth to rough, or rough to smooth)
when grown on agar (86, 88, 90, 108). Interestingly, the loss of individual ESX-1 genes
in several mycobacterial species also results in changes in colony morphologies. For
example, Mycobacterium bovis BCG and Mycobacterium microti bear natural deletions in
ESX-1 genes. The introduction of ESX-1 genes from M. tuberculosis into the M. bovis BCG
Pasteur and M. microti strains resulted in the conversion from a smooth to rough colony
phenotype (48). In M. marinum, strains bearing deletions in ESX-1 or ESX-5 genes also
display smooth/shiny colony morphologies (50, 51, 109, 110). M. tuberculosis H37Ra is
an attenuated laboratory strain. H37Ra is attenuated primarily due to a mutation in the
phoP gene. Restoration of a wide-type copy of the phoP gene was sufficient to restore
ESX-1 secretion and virulence and to promote the conversion of the H37Ra strain from
a smooth to a rough colony morphology (111). The smooth-colony phenotype ob-
served in the absence of ESX systems may indicate that ESX systems impact the cell
envelope composition, either directly or indirectly. However, the mechanism by which
the loss of ESX systems impacts colony morphology remains unknown.

Bacterial secretion systems and other large machinery, such as flagella and
conjugation systems, frequently require localized cell wall remodeling to insert into
the cell envelope (reviewed in references 112 and 113). Mycobacterial cell growth
occurs from both cell poles, with faster growth occurring at the old pole (reviewed
in reference 114). Proteins involved in peptidoglycan, arabinogalactan, and mycolic
acid synthesis and transport localize to polar regions (115, 116). Consistent with a
link between ESX systems and cell envelope biogenesis, several protein compo-
nents of the ESX-1 system have been localized to the mycobacterial cell pole in M.
marinum and M. smegmatis (109, 117). Localization of components of other ESX
systems has not been determined. However, the Rv1818c (PE_PGRS33) ESX-5
substrate has been localized to the mycobacterial pole, which may indicate that the
ESX-5 system is also polar (61, 118). The polar localization of ESX-1 systems and cell
wall biogenesis proteins may indicate that lipid or cell wall processes play a role in
ESX-1 localization and assembly.

ESX SYSTEMS AND ENVELOPE PERMEABILITY

The lipid-rich MOM is thought to form a natural permeability barrier to hydrophilic
molecules and nutrients, much like the OM of diderm-LPS bacteria (119, 120). However,
the cell envelope from diverse mycobacterial species is reportedly 20- to 100-fold less
permeable to hydrophilic solutes than the E. coli OM (120, 121). Both mycobacteria and
diderm-LPS bacteria are intrinsically resistant to several antibiotics, including the large
hydrophilic glycopeptide vancomycin (122, 123). Consistent with the idea that myco-
bacterial lipids provide a permeability barrier, mycobacterial strains lacking PDIM have
increased susceptibility to vancomycin (124, 125).

In diderm-LPS bacteria, many outer membrane proteins (OMPs) have �-barrel
structures and form channels or porins in the outer membrane that promote nutrient
acquisition (126, 127). In mycobacteria, relatively few proteins that function as channels
through the MOM have been characterized (128–131). The MspA protein in M. smeg-
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matis is the best characterized mycobacterial porin but has no orthologue in M.
tuberculosis (129). More recently, CpnT (Rv3903c) was identified as a mycobacterial
toxin and water-filled protein channel that promotes the uptake of glycerol and
hydrophilic and hydrophobic antibiotics (131, 132).

There are conflicting data linking the ESX-1 system and membrane permeability.
Garces et al. reported that M. tuberculosis ESX-1-deficient strains (specifically lacking the
EspA substrate) are more sensitive to SDS treatment and other envelope stresses,
indicating increased permeability (133). In contrast, Chen et al. found that loss of the
espA gene or deletion of other ESX-1 genes did not impact cell wall integrity. They
found no differences between the wild-type and espA mutant strains in Nile red or
ethidium bromide (EtBr) uptake or in sensitivity to SDS, which are common measures
of permeability (134). We observed no differences in EtBr uptake between ESX-1-
deficient and wild-type M. marinum strains (135). Differences in strain background
could account for the divergent conclusions.

In contrast to ESX-1, the ESX-5 system is clearly involved in OM permeability. The
ESX-5 system is essential for in vitro growth of M. tuberculosis, M. bovis, and M. marinum
(58, 136). The essential nature of a subset of ESX-5 genes, primarily encoding compo-
nents, has been reported by several groups (31, 51, 136–138). Interestingly, essentiality
could be bypassed under certain conditions where the MOM was permeabilized.
Individual ESX-5 genes could be deleted from the M. marinum genome when PDIM/PGL
biosynthesis genes were mutated or by expressing the MspA porin from M. smegmatis
to permeabilize the envelope. From these findings, the ESX-5 system may include the
uptake of essential nutrients (58). While the essential nutrient capable of passing
through the MspA porin was unidentified, Ates et al. demonstrated that ESX-5 pro-
motes the uptake of fatty acids (58). The ESX-5 system was recently shown to be
induced by phosphate limitation (139, 140). However, it has not been tested whether
ESX-5 or ESX-5 substrates can promote the uptake of phosphate.

Ates et al. proposed that the activity of ESX-5 substrates, rather than the ESX-5
system itself, is essential (58). Although the precise substrates have yet to be identified,
overexpression of the PE19 substrate in M. tuberculosis leads to increased membrane
permeability (139, 141).

The fact that deletions of essential ESX-5 genes could be generated when the
envelope was permeabilized raises the possibility that spontaneous mutations in
lipid biogenesis genes are present in strains with defective ESX-5 systems. In
support of this idea, strains with transposon insertions in the eccC5 and eccD5 genes,
which are essential in M. tuberculosis (136), were isolated in the clinical M. tuber-
culosis strain CDC1551 (59). Although both strains exhibited increased membrane
permeability, the permeability phenotype was genetically unlinked from the ESX-5
genes (58, 59).

A new study has linked ESX-5 to a drug resistance phenotype. Resistance to
ofloxacin and other fluoroquinolones is generally established through mutation of the
genes encoding DNA gyrase (142). Interestingly, ofloxacin-monoresistant M. tuberculo-
sis clinical isolates lacking DNA gyrase mutations were reported to have mutations in
ESX-5 genes (143). The eccC5 V762G mutation found in the clinical strains was sufficient
to promote ofloxacin resistance when recapitulated in the M. tuberculosis H37Rv
laboratory strain (143). While the mechanism linking ESX-5 to ofloxacin resistance is
unknown (143), based on the studies presented above (58, 141), mutation of an ESX-5
component could cause increased ofloxacin resistance by decreasing OM permeability
and reducing the uptake of ofloxacin.

Not all ESX-5 genes are essential. Transposon insertions in the eccA5 and espG5 genes
have been previously described (31, 51, 86). Disruption of espG5 and the substrate-
containing gene ppe10 in M. marinum or the espG5 gene in M. tuberculosis impacted the
appearance and composition of the capsule, indicating a role for ESX-5 in maintaining
capsule integrity (50).
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CROSSING THE ENVELOPE

The mechanism of protein secretion across the envelope and the MOM is perhaps
one of the most prominent unanswered questions in the field. Because ESX substrates
are secreted from the mycobacterial cell, there are several options to consider for
transport across the mycobacterial envelope. If the mycobacterial envelope acts as an
impermeability barrier, as discussed above, there must be at least one apparatus that
spans the envelope. Each ESX system could have independent means to cross the
MOM, making the ESX systems true secretion systems. Alternatively, there could be a
shared mechanism used by several exporters (ESX, Sec, or Tat) by which proteins cross
the envelope. If the mycobacterial envelope is permeable, no apparatus may be needed
to promote substrate transit across the envelope. Instead, properties intrinsic to
secreted proteins could promote transit across the envelope. Unlike other secretion
systems, the structure of an assembled ESX apparatus remains unknown (1). However,
consideration of the localization of ESX-associated proteins in the envelope may inform
potential mechanisms of transport.

CM. Four ESX component proteins (EccB, EccC, EccD, and EccE) form a complex in
the CM (59, 144). The ESX-5 membrane complex from Mycobacterium xenopi was
recently resolved to 13 Å by electron microscopy and revealed a novel oligomeric
complex with 6-fold symmetry. The complex resides exclusively within the cytoplasmic
membrane and hints at a novel mechanism of protein translocation (145). Higher-
resolution structures have been solved for individual components in the membrane
complex (146–150). Importantly, the membrane complex is restricted to the CM and
does not span the envelope. The mycosin proteases may function to stabilize the
membrane complex (144). In addition to having a structural role, the mycosin proteases
cleave ESX substrates. The ESX-1-secreted protein EspB is cleaved by MycP1 upon
secretion (151). The mature processed form of EspB binds phospholipids (phosphatidic
acid and phosphatidyl serine), suggesting that EspB may interact with either the
cytoplasmic membrane or with phospholipids in the host cell (152).

Cell wall. For bacterial protein secretion systems and other molecular machinery,
the apparatus is inserted into the bacterial cell envelope, where it interacts directly with
the peptidoglycan. Peptidoglycan-binding proteins promote pilus assembly and an-
choring in the cell envelope. In the Neisseria gonorrhoeae type IVa pilus system, a
peptidoglycan-binding protein anchors the apparatus in the membrane (153). In the
Pseudomonas aeruginosa type IV pilus system FimV, an inner membrane protein that
binds peptidoglycan is required for multimerization of PilQ (outer membrane compo-
nent of the type VI pilus [154]).

The interaction of any ESX component with peptidoglycan/arabinogalactan has yet
to be demonstrated in mycobacteria. Based upon the structure of the EccB1 component
(subscripted “1” indicates that this protein is part of ESX-1 [17]), part of EccB1 may
extend into the periplasm and interact with peptidoglycan (148). The peptidoglycan-
binding properties of EccB1 have not been directly tested.

The characterization of MOM proteins may provide insight into their secretory
mechanism. It is possible that known proteins integral to the MOM promote the transit
of proteins across the envelope. For example, in silico analyses have suggested that
Mce1 family proteins, which have a role in lipid homeostasis and transport, may
promote ESX-1-mediated translocation across the MOM (130, 155, 156). The proposed
link between the Mce1 proteins and ESX-1 is based on phylogenetic profiles, predicted
protein-protein relationships, and analyses suggesting the Mce proteins may be MOM
pore-forming proteins (155). A direct role for Mce1 family proteins in protein transport
has not been demonstrated.

Alternatively, the ESX substrates may direct their own transit across the MOM, by
either forming the apparatus spanning the MOM or by transiting the MOM directly (48,
104, 157–159). Notably, the EspC substrate of the ESX-1 system in M. tuberculosis (160)
was recently reported by Lou et al. to self-assemble into filaments in vitro. EspC
filaments were localized to the membrane fraction and were visualized on the surface/
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capsule of M. tuberculosis (157). The assembly of EspC into filaments led to several
intriguing ideas, including one that EspC is a component of the MOM channel or a
“needle” for the ESX-1 system (157, 161). EspC is encoded with the EspA and EspD
substrates by the espACD operon (160, 162, 163). There are no recognized espACD
counterparts for the ESX-2 through ESX-5 systems. The EspACD proteins may fulfill a
function that is specific to the ESX-1 system, for example by promoting interaction with
the host cell. Alternatively, additional systems may have genes which are functionally
redundant with the espACD genes.

ESX substrates have been localized to the mycobacterial cell surface, extrinsically
associated with the MOM (4, 31, 58, 60, 109, 164–167). Surface-localized ESX-1 sub-
strates include EsxA and EspE. The EsxA substrate has been visualized and quantified on
the mycobacterial cell surface (164, 166, 167). Several PE_PGRS proteins, a subfamily of
PE proteins with polymorphic GC-rich sequences, are surface-localized ESX-5 substrates
(51). The mechanism determining whether ESX substrates are targeted to the cell
surface or the extracellular environment and the relationship between the surface-
localized and secreted populations is unknown. However, a link between PE_PGRS
secretion and LOS biosynthesis genes was reported in M. marinum (86). Interestingly, in
strains lacking LOS, PE_PGRS proteins and the ESX-1 substrate EspE were more strongly
attached to the cell surface, possibly linking LOS to the localization of ESX substrates on
the cell surface (86).

Extracellular locations. In vitro mycobacterial growth conditions preclude reten-
tion of the mycobacterial capsule. Specifically, mycobacterial strains are grown in vitro
in the presence of detergent, usually either Tween 80 or tyloxapol, to reduce bacterial
clumping during growth. Growth in detergent promotes the release of the mycobac-
terial capsule into the growth medium (4, 168). When mycobacteria are grown without
detergent, to promote the retention of the capsule, several ESX-1 and ESX-5 substrates
are localized to the capsule layer (4, 165, 169). Mycobacterial protein secretion is largely
studied by the presence or absence of proteins in spent medium during in vitro growth.
Indeed, a long list of proteins found in spent medium are dependent on ESX systems
(30–32, 42–44, 51, 57, 59, 65, 73, 74, 101, 110, 162, 163, 165, 169–172).

ESX-1, A MEMBRANOLYTIC SYSTEM

The ESX-1 system has long been known to promote membrane lysis. In mycobac-
terial pathogens, the ESX-1 system damages the phagosomal membrane, promoting
interaction between the bacteria and cytoplasm of host macrophages (46, 52, 55, 56,
173–175). Cytosolic signaling is required for mycobacterial virulence (173, 174, 175).
Therefore, mycobacterial strains lacking ESX-1 genes are attenuated likely because they
are retained in the phagosome and cannot trigger cytosolic signaling. Indeed, the
expression of a secreted lysin from Listeria monocytogenes (LLO) in the absence of a
functional ESX-1 exporter was sufficient to bypass the need for ESX-1 export in
macrophage infections (173).

ESX-1 substrates have been considered prime candidates for mycobacterial mem-
brane lysins. In 2003, it was proposed that EsxA, a major ESX-1 substrate, was the major
membrane lysin secreted by the ESX-1 system. Genetic analysis of the function of EsxA
is complicated. EsxA and its binding partner, EsxB, are encoded from the esxBA operon
(176). Deletion of the esxBA operon, or of the esxA gene, abrogates ESX-1 export in
pathogenic mycobacteria (30, 43). Because the loss of EsxA and EsxB secretion from
pathogenic mycobacteria prevents the secretion of all of the other known ESX-1
substrates (165), it is difficult to ascribe a function to individual ESX-1 substrates using
genetics alone. As such, the proposed membranolytic activity of EsxA has been
supported by biochemical and biophysical analyses conducted by several research
groups.

EsxA was first proposed to be a membrane lysin by Hsu et al. in a landmark paper
which linked the loss of the region of deletion 1 (RD1) to attenuation of the BCG vaccine
strain (42). The authors conducted a screen designed to identify genes required for
cytolysis of lung epithelial cells, and one of the strains they identified was an M.
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tuberculosis strain bearing a transposon insertion in the esxB gene, which was polar on
esxA expression. The authors then demonstrated that purified EsxA, in the presence or
absence of EsxB, was sufficient to cause membrane destruction, as determined by
measuring changes in conductance across an artificial membrane bilayer. These initial
biophysical data were extended by several independent reports, including those
demonstrating EsxA-dependent lysis of physiologically relevant liposome membranes
(177), characterizing pore formation in sheep red blood cell (sRBC) membranes by EsxA
(53), and the lysis of type 1 and type 2 pneumocytes by either purified EsxA or EsxA
applied to the surface of ESX-1-deficient mycobacterial strains (167). Several more
recent studies have focused on the mechanism of EsxA membrane lysis by investigating
changes to membrane lysis as a function of pH (177), by comparing the activities of
EsxA proteins from pathogenic and nonpathogenic mycobacterial species (178, 179),
and by generating specific point mutations which disrupt the membranolytic activity of
EsxA (180). For a recent comprehensive review of the evidence of EsxA pore-forming
activity, please see the study by Peng and Sun (181).

Despite the aforementioned studies, the ability of EsxA to lyse membranes inde-
pendently has been recently challenged. Conrad et al. found undeniably that EsxA is
not sufficient to promote membrane lysis (182). Recombinant EsxA is widely acquired
directly from the BEI repository or produced using a nondenaturing protocol, which
includes the addition of detergent (183). In a series of well-controlled and clearly
interpretable experiments, Conrad et al. demonstrated that the detergent present in
the EsxA preparations, and not the EsxA protein itself, was responsible for the observed
membranolytic activity of EsxA. Treatment of recombinant preparations of EsxA or
Staphylococcus aureus �-hemolysin or Streptococcus pneumoniae pneumolysin (Hla and
PLY, respectively, established bacterial lysins) with proteinase K abrogated Hla and PLY
activity but did not alter the lytic activity of the EsxA preparation. Although the authors
observed pH-dependent lytic activity of recombinant EsxA prepared without detergent,
they show that changes in pH are not required to mediate ESX-1-mediated phagosomal
lysis in a cellular model of infection. Thus, either EsxA is not required for phagosomal
lysis, or additional ESX-1-associated proteins are required (182).

Although EsxA appears to be insufficient to promote ESX-1-mediated membrane
lysis, the study by Conrad et al. definitively showed that the M. marinum ESX-1 system
functions to lyse membranes in a contact-dependent manner (182). Contact-dependent
membrane lysis by mycobacteria has been suggested but not directly demonstrated in
several earlier studies (44, 167, 184). Coupled with evidence that ESX-1 substrates are
present in the capsule and on the cell surface, discovered by our group and several
others, direct translocation of ESX-1 substrates into the host macrophage may not
occur. Rather, the presence of ESX-1 substrates on the cell surface may be sufficient for
promoting phagosomal lysis (134, 166–185). Alternatively, contact with membranes
may induce ESX-1 secretion through an unknown signal transduction mechanism.

Although strains bearing mutations in genes required for PDIM production are still
competent to secrete ESX-1 substrates in vitro, recent studies have suggested that PDIM
works synergistically with ESX-1 to promote phagosomal damage (24, 25). A recent
study by Quigley et al. linked the levels of PDIM production with the ability of M.
tuberculosis to promote phagosomal damage and downstream events in the macro-
phage (25). MmpL7 transports PDIM from the cytoplasm, where it is generated, to the
MOM. In the absence of Mmpl7, PDIM accumulates in the mycobacterial cytoplasm (90).
Quigley et al. demonstrated that M. tuberculosis strains bearing a transposon insertion
in the mmpL7 gene damage the phagosomal membrane of THP-1 cells significantly less
than the wild type (WT) or the complemented strain. As such, the mmpL7::Tn strain
promoted less autophagy and host cell necrosis, events that are downstream of
phagosomal damage. Importantly, a clean deletion of the mmpL7 gene did not impact
the secretion of EsxA by M. tuberculosis in vitro (25). In another recent study, Augen-
streich et al. demonstrated that M. tuberculosis strains lacking genes required for PDIM
production led to reduced phagosomal damage in human monocyte-derived macro-
phages. The same study investigated if the mycobacterial lipid PDIM enhances phago-
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somal lysis by the ESX-1 system by incubating EsxA with vesicles with and without
PDIM. Membrane lysis was enhanced in the PDIM-containing vesicles (24). In light of the
paper by Conrad et al. (182), the mechanism linking PDIM to ESX-1 lysis is unlikely
directly through EsxA. Yet, both studies concluded that PDIM aids in ESX-1-mediated
membrane damage by likely inserting into and changing the biophysical properties of
the phagosomal membrane, making it more susceptible to lysis by the ESX-1 system
(24, 25).

We also recently observed a connection between PDIM biosynthesis and ESX-1
function (135). We found a spontaneous ochre mutation in the eccCb1 gene, which
encodes a component of the ESX-1 system (30, 43, 44). The ochre mutation in eccCb1

resulted in a loss of ESX-1 function in M. marinum. Interestingly, we identified several
suppressor strains which allowed the production of EccCb1 and restoration of ESX-1
function. In our efforts to map the suppressor of the ochre mutation, we found that the
suppressor strains all had the same 13-bp insertion in the ppsC gene. ppsC is part of the
pps operon, which is required for the production of PDIM (90, 186). While we do not yet
understand the mechanism of suppression, our findings genetically link the ESX-1
system to PDIM production.

Additional links between the ESX-1 system and mycobacterial lipids have been
reported. For example, pathogenic mycobacteria prevent the maturation of the phago-
some within the host macrophage. In a screen designed to elucidate genes required for
phagosome maturation arrest (PMA), lipid biosynthesis genes and genes encoding
ESX-1 components were both identified (187). The mechanisms connecting ESX-1
genes and lipid biosynthetic genes in PMA are unknown.

CONCLUSIONS

In summary, the relationship between ESX systems with the mycobacterial envelope
is a complex and evolving story. Many details and unanswered questions remain (Fig.
2). How do secreted proteins cross the mycolate outer membrane? Do ESX substrates
directly interact with the envelope, or are the ESX systems true secretion machines with
components that span the envelope? How do ESX systems impact lipid biogenesis, and
what are the downstream consequences? Do ESX systems provide additional functions
for the mycobacterial cell, for example, by maintaining lipid biogenesis or envelope
integrity in addition to roles in protein secretion? And finally, do these two complex

FIG 2 Unanswered questions regarding the interactions between ESX systems and the mycobacterial cell
envelope. CM, cytoplasmic membrane; PG, peptidoglycan; AG, arabinogalactan; MOM, mycolate outer
membrane.
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systems, the mycobacterial cell envelope and the ESX exporters, work together to
promote virulence within the host? It is clear that the answers to these questions will
provide many exciting and revealing findings in the future.
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