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Abstract

While the rise of single-molecule sequencing systems has enabled an unprecedented rise in the 

ability to assemble complex regions of the genome, long segmental duplications in the genome 

still remain a challenging frontier in assembly. Segmental duplications are at the same time both 

gene rich and prone to large structural rearrangements, making the resolution of their sequences 

important in medical and evolutionary studies. Duplicated sequences that are collapsed in 

mammalian de novo assemblies are rarely identical; after a sequence is duplicated, it begins to 

acquire paralog specific variants. In this paper, we study the problem of resolving the variations in 

multicopy long-segmental duplications by developing and utilizing algorithms for polyploid 

phasing. We develop two algorithms: the first one is targeted at maximizing the likelihood of 

observing the reads given the underlying haplotypes using discrete matrix completion. The second 

algorithm is based on correlation clustering and exploits an assumption, which is often satisfied in 

these duplications, that each paralog has a sizable number of paralog-specific variants. We develop 

a detailed simulation methodology, and demonstrate the superior performance of the proposed 

algorithms on an array of simulated datasets. We measure the likelihood score as well as 

reconstruction accuracy, i.e., what fraction of the reads are clustered correctly. In both the 

performance metrics, we find that our algorithms dominate existing algorithms on more than 93% 

of the datasets. While the discrete matrix completion performs better on likelihood score, the 

correlation clustering algorithm performs better on reconstruction accuracy due to the stronger 

regularization inherent in the algorithm. We also show that our correlation-clustering algorithm 

can reconstruct on an average 7.0 haplotypes in 10-copy duplication data-sets whereas existing 

algorithms reconstruct less than 1 copy on average.

1 Introduction

Advances in single-molecule sequencing (SMS) by Pacific Biosciences (Menlo Park, CA), 

and Oxford Nanopore (Cambridge, UK) have recently enabled the assembly of draft de novo 
mammalian genomes [35, 21] nearing the quality of the original release of the human 

genome. The goal of de novo fragment assembly is to estimate the sequence of a genome 

given overlaps of relatively short sequencing reads, and is a well-studied problem. While 
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there are multiple formulations of the fragment assembly problem [27, 31], the common 

challenge is that repeats in the genome longer than the length of sequenced DNA fragments 

make a unique reconstruction of the genome impossible [30]. Reads produced by SMS are 

advantageous for de novo assembly because the read length is at least two orders of 

magnitude greater than other high-throughput sequencing methods, so that genome order 

may be uniquely resolved when repeats are small.

SMS reads are characterized by a raw read accuracy between 75% and 90% with read 

lengths that follow a log-normal distribution. Initial development in de novo assembly of 

SMS reads focused on efficient methods to detect overlaps between long but noisy reads [28, 

6]. Consistent with information theory [26], regions of genomes without sufficiently long 

repeats are contiguously assembled [24] with SMS reads. A type of repeat not well 

represented in human and other de novo SMS assemblies are segmental duplications: 

sequences 1 to 400 kilobases in length that are duplicated with at least 90% identity [18]. 

Segmental duplications are at the same time both gene rich and prone to large structural 

rearrangements, making the resolution of their sequences important in medical and 

evolutionary studies [37]. Comparing an SMS-based assembly of a Yoruban individual [38] 

to the human reference (GRCh38) reveals that only 64.2% of known segmentally duplicated 

bases in the human genome are present in the assembly. Due to the low raw-read accuracy of 

SMS sequences, reads from different duplication paralogs are frequently merged together 

into the same sequence in an assembly. As a result, human assemblies of SMS reads contain 

large contigs with correctly resolved unique sequence, and shorter contigs containing the 

collapse of multiple copies of a duplication into one sequence.

Segmental duplications that are collapsed in real de novo assemblies are rarely identical; 

after a sequence is duplicated, over generations it begins to acquire paralog specific variants 
(PSVs): single-nucleotide variants that distinguish different duplication paralogs. To put this 

in an evolutionary context, sequences that have duplicated shortly after the human-

chimpanzee divergence (6 million years ago) have acquired up to roughly one PSV per 

thousand bases [17]. Although the ultimate goal of de novo assembly is to completely 

resolve the sequence of a genome, an intermediate goal is to resolve the individual 

sequences that are collapsed in the assembly. We propose resolving sequences by estimating 

the number of duplications collapsed into an individual sequence in an assembly, and 

determining the PSVs belonging to each duplication.

Given S segmental-duplication paralogs of the same length containing V variants, one may 

represent all paralogs as an S × V matrix P with entries in {0, 1}, where each entry P(i, j) is 

0 if the repeat paralog i is in the consensus state at site j, or 1 if it is a PSV. The set of N 
reads from all repeat paralogs may be aligned to the consensus sequence, and represented as 

an N × V read-fragment matrix X with entries in {0, 1, −} corresponding to consensus, 

variant, or absent (since reads only give information about certain positions). The goal is to 

reconstruct the paralog matrix P given only the read matrix X, where there are also 

sequencing errors creating erroneous entries in X. Let us assume that the error probability is 

ε at any position, i.e., with probability 1−ε, the location is read correctly and with 

probability ε, the location is read incorrectly (0 is read as a 1 and vice-versa).
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For S = 2, this problem is identical to haplotype phasing of a diploid genome [25, 4, 29]. 

Defining a read conflict as two overlapping reads that are non-gap and disagreeing at a site, 

haplotype phasing with error-free reads may be determined by grouping all conflict-free 

reads. To handle sequencing errors, a common formulation for haplotype phasing is Minimal 

Error Correction (MEC), where a minimal number of base changes are applied to reads so 

that they may be partitioned into two conflict-free sets. For S = 2, there has also been an 

exact information theoretic characterization of when it is possible to phase the genome 

correctly [36, 13], along with efficient algorithms. This is based on connections to a problem 

called “community detection” [20] where the goal is to cluster users into communities based 

on positive or negative interactions between individuals.

When S > 2 this corresponds to the much less studied problem of polyploid phasing, which 

was discussed in pioneering work by Aguiar and Istrail [1]. Beginning with Hapcompass [1], 

there has been some work on polyploid phasing using algorithms based on branch-and-

extend [5], belief propagation [32] and semi-definite programming [14]. In a recent 

theoretical work [7], the hardness of optimizing the MEC for S > 2 has also been proven, 

indicating that algorithms for this problem need to be necessarily approximate or tailored to 

some assumptions. A major drawback of existing works is that they consider only S = 3, 4 

and none have been developed, optimized, or tested for the high ploidy that is encountered in 

segmental duplications, where S can be potentially larger than 10, and to the low error-rate 

in Illumina sequencers. Thus algorithms that are robust to the high error rates and can handle 

the high poly-ploidy are imperative in solving the segmental duplication problem, and in this 

paper, we will design such algorithms.

In particular, we propose two algorithms for solving the problem. The first approach is based 

on a discrete matrix completion paradigm where the goal is to maximize the likelihood of 

the observed data given the underlying haplotypes. The second approach is based on a 

correlation-clustering framework with an inherent assumption that each haplotype has a 

paralog-specific variant (which holds in many types of segmental duplications). By 

performing detailed simulations, we demonstrate the superior performance of the proposed 

algorithms over existing algorithms, especially in the high ploidy regime.

2 Haplotype phasing via Discrete Matrix Completion

2.1 A probabilistic model

In order to represent the matrices in real-valued arithmetic, we adopt the following mapping 

f: {0, 1,−} → {−1, 1, 0}, i.e., we represent the consensus allele as −1, variant as 1 and 

undisclosed locations as 0. To model the read matrix X, we first consider an idealized matrix 

M, which does not contain any noise nor does it contain any undisclosed position. If read n 
is sampled from the s-th paralog, then the n-th row of this matrix M is given by the s-th row 

of the paralog matrix, i.e., Mn. = f(Ps.). The disclosed locations of the matrix are represented 

by a set Ω which comprises of the set of tuples (n, v) where read n contains information 

about variant v. Given M and Ω, the matrix X is not a deterministic function since there are 

independent read errors, which convert a 1 into a −1 with probability ε and vice versa. The 

probability of observing X given M and Ω is therefore given as follows,
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where dH(X,M) is the Hamming distance between the two matrices X and M in the locations 

Ω, i.e., where X ≠ 0. Different haplotype assembly algorithms have sought to minimize 

varied objective criteria in order to obtain the correct clustering of reads belonging to the 

respective haplotypes [34]. Some of the noteworthy objectives are minimum edge removal 

(MER), minimum SNP removal (MSR) and minimum error correction (MEC). The quantity 

dH(X,M) is called the error criterion, and in our approach, maximizing the likelihood is 

equivalent to minimizing this error criterion referred to as MEC.

We observe that the ideal matrix M has repeated rows, since all rows sampled from the same 

paralog are identical. This implies that the matrix M has low-rank. Indeed the matrix M can 

be factorized as the product of two matrices M = A · B, where A ∈ ℝN×S with Aij ∈ {0, 1} 

∀i, j and B ∈ ℝS×V with Bij ∈ {−1, 1} ∀i, j. Each row of A is an elementary vector of length 

S denoting which paralog the read is from and matrix B is identical to f(P) (represented in 

{−1, 1}).

The observed matrix X is a noisy partial observation of the low-rank matrix M, and the goal 

is to reconstruct the matrices A and B given X. If each read spanned the entire segmental 

duplication, the problem would be trivial, since similar reads can be grouped together and 

taking a consensus inside clusters reveals the segmental duplications. The difficulty is posed 

by the fact that read lengths are much smaller and do not span all variant positions.

Each read only provides partial phasing information. The resulting X matrix is thus sparse, 

and our goal can be formally stated as follows:

(1)

Real-valued versions of this problem has received much attention and is called the matrix 

completion problem. While this problem has a rich history, there is a significant difference 

in our setting, since the matrices A and B have structure (i.e., A has only elementary row 

vectors and B has binary entries) and the matrix X is ternary. We therefore have to develop 

new algorithms that exploit the discrete structure of the problem.

The problem of finding missing entries in a matrix arises in diverse research domains. One 

of the most illustrative examples is the Netflix challenge where users rate a small fraction of 

movies at random and the task is to predict user preferences for an unrated movie; a key 

assumption in this domain is that the true matrix of preferences is low-rank. While low-rank 
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matrix-completion problem is known to be NP-Hard, there are methods that can give 

provably correct reconstruction under probabilistic rather than worst-case assumptions [10, 

33]. Popular techniques for this problem include convex relaxation of the rank to nuclear 

norm [33], singular value thresholding [9] and alternating minimization [22], all of which 

have theoretical guarantees as well. The key difference between these works and our 

problem is that they consider real-valued matrix-completion, whereas, in this paper, we 

adapt and extend the algorithms to the discrete setting inherent to the phasing problem.

In a recent paper [8], Cai et al. formulate haplotype phasing as a low rank matrix completion 

problem and use structure constrained alternating minimization for obtaining the haplotypes. 

In the paper, they demonstrate improved performance over HapCompass for diploid and 

simulated polyploid data (with S = 3, 4). We show in this paper that while that method has 

good performance with small S, the performance starts deteriorating with higher S. The 

main reason for the deteriorating performance is the inability of the algorithm to exploit the 

discrete structure of the problem (for example, the algorithm does not use the fact that the B 
matrix is binary, instead treating it as a real-valued matrix). We alleviate this problem in the 

present paper by proposing an algorithm that explicitly exploits this fact.

2.2 Iterative Two Stage Matrix Completion

Our problem stated in (1) is a hard combinatorial problem. One can design alternating 

minimization based techniques for this problem, where A and B are optimized alternatively 

while keeping the other variable fixed. While such methods monotonically increase 

likelihood, they are not guaranteed to find the global optimum of the problem and display 

high sensitivity to initial conditions. The key idea in our approach is to first neglect the 

discrete nature of our problem, and view it as a real-valued matrix completion problem. We 

then “round” the results obtained from this real valued matrix completion to obtain a feasible 

solution for the discrete problem. This rounded solution then becomes the initial value of a 

discrete matrix completion routine designed based on the alternative minimization 

technique. While this method already has superior performance compared to existing 

approaches, we found that in the regime when the ploidy is high, the algorithm is able to 

extract some dominant haplotypes correctly while being incorrect on the other haplotypes. In 

order to overcome this barrier, in iteration i, we only fix the best i − 1 haplotypes based on 

the current MEC, and optimize for the rest. A schematic representation of this algorithm is 

depicted in Fig. 1, and the detailed pseudocode is in Algorithm 1, Algorithm 2 and 

Algorithm 3.

Algorithm 1

Iterative Matrix Completion

Input : Noisy incomplete Matrix X, Rank Estimate S

1: Initialize Ainit ∈ ℝN×S and Binit ∈ ℝS×V with sign corrected SVD.

2: e ← Error rate

3: k ← S

4: while k ≥ 2 and MEC Score decreases do
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5:  Best ← RealMatCom(Ainit, Binit, X, k)

6:  Aest, Best ← DiscreteMatCom(Best, X, e)

7:  Choose the best segment based on individual scores

8:  Ainit ← Aest

9:  Binit ← Best

10:  k ← k − 1

11: end while

Output : Estimated Haplotypes Best

Algorithm 2

Real Valued Matrix Completion

1: procedure RealMatCom(Ainit, Binit, X, k)

2:  A ← Ainit

3:  B ← Binit

4:  while stopping criterion not satisfied do

5:   Minimize A using projected gradient descent

6:   Minimize B1:k using projected gradient descent

7:  end while

8:  return sign(B)

9: end procedure

Algorithm 3

Discrete Valued Matrix Completion

1: procedure DiscreteMatCom(Best, X, e)

2:  while MEC Score decreases do

3:   for each row i of X do

4:    for each segment s of Best do

5:     d(i, s) ← Hamming distance of Xi and Best,s for known entries

6:     Wi ← Window size of revealed entries of Xi

7:     Aest,is ← (1 − e)Wi−d(i,s) · ed(i,s)

8:    end for

9:    Update overall MEC score and score for each individual segment

10:    Normalize Aest,i to be a probability distribution

11:   end for

12:   Initialize Best,new ∈ ℝS×V with zeros

13:   for each row i of X do

14:

    

15:   end for

16:   Best ← sign(Best,new)
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17:  end while

18:  return Aest, Best

19: end procedure

A standard approach in combinatorial optimization is to relax the integer constraints in the 

problem in order to get a real-valued optimization problem, and then to round the obtained 

results to get a feasible solution. We follow a similar approach here by relaxing our discrete 

problem to a continuous optimization problem, and along with it, we relax the objective too. 

Instead of optimizing according to the Hamming distance objective with the discrete 

constraints on A,B (see (1)), we instead minimize the Frobenius norm of the difference 

while at the same time assuming that A and B are real valued.

The noisy low rank matrix completion can be formally stated as an optimization problem.

The objective function is a squared sum of errors over all the known entries of X. ℘Ω(·) is 

the projection operator and Ω is the set of known incides of X. So, ℘Ω(Zij) = Zij if (i, j) ∈ Ω 
and 0 otherwise. While we relax the integer constraints of the problem, we assume the 

following linear constraints to hold.

(2)

(3)

Since the optimization is over unknown matrices A and B in a product form, the problem is 

non-convex. However, alternating minimization algorithms are known to have guaranteed 

reconstruction performance in certain regimes [22] and therefore we resort to using such 

algorithms. Thus we first solve the optimization over A, keeping B fixed, which makes the 

problem convex in A and vice-versa.

2.3 Projected Gradient Descent

The alternating minimization for our problem therefore can be stated as follows: min

and similarly
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To incorporate the constraints on the variables, we use a projected gradient descent to 

minimize each of the convex formulations.

2.4 Initialization

Since the overall problem is non-convex, it is required to choose a suitable initialization for 

better performance. For this purpose, we use the singular value decomposition (SVD). This 

is a factorization of a m × n rectangular matrix of rank r in the form Σ T, where  is a 

m×r unitary matrix, Σ is a r×r diagonal matrix with non-negative diagonal entries and  is a 

n × r unitary matrix. The columns of  and  are called the left and right singular vectors 

respectively. Prior theoretical results [22] suggest taking the S singular vectors of ℘Ω(X) as 

the initial guess for A and B. While this is a reasonable initialization, the signs of the 

singular vectors obtained from SVD decomposition may not be consistent with our problem 

since we require the entries of A to be strictly non-negative. We note that the signs of the 

singular vectors can be swapped without affecting the SVD. Therefore, in our algorithm, in 

order to ensure this sign consistency, we reverse the signs of certain rows of B to ensure that 

all columns of A have a positive sum.

For details of the projected gradient descent, we refer the reader to Appendix I.

2.5 Discrete Matrix Completion

We round the output of the real-valued matrix completion to satisfy the discrete constraints 

of A and B and utilize this to run a discrete alternating minimization algorithm to solve (1). 

The optimization of A given a fixed B is easy to solve: the basic idea is to assign each read 

to the segment which minimizes the Hamming distance with the read. To optimize B given a 

fixed A, we find the consensus of all the reads which are informative about a given position. 

In our algorithm, instead of having A to be a hard decision of which segment a given read 

belongs to, each row i of A encodes the probability that read i belongs to segment j. 
Therefore, while optimizing over B, we utilize the weighted consensus rather than the plain 

consensus of the read assignments. This procedure of refinement comes under the purview 

of a broader class of algorithms called the Expectation Maximization (EM) algorithm [16] as 

well as Variational Bayes [40]. The matrix A can be viewed as hidden variables encoding the 

membership of read fragments to duplication copies and B as the parameters for the exact 

underlying segments. We refer the reader to Algorithm 3 for a detailed description of the 

algorithm.

Chaisson et al. Page 8

Res Comput Mol Biol. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.6 Choosing the best segment and Effective Rank Reduction

As pointed out earlier, the algorithm as stated above works well with small polyploid 

instances; however, in the presence of higher ploidy, the algorithm returns only the top few 

haplotypes correctly. For example, consider the cascading topology of repeats in Figure 2, it 

is easier to resolve segment 7 but the other segments are more easily confused. Therefore, 

we propose an iterative algorithm, where in each iteration, the best haplotype is fixed and 

then the algorithm is run to optimize over possibilities of the other haplotypes. Thus in order 

to do matrix completion with S haplotypes, the algorithm is iterated over S−1 times. Such 

algorithms have a precedent even in real-valued matrix completion. For example, stagewise 

alternating minimization is shown to have better theoretical guarantees in [22]. In our 

implementation, at iteration i, the best i − 1 haplotypes are chosen as the ones which have 

minimum Hamming distance from their assigned reads.

3 Haplotype phasing with correlation clustering

One limitation of the MEC objective function and therefore of the discrete matrix 

completion algorithm is that the ploidy must be known a priori or estimated. Since the MEC 

objective itself decreases monotonically with ploidy, it is not possible to estimate the ploidy 

using the MEC objective. This can be potentially remedied using regularized alternatives 

that account for model complexity like AIC, BIC or MDL. We propose an alternative 

algorithm here that can jointly estimate the ploidy while estimating the haplotypes 

themselves. This algorithm is based on a key assumption, distinct from the assumptions of 

the discrete matrix completion problem: that each of the haplotypes have uniquely 

identifying variants. While this assumption is stronger, it can lead to stronger regularization 

of the problem by restricting the search space and therefore leads to better estimates, 

especially when the ploidy is high.

The basic idea of the algorithm is the following: each locus is represented as a vertex and 

reads that straddle multiple vertices create edges between the vertices that have either 

positive or negative weight based on whether reads share the variant or not. The goal is then 

to cluster the nodes into groups which share the same variant, with each cluster representing 

a haplotype and each locus (node) in the cluster representing a haplotype-specific variant.

To formally define our algorithm, we begin with an alternative formulation for polyploid 

phasing through correlation clustering [3], with the premise that a metric defines how similar 

or dissimilar two objects are, and clusters maximize the amount of similarity within each 

cluster and dissimilarity between clusters. Importantly, in correlation clustering the number 

of clusters is discovered as a result of clustering and not as a parameter.

We use an augmented form of the SNP conflict graph  introduced in [25], denoted PSV 

= (V,E),E = {E+,E−}. The construction of PSV requires the fragment matrix M, and some 

data-dependent parameters: the expected range of coverage per haplotype cmin and cmax, and 

a distance d that is the maximum distance reads are expected to overlap variants. A vertex 

exists for each of the columns (sites) in the fragment matrix M, connected by an edge (u, v) 

∈ E+ if u and v are overlapped by between cmin and cmax reads that are variant (e.g., 1) at 
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both sites, or an edge (u, v) ∈ E− if the sites corresponding u and v are within d bases and (u, 
v) ∉ E+. A weight W(u, v) is assigned to each edge.

Correlation clustering on PSV corresponds to finding clusters C = c1, … , cn that minimize 

the sum of weighted negative edges within each cluster and weighed positive edges between 

clusters: ScoreCC = Σci (Σ(u,v)∈ci,(u,v)∈E− w(u, v)+Σ(u∈ci,v ∉ci),(u,v)∈E+w(u, v)), where w(u, v) 

may reflect certainty of clustering, or more simply w(u, v) = 1 to count edges. Each cluster 

defines a set of sites that belong to a haplotype. This was shown to be APX-hard [15, 12, 

19], and approximations based on linear programming (LP) were described in [15, 12]. We 

developed an implementation of the LP approach that was successful at clustering smaller 

datasets, however the number of constraints grows with |E|2, and |E| grows by p2v2, for 

ploidy p and number of paralog specific variants v, which requires excessive resources for 

larger datasets.

To evaluate correlation clustering on larger datasets, we developed a simple randomized 

heuristic to search similar to the method of [2] for clusters that provide acceptable values for 

ScoreCC that follows the steps:

1. Define clusters likely to represent repeat paralogs through a random search.

2. Merge clusters with sufficient overlap, and assign nodes to unique clusters.

3. Optimize clusters by swapping vertices from adjacent clusters.

Define the neighbor similarity Sim(u, v) of two vertices to be the number of neighbors 

shared between u and v connected by edges in E+, and Score(V, E, c) to be the ScoreCC of a 

single cluster c assuming all vertices V\c are in a separate cluster. First, clusters are formed 

by iteratively adding vertices neighboring a cluster as long as the neighbor similarity is 

sufficient and addition of the vertex decreases ScoreCC, described in 4.

Given parameters for neighbor similarity s, a maximal number of search iterations max 

search it and swap iterations max swap it, and fraction cluster overlap fovp, the method 

FindCluster is used to find a set of clusters C by first initializing C = ∅, and iteratively 

selecting a vertex vi ∉ C, and adding the result of FindCluster(V, vi, E, s) to C until C 
contains all vertices in V or max_it iterations are reached. The resulting clusters in C are not 

disjoint, and so any cluster ci with a fraction of vertices overlapping with a cluster cj > fovp is 

first merged into cj, then remaining vertices belonging to more than one cluster are assigned 

to the largest cluster for which they are a member. Finally, the clusters are further optimized 

by selecting edges (u, v) ∈ E+ where u ∈ ci and v ∈ cj and swapping u and v if this improves 

ScoreCC for up to max swap it iterations.

Algorithm 4

Find cluster

procedure FindCluster(V, vi, E, s)

 c ← vi

 repeat
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  for all v ∈ c do

   for all n ∈ Neighbors(v) ∉ c do

    if Sim(v, n) ≥ s and Score(V, E, c ∪ n) < Score(V, E, c) then

     c ← c ∪ n

    end if

   end for

  end for

 until c has not grown

 return c

end procedure

4 Results

We benchmarked our methods on a dataset of simulated collapsed segmental duplications. It 

is difficult to simulate the complex mosaic architecture of segmental duplications [23], and 

so we elected to use a simplified model of 100kbp nonmosaic duplications. While this lacks 

the complexity of mosaic duplication architecture, the length is greater than the average 

duplication unit (~30kbp), ensuring evaluation on challenging problems. Starting with an 

ancestral sequence, sequences are duplicated according to a specified tree topology T and 

mutation rate r, where each child node is a copy of a parent node mutated at a rate of r 
random SNV mutations per base. In real data, duplications arise with many complex 

histories [17, 39]. To capture the complexity of evolution, we used two classes of trees: 12 

simulations from well defined topologies such as flat, bifurcating, and cascading resulting in 

four to eight duplicated sequences, and 50 simulations from random tree topologies that 

have 10 duplicated sequences. Examples of the duplication toplogies are shown in Figure 2. 

The mutation rate was varied from between 0.01, 0.005, and 0.001, and 0.0005 mutations 

per base to simulate various ages of duplications. For each set of duplications we simulated 

50× read coverage using the Alchemy SMS read simulator [11], a model based simulator 

that emulates a sequencing run by Pacific Biosciences, and mapped reads back to the 

ancestral sequence. PSV sites are detected as sites that contain between 25 and 60 non-

ancestral bases.

For each of the simulated topologies and mutation rates, we evaluated the Discrete Matrix 

Completion (DMP), Correlation Clustering (CC), and Structure Constrained Gradient 

Descent (SCGD). The SCGD method has been shown to outperform other previously 

developed methods in polyploid phasing [8].

We report Minimum error correction (MEC) values by computing the sum of Hamming 

distance between each read and the consensus sequence for each haplotype. For CC, we 

assign reads to each haplotype according to the minimal Hamming distance from the read to 

each haplotype. For duplications simulated under models of high mutation rates (0.01 and 

0.005), the DMP method is able to obtain a lower MEC than the other methods. Out of the 

128 datasets for which every method is able to run within the time constraint set on our 
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server, we compare the performance. We observe that CC obtains the best MEC score 11% 

of the datasets, DMP 85%, and SCGD 3.9%.

For each haplotype we count the number of reads in the haplotype that are shared with the 

reads simulated in each duplication, and define a matching statistic as the sum of number of 

reads in the maximally matched duplication divided by the total number of reads. This 

statistic ranges between 1 for perfect reconstruction of haplotypes down to a 1/p when all of 

them are collapsed into a single reconstructed haplotype. The results are shown in Figure 4. 

CC had the greatest matching score 67.7% of the datasets, DMP 26.1% of the datasets, and 

SCGD on 6.1% of the datasets. Interestingly, while the CC method has a higher MEC 

statistic, it has a greater number of correctly partitioned reads when compared with the 

ground truth. We reason that this is because the CC method exploits the assumption that the 

positions are variant specific explicitly resulting in stronger regularization, so that even 

though the likelihood score is somewhat lower for CC method than other methods, it is able 

to fit the data more accurately. The other methods DMP and SCGD are unable to exploit this 

assumption and therefore overfit more severely to the data. The DMP method is sensitive to 

the initialization conditions for Best, and so we used a solution derived by CC as initial 

conditions for DMP. We measured improvements on this combination (CC+DMP) relative to 

DMP on MEC (Figure 3, right), and CC for matching score. While the MEC score was 

largely unchanged, 220 of the 224 simulations where both CC and CC+DMP had a solution 

had a greater matching score in CC+DMP (Figure 4).

We also measure a more stringent quality of reconstruction accuracy: we ask for what 

fraction of the true haplotypes there is a reconstructed cluster into which 90% of the correct 

reads are assigned. Formally, for each simulated duplication we determined which haplotype 

had the most reads overlapping with the reads simulated from that duplication, and counted 

how many such haplotypes had at least 90% of the reads from that haplotype reciprocally 

assigned to that duplication. This gives an indication of the number of copies of a segmental 

duplication that would be correcly assembled given the phased haplotypes. For the 48 

simulations with duplication copy number between 3 and 8, the CC method resolves 70% of 

duplication copies, while the DMP and SCGD methods resolve 66% and 26%, respectively 

(Figure 5). For duplications of ploidy 10, the CC method resolves on average 7.0 copies of 

each duplication, whereas the DMP and SCGD methods resolve on average 3.3 and 0.03 

copies, respectively. The CC+DMP combined method resolved 80% of duplications for 

simulations of copy number between 3 and 8. However for copy number 10 duplications this 

provided marginal improvements over CC alone, providing solutions for 24 fewer 

simulations than CC, resolving on average 7.1 duplications per simulation.

5 Conclusions

The resolution of segmental duplications remains problematic in de novo assemblies. 

Deviating from the typical formulations of de novo assembly, we present a new formulation 

and two novel algorithms for resolving high copy collapsed duplications that rely on 

polyploid phasing. We demonstrated that while it is possible to optimize for minimal error 

correction, methods that focus on resolving clusters with unique paralog specific variants 

actually resolve more duplications despite having a higher minimal error correction value, 

Chaisson et al. Page 12

Res Comput Mol Biol. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



perhaps due to less over-fitting of results to variants present in ancestral copies of a 

duplication. In future work we hope to improve the the rank estimation for the discrete 

matrix completion method, possibly leveraging the clusters discovered by correlation 

clustering, and characterizing the conditions under which correlation clustering converges to 

the correct clusters. Finally we plan on applying these methods to resolving duplications in 

published human assemblies [35, 38].
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6 Appendix

After each gradient step, the resultant matrix is projected onto the box. The updates for A 
and B are as follows :

Then 

Then 

where f(·) is the objective function. The projected gradient descent allows us to incorporate 

additional constraints on the problem as well. If we further enforce that the sum of each row 

of A equals 1, then we would have the projection as  where νi 

can be computed for each row i using the equality

We allow a maximum of 50 iteration steps for minimizing each of A and B, and 100 

iteration steps for alternating minimization. We exit the iterations if the change in norm is 

insignificant (1e − 02) or if the objective value change is below a tolerance (1e − 04). The 

learning rate values have to be computed in order to ensure that gradient steps do not 

diverge. Our choices of learning rates have been

and
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where C ∈ (0, 1).
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Fig. 1. 
The initialization and iteration workflow for MCP
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Fig. 2. 
Examples of topologies of duplication simulations. In total there are 12 structured trees and 

50 random topologies. The divergence between any two simulated duplications is given by 

the mutation rate r×the shortest path between the duplications in the tree.
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Fig. 3. 
MEC scores for the DMP, CC, SCGD, and CC+DMP methods. The DMP method is shown 

to produce haplotpyes with lower MEC than either method, particularly for the high 

mutation rate simulations. Lower MEC score is better.
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Fig. 4. 
Matching statistics for the DMP, CC, SCGD, and CC+DMP methods. A perfect 

reconstruction of haplotypes shows a score of 1, while a random assignment will score 1/
ploidy. Higher matching score is better.
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Fig. 5. 
Correctly assembled haplotypes for the DMP, CC, SCGD, and CC+DMP methods. Each 

point is the number of correctly phased genotypes per simulation, with points jittered for 

display
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