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Abstract

Recent advances in high-resolution fluorescence microscopy have enabled the systematic study of 

morphological changes in large populations of cells induced by chemical and genetic 

perturbations, facilitating the discovery of signaling pathways underlying diseases and the 

development of new pharmacological treatments. In these studies, though, due to the complexity 

of the data, quantification and analysis of morphological features are for the vast majority handled 

manually, slowing significantly data processing and limiting often the information gained to a 

descriptive level. Thus, there is an urgent need for developing highly efficient automated analysis 

and processing tools for fluorescent images. In this paper, we present the application of a method 

based on the shearlet representation for confocal image analysis of neurons. The shearlet 

representation is a newly emerged method designed to combine multiscale data analysis with 

superior directional sensitivity, making this approach particularly effective for the representation 

of objects defined over a wide range of scales and with highly anisotropic features. Here, we apply 

the shearlet representation to problems of soma detection of neurons in culture and extraction of 

geometrical features of neuronal processes in brain tissue, and propose it as a new framework for 

large-scale fluorescent image analysis of biomedical data.
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1. Introduction

High-resolution fluorescence microscopy has emerged during the last decade as a 

fundamental tool for the study of molecular mechanisms in biological samples. Unlike 

traditional optical microscopy, fluorescence microscopy is based on the principle of 

absorption and subsequent reradiation of light emitted from fluorophores with separable 

spectral properties. Through chemical conjugation, these fluorophores can be linked with a 

high degree of specificity to single molecules and used as probes to track sub-cellular 
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localization and expression pattern of any protein of interest. Hence, fluorescence 

microscopy can be invaluable to unravel structure-function properties at single cell level, in 

tissues or in whole organisms. Furthermore, combined with automated image acquisition 

and robotic handling, it can be applied for the systematic study of morphological changes 

within a large populations of cells under a variety of perturbations (e.g., drugs, compounds, 

gene silencing), so that automated fluorescence microscopy has become an essential 

technique for discovering new molecular pathways in diseases or new potential 

pharmacological treatments. However, the manual or semi-manual analysis of the large data 

sets acquired from these studies is very labor-intensive and there is a urgent need for 

automated methods which can rapidly and objectively process and analyze the image data. 

[24, 27]

The efficient analysis and processing of fluorescence images presents several additional 

challenges with respect to standard image processing problems. Fluorescence images are 

formed by detecting small amount of lights emitted by the fluorophores, a process which is 

affected by the randomness of photon emission, the spatial uncertainty inherent with the 

photon detection and photochemical reactions such as photobleaching, where a fluorophore 

loses its ability to fluoresce over time [28]. As a result, images acquired from fluorescent 

microscopy usually appear blurry and noisy. An additional difficulty stems from the 

complexity of the image data, which typically contain large variations in image contrast and 

object sizes, with features of interest varying from several tens of microns down to the 

resolution limit (~ 0.1 micron). Due to all these factors, standard image processing tools 

frequently perform poorly on fluorescent images and several specialized algorithms have 

been proposed in the literature, with different approaches often required to deal with 

different types of data [5, 22, 27].

Wavelets and multiscale methods, in particular, have been very successful in signal and 

image processing during the last decade, and several wavelet-based methods have been 

applied to fluorescent images for tasks such as image denoising, deblurring and 

segmentation (e.g., [3, 5, 38, 39]). Even though wavelets generally outperform Fourier-based 

and other traditional methods, they have serious limitations in multidimensional 

applications. This is due to the fact that the analyzing functions associated with the wavelet 

transform have poor directional sensitivity so that they are rather inefficient to represent 

edges and other anisotropic features which are frequently the most relevant objects in 

multidimensional data. To overcome this limitation, a new class of improved multiscale 

methods has emerged during the last decade, including most notably the shearlets and 

curvelets [2], which combine the advantages of multiscale analysis with the ability to 

efficiently encode directional information. Thanks to these properties, shearlets provide 

optimally sparse representations for 2D and 3D data containing edge discontinuities [2, 10, 

21] and have been shown to perform very competitively for image denoising and 

enhancement, regularization and feature extraction [6, 20, 30, 44]. In particular, shearlet-

based algorithms for denoising have been recently applied to fluorescent images in [7, 17], 

where they were shown to significantly outperform competing wavelet-based methods.

Motivated by the properties of directional multiscale representations, in this paper we 

present two algorithms which take advantage of the shearlet transform to efficiently and 
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robustly extract the local geometry content from fluorescent imaging data. In particular, we 

will describe an algorithm for the automated identification of somas in neuronal cultures and 

an algorithm for the automated quantification of geometrical features of neurites in brain 

tissue.

The paper is organized as follows. In Section 2., we recall the basic properties of the shearlet 

transform. We next present the application of our shearlet-based approach to the 

identification of somas in neuronal cultures (Section 3.) and to the quantification of 

geometrical features of neurites in neuronal networks (Section 4.).

2. The Shearlet Transform

Before presenting the shearlet transform, let us briefly recall a few facts from the theory of 

wavelets.

2.1. The wavelet transform

Wavelets were introduced in the Eighties to provide efficient representations for functions 

with point discontinuities [25].

The basic idea at the core of this approach is to generate a family of waveforms ranging over 

several scales and locations through the actions of dilation and translation operators on a 

fixed ‘mother’ function. Hence, in the two-dimensional case, let G be a subgroup of the 

group GL2(ℝ) of 2 × 2 invertible matrices. The affine systems generated by ψ ∈ L2(ℝ2) are 

the collections of functions of the form

(2.1)

If there is an admissible function ψ so that any f ∈ L2(ℝ2) can be recovered via the 

reproducing formula

where λ is a measure on G, then ψ is a continuous wavelet and the continuous wavelet 
transform is the mapping

(2.2)

There are many examples of continuous wavelet transforms [41]. The simplest case is when 

the matrices M have the form a I, where a > 0 and I is the identity matrix, in which case the 

admissible ψ need to satisfy the simple condition
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In this situation, one obtains the ‘traditional’ continuous wavelet transform

(2.3)

where the dilation factor is the same for all coordinate directions. Note that the classical 

discrete wavelet transform (in 2D) is obtained by discretizing (2.3) for a = 2−j, t = 2−jk, j ∈ 
ℤ, k ∈ ℤ2.

One of the most useful properties of the continuous wavelet transform is its ability to 

identify the singularities of functions and distributions. Namely, if f is a function or 

distribution which is smooth apart from a discontinuity at a point x0, then the continuous 

wavelet transform Wψf(a, t) decays rapidly as a → 0, unless t = x0 [15]. This property is 

critical to capture the local regularity and explains the ability of discrete wavelets to provide 

sparse approximations for functions with point singularities, which is one major reason for 

the success of wavelets in signal processing applications.

2.2. The shearlet transform

Despite its useful properties, the traditional continuous wavelet transform does not provide 

much information about the geometry of the singularities of a function or distribution. In 

many applications, edge-type discontinuities are frequently the most significant features and 

it is desirable not only to identify the their locations but also to capture their orientations. As 

shown by one of the authors and their collaborators in [11, 19], it is possible to combine 

multiscale analysis and improved geometric sensitivity by constructing a non-isotropic 

version of the continuous wavelet transform (2.2), called the continuous shearlet transform.

For appropriate admissible functions ψ(h), ψ(v) ∈ L2(ℝ2) and matrices

we define the horizontal and vertical (continuous) shearlets by

and

respectively. The reason for choosing two systems of analyzing functions is to ensure a more 

uniform covering of the range of directions through the shearing variable s. Indeed, rather 

than using a single shearlet system where s ranges over ℝ, we will use the two systems of 

shearlets defined above and let s range over a finite interval only.
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To define our admissible functions ψ(h), ψ(v), for ξ = (ξ1, ξ2) ∈ ℝ2, let

(2.4)

where ,  and satisfy the following conditions:

(2.5)

(2.6)

Observe that, in the frequency domain, a shearlet  has the form:

This shows each function  has the following support:

That is, the frequency support of  is a pair of trapezoids, symmetric with respect to the 

origin, oriented along a line of slope s.

The horizontal and vertical shearlets form a collection of functions ranging not only over 

various locations and scales, like the elements of a traditional wavelet system, but also over 

various orientations controlled by the variable s, and with frequency supports becoming 

highly anisotropic at fine scales (a → 0). In space domain, these functions are not compactly 

supported but their supports are essentially concentrated on orientable rectangles with side-

lengths a,  and orientation controlled by s. The support becomes increasingly thin as a → 
0. The frequency supports of some representative horizontal shearlets are illustrated in 

Figure 1.

For  and , each system of continuous shearlets spans a subspace of L2(ℝ2) 

consisting of functions having frequency supports in one of the horizontal or vertical cones 

defined in the frequency domain by
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More precisely, the following proposition from [19] shows that the horizontal and vertical 

shearlets, with appropriate ranges for a, s, t, form continuous reproducing systems for the 

spaces of L2 functions whose frequency supports are contained in  and , 

respectively.

Proposition 1—Let ψ(h) and ψ(v) be given by (2.4) with  and  satisfying (2.5) and 

(2.6). Let

with a similar definition for . We have the following reproducing formulas.

i.
For all ,

ii.
For all ,

where both identities hold in the weak topology of L2(ℝ2).

Using the horizontal and vertical shearlets, we define the (fine-scale) continuous shearlet 
transform on L2(ℝ2) as the mapping

given by

(2.7)

In the above expression we adopt the convention that the limit value of  for s 

= ±∞ is set equal to .
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The term fine-scale refers to the fact that the shearlet transform , given by (2.7), is 

only defined for the “fine scales” scale variable a ∈ (0, 1/4]. In fact, as it is clear from 

Proposition 1,  defines an isometry on L2(ℝ2 \ [−2, 2]2)˅, the subspace of L2(ℝ2) of 

functions with frequency support away from [−2, 2]2 but not on L2(ℝ2). This is not a 

limitation since the geometric characterization of singularities only requires asymptotic 

estimates as a approaches 0.

Thanks to its directional sensitivity, the continuous shearlet transform is able to capture the 

geometry of edges precisely, going beyond the limitations of the traditional wavelet 

approach. If f is a cartoon-like image – a simplified model of natural images consisting of 

regular regions separated by smooth (or Cm regular, m ≥ 2) edges – then the shearlet 

transform of f provides a description of the location and orientations of the edges of f 
through its asymptotic decay at fine scales. In particular, we have he following theorem from 

[11].

Theorem 2—Let f = χS, where S ⊂ ℝ2 is a compact set whose boundary ∂S is a simple 

smooth curve. Then we have the following.

i. If t ∉ ∂S, then

ii. If t ∈ ∂S and s does not correspond to the normal direction of ∂S at t, then

iii. If t ∈ ∂S and s corresponds to the normal direction of ∂S at t, then

In other words, the continuous shearlet transform of f = χS decays rapidly, asymptotically 

for a → 0, unless t is on the boundary of S and s corresponds to the normal direction of ∂S at 

t, in which case one observes the slow decay

This result can be extended to planar regions S whose boundaries contain corner points and 

even to more general functions which are not necessarily characteristic functions of sets [11, 

12].

The discrete shearlet transform is obtained by sampling (2.7) at a = 2−2j, s = 2−jℓ, 
, for j, ℓ ∈ ℤ, k ∈ ℤ2 [14]. In this case, with an abuse of notation, we write the 

discrete shearlet transform as the mapping
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This transform inherits some useful analytic properties from its continuous counterpart and 

can be implemented by fast wavelet-like algorithms. These efficient numerical 

implementations, combined with the property that discrete shearlet representations provide 

highly sparse approximations, make the discrete shearlet transform very useful for 

singularity detection and other image processing applications [20, 44].

3. Soma identification in fluorescent images of neuronal cultures

Recall that a neuron typically possesses two morphological structures: a round cell body 

called the soma and several branched processes called neurites, i.e., dendrites and axons. In 

many biological studies, it is often necessary to identify the individual neurons and their 

subcellular compartments, i.e., soma and neurites, in a culture or a brain tissue. For example, 

High Content Analysis applications for screening drugs normally require the extraction and 

quantification of several morphological features on large datasets for identifying compounds 

that cause phenotypic changes. Clearly, in these studies, traditional analysis methods such as 

manual segmentation or semi-automated segmentation with human intervention are highly 

impractical and automated methods for the quantification of morphological features are 

virtually necessary.

The automated extraction of the location and morphology of the somas in a neuronal 

network is essential for such applications and several ideas have been proposed in the 

literature. Some popular methods use intensity thresholding [37, 40], which is very effective 

in images acquired from phase-contrast microcopy where the somas often have higher 

contrast than the neurites. However, this approach is unreliable in fluorescent microscopy 

due to the inhomogeneity of the fluorescence intensity. Other more sophisticated methods 

from the literature use Laplacian-of-Gaussian and related filters [1, 32] to detect local 

maxima, but irregular intensity profiles inside the soma frequently lead to detect more than 

one soma candidate for each soma. Other more flexible methods include the use of 

morphological operators [37, 43].

In this paper, we propose a novel approach which takes advantage of the shearlet transform 

to accurately separate the somas from the neurites by classifying appropriate geometric 

descriptors extracted from the fluorescent image data. Our method is motivated by the 

properties of the shearlet transform presented in Sec. 2. in connection with the detection of 

the location and orientation of edges.

3.1. A shearlet-based Directional Ratio

Let us consider the cartoon-like image of a neuron f = χS in Figure 2, where S is a subset of 

ℝ2 consisting of the union of a disk-shaped region and a thin and long solid rectangle. One 

might expect S to be compact but, to simplify the mathematical analysis, we assume that the 

thin and long rectangle extends to infinity. Moreover, we consider its centerline to be the y-

axis and the disk-shaped area to be centered at the origin of the coordinate system and be 
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attached to it, so that S is connected. The continuous shearlet transform provides a precise 

characterization of the boundaries ∂S of the region S since  has rapid 

asymptotic decay, as a → 0, for all (s, t), except for t located on ∂S and for s associated with 

the normal orientation to ∂S at t. Clearly, the discrete version of the shearlet transform 

 can only be computed up to a minimal but finite resolution level. In this case, 

we expect that, at “fine scales”, the largest shearlet coefficients in magnitude will be those 

located near the edges, with the values of the shear parameter corresponding to the normal 

orientation to the edges. In particular, as shown by one of the authors in [44], we can use this 

observation to distinguish points near the edges from points away from the edges. At the 

points near the edges, the local orientation of an edge remains constant and the shearlet 

coefficient  corresponding to a directional subband parallel to this orientation 

will have a significant value. This is visible in Panel B in Fig. 3.1., showing the consistent 

directional sensitivity of the shearlet transform for a single scale a near the singularities. The 

panel illustrates that the response of the transform at higher scales is more consistent in 

thinner neurites, while in thicker ones the response of the shearlet transform is less 

consistent. The same phenomenon is observed in the interior of the neurite, where the 

orientations of maximum response appear to be distributed almost like white-noise, in stark 

contrast to the consistent strong responses shown at the boundaries of the neurite. However, 

at intermediate scales, depending on the relative thickness of a neurite as compared to its 

length (aspect ratio), the shearlet transform “sees” the entire neurite as a singularity spatially 

organized along its centerline. Then, the orientations of maximum response in the interior of 

the neurite and on its boundary become more consistent. This observation leads to the 

conclusion that tubular and non-tubular structures appear with different degrees of 

directional coherence at different scales in the shearlet transform domain.

As a measure of directional coherence, we consider a notion of directional ratio with respect 

to the continuous shearlet transform, which we use as a shape descriptor to separate isotropic 

from anisotropic structures. This concept was originally introduced in [29] using another set 

of analysis atoms. Similar directional ratios can be defined using other classes of multiscale 

transforms induced by appropriate ‘directional’ atoms.

The shearlet-based Directional Ratio of f at scale a > 0 and location t ∈ ℝ3 is given by

(3.1)

and measures the strength of directional information at scale a and location t. The next 

theorem predicts consistent responses of directional ratio on tubular structures in general 

and, thus, it formalizes the preceding discussion.

Theorem 3—Let f = χS be a cartoon-like image of a neuron, where S contains two disjoint 

subsets: A, a ball centered at the origin with radius R > 0 and B, the cylinder [−r, r]×[2R, + 

∞), r > 0. Let the cylinder [−r, r] × [0, ∞) be contained in S. Moreover, assume that

1. the Fourier transforms of both ψ1 and ψ2 are C∞ and even;
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2. the wavelet function ψ1 has two “plateaus” in the frequency domain: 

for all 3/4 ≤ |ξ| ≤ 3/2;

3. the “bump” function ψ2 satisfies  for all |ξ| ≤ 1/4 and that 

.

Then, for 4r ≤ a ≤ 1/4, there exists a threshold τ such that the shearlet-based Directional 

Ratio of f, given by (3.1), satisfies:

(3.2)

On the other hand, if ε > 0 is an arbitrary positive number, then, for every y ∈ κεA, 

orientation s and sufficiently fine scale a, where 0 < κε < 1, we have that 

.

3.2. Proof of Theorem 3

Before starting the proof of the theorem we remark that the constant c above must exceed 1 

because the support of  is the interval  and ‖ψ2‖2 = 1. Also, with no loss of 

generality, we can assume that .

Proof—We begin by making clear that the sinc-function is given by

Let y = (y1, y2) be an arbitrary element in B which is contained in the rectangle C = [−r, r] × 

[y2 − R, y2 +R] ⊂ B. Since the length of the cylinder B is large enough, with no loss of 

generality we can shift the origin in order to have y2 = 0. We have:

(3.3)

The absolute integrability of the shearlet functions implies that, for any ε > 0, there exists a 

square with side of length 2R0, such that

Labate et al. Page 10

Math Model Nat Phenom. Author manuscript; available in PMC 2017 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A similar relation holds for , with the roles of R0 and r0 reversed. For technical reasons, 

we will assume R0 > 1/2. Later in the proof we will determine ε. The above inequality 

implies that, for both the vertical and horizontal shearlets, we have

(3.4)

and

Our strategy is to show that the numerator in the fraction (3.3) is significantly smaller than 

the denominator. We begin by estimating the latter.

We stress that we have not specified the quantity ε yet, thus R0 still needs to be determined. 

However, we postpone this task until the end of the analysis of the behavior of directional 

ratio on the tubular part of the cartoon-like neuron.

On the other hand, f = χS contains the rectangle [−r, r] × [−R, R] which, in turn, contains y. 

Once again, with no loss of generality, since S extends as long we wish toward the positive 

direction of the y-axis, we can assume R > R0. Our assumptions on R0 and on the scale a 
imply aR0 ≥ 2r. Consequently, both rectangles −y + [−r, r] × [−R, R] and [−aR0, aR0] × 

[−a1/2r0, a1/2r0] are contained in the rectangle [−aR0, aR0] × [−R, R].

We observe that

which, if combined with aR0 ≥ 2r, allows us to take y1 = 0 and to conclude that

Thus,

We also observe that
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where we drop the absolute value of ξ1 due to the symmetry of the integrand with respect to 

the ξ2-axis. First, we estimate the inner integral. To do so, we set . Then we 

observe:

Note that

Since , the scale a does not exceed  and , we conclude that 

both  and  are greater than 1. In conclusion,

(3.5)

Next, we examine the outer integral

The selection of the scale a implies  for every value of ξ1 in the interval of 

integration. Since the sinc function takes positive values in the open interval  and 

 for all , using (3.5) we finally conclude that

(3.6)

Now we turn our attention to the numerator of (3.3); we need to show that it is relatively 

much smaller than the denominator. We have that
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Regardless of how y1 varies between −r and r, the rectangle 

 always stays inside ℝ × [−R, R], so 

. Therefore, we have that

(3.7)

Note that

Since  is even, we obtain that the latter double integral is equal to

(3.8)

We now estimate the inner integral. First, using the change the variable , we 

obtain that the inner integral in (3.8) is equal to

By applying the Cauchy-Schwartz inequality to ψ2, which has norm equal to 1, we deduce 

. Therefore, the inner integral in (3.8) is bounded above . Thus, 

the absolute value of the integral in (3.8) is bounded above by

where the last inequality follows from our assumption on the scale a. Using (3.7) and the last 

inequality, we obtain that
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Next, using (3.6), we derive the following upper bound for :

Taking , we get that , for all y ∈ B.

To complete the proof we turn our attention to the isotropic part of the cartoon neuron, the 

ball A. Since A is centered at the origin and it is a ball, it is enough to prove the statement 

for horizontal shearlets only. As we did in the first part of the proof, for each arbitrary ε > 0, 

we can find a square with side of length 2R0,ε such that

The shearing parameter s varies between −1 and 1 and, as it does so, it “shears” the square 

Q := [−R0,ε, R0,ε] × [−R0,ε, R0,ε]. Therefore, if the scale is sufficiently fine, it is not hard to 

see that there exists 0 < κε < 1 such that

for every y ∈ κεA. Now, let −1 ≤ s ≤ 1. Then . However, 

. Thus,

because y + Mas(Q) ⊆ A. Therefore, we conclude that

□

The last part of the proof of Theorem 3 illustrates the behavior of the shearlet transform in 

isotropic regions. We don’t have to take the ε very small because, as the scale becomes finer 

and finer, the quantity 2a3/4ε decreases as well. In any case, the main implication of the 

second part of Theorem 3 is that the shearlet transform will attain very small values 

everywhere in the isotropic part of the cartoon-like neuron, as long as the location variable 
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of the transform is away from the boundaries. As a result, the values of the Directional Ratio 

 will vary wildly in isotropic regions (see Fig. 3.2.) and, consequently, the Directional 

Ratio is not useful to detect such regions. As we discuss in the next paragraph, there is a 

method to detect and segment isotropic regions such as somas.

To identify somas with respect to neurites, we will use Theorem 3, which predicts that there 

is a threshold below which, at appropriate scales, the directional ratio in the neurites does 

not exceed this threshold. The existence of such a threshold is numerically verifiable as one 

can see in Fig. 3.2.

Thus, given a segmented neuron, we can identify within this subvolume the grid points 

corresponding to somas. In fact, Proposition 4 below indicates that, in the interior of tubular 

structures modeling the (thin) neurites, the function  is weakly differentiable. This 

property can be used to circumscribe a boundary between a neurite and a soma via a level-

set method. This method can be significantly more accurate than plain thresholding to locate 

this boundary.

Recall that level set methods propagate a surface or a curve which evolves until it coincides 

with a desired level set. In our case, this level set would be the boundary between a neurite 

and a soma. The gradient field required to evolve the interface curve to the desired level set 

can be defined by taking finite differences of the directional ratio, since this function is 

weakly differentiable. To initialize the evolution we can use the curve which is the boundary 

of the set of points inside the soma whose values of , for a suitable a, are less than a 

threshold predicted by Theorem 3.2. In [29], we have proposed a similar method to segment 

somas in fluorescent images of neurons.

3.3. Weak differentiability

Let us now turn our attention to the weak differentiability of the directional ratio of f, where 

f is a cartoon-like neuron. To establish that , given by the ratio (3.1), satisfies a Lipschitz 

condition, it is enough to verify this property for the numerator and the denominator of that 

ratio. To control how small the denominator can become, we assume that in an open set Ω 

there exists α > 0 such that  for all y ∈ Ω. Select y ∈ Ω and a vector h 
such that y + h ∈ Ω. Using the triangle inequality we have

for every scale a and shear variable s. A similar inequality holds for horizontal shearlets. We 

will assume Ω to be convex. Since the Fourier transforms of ψ(v) and ψ(h) are C∞ and 

compactly supported, the ψ(v) and ψ(h) are in the Schwartz space. Hence, all of their partial 

derivatives are uniformly bounded.

By applying the Mean Value Theorem of differential calculus we obtain that
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where C is a constant derived by the L∞-bounds of the partial derivatives of the horizontal 

and vertical shearlets. Since the shear variable s is taken in [−1, 1], the constant C holds 

uniformly in s. Therefore, for every s ∈ [−1, 1] we have that

By combining horizontal and vertical shearlets, we deduce that

By swapping the points y and y + h in the previous inequality, we obtain that

On the other hand, a similar argument establishes that

Combining these two observations we derive the following result.

The above discussion yields the next statement:

Proposition 4—Assume that, for every point y in the open and convex set Ω ⊂ ℝ2, there 

exists α > 0 such that . Then the shearlet-based Directional Ratio , 

at scale a, restricted on Ω, satisfies a Lipschitz condition and, thus, it is weakly differentiable 

on Ω.

The weak differentiability of  follows from the fact that  is absolutely continuous 

since it satisfies a Lipschitz condition.
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4. Quantitative measure of alteration in biological neural networks

Structural and morphological changes of neurites often precede functional deficits or 

neuronal death associated with many brain disorders and several methods have been 

proposed to quantify these phenotypes. Popular methods include the Sholl analysis [36, 23], 

the Schoenen Ramification Index [35] and the fractal analysis [26], which are used to 

measure the branching characteristics of neurons, and the tortuosity index, defined as the 

ratio of the arc length over the end-point distance of a curve, which is used to describe the 

degree of ‘straightness’ of a given neurite [31, 42]. While these methods are very effective at 

single neuron level and have been often used to classify neuron populations, they are unable 

to provide a quantitative measure of the structural properties of a biological neural network. 

Emerging evidence indicates that many brain disorders are associated with the disruption of 

the network of neurites in defined brain areas [4, 16]. Thus, the ability to quantify the loss of 

regularity and structural organization in these networks is potentially very helpful to unravel 

fundamental structure-function properties involved in the insurgence of brain disorders.

An example of the type of data for which we wish to provide a quantitative analysis is 

illustrated in Fig. 5, where axonal processes in a brain tissue derived from a control mouse 

(Fig. 5(a)) and from a transgenic mouse which models neurodegeneration (Fig. 5(b)) are 

visualized with confocal fluorescent microscopy. The figure shows that, while in the control 

specimen the axonal processes are rather straight and tend to run parallel to one another, in 

the transgenic animal neighbouring processes are not very aligned and tortuous, leading to 

an overall disrupted and chaotic pattern. To deal with these types of data, we introduce a new 

approach which models a network of neurites as a system of tubular structures. Our 

observation is that one can measure the overall structural organization and regularity of this 

system by estimating the statistical spread of orientations of the tubular structures sampled 

over the region they occupy.

A direct approach to measure the spread of orientations would require to extract the local 

directional information of the tubular structures and use the notion of circular variance from 

directional statistics [8]. In an ideal tubular structure, this can be obtained by detecting the 

edges and then estimating their orientations. However, in the case of fluorescent images, it is 

difficult to extract the edges reliably due to the presence of noise. Therefore, we introduce an 

alternative procedure which uses the shearlet transform to estimate the local directional 

content of an image. As illustrated in Section 2., the continuous shearlet transform maps a 

function f into the elements  measuring the energy content of f near t at scale 

and orientations associated with a and s, respectively. Hence, for aj = 2−2j and 

fixed, the functions  measure the distribution of the directional 

content of f at scale 2−2j and location tk. We will use these functions to build an histogram of 

the directional content of an image.

4.1. Shearlet-based histogram of directional content

To define an histogram of the directional content of an image I using the shearlet transform, 

we consider the functions  evaluated at the discrete directional 
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values s(ℓ) = 2−jℓ, ℓ ∈ Nj, where Nj is a finite set depending on j. We assume that the image is 

normalized so that ‖I‖2 = 1. For each fixed scale j, we compute the quantities

where  is the discrete shearlet transform introduced in Sec. 2.. Hence, Hj 

describes the energy amount of I in each directional band indexed by ℓ.

Using the vectors Hj, we define a measure of the directional spread by computing a distance 

between the image I and an appropriate reference image I0. That is, the image I0 models the 

situation where all neurites are perfectly straight and parallel to one another, so that the 

corresponding feature vectors  have all components equal to 0, except for one 

component (with ‖I0‖2 = 1). We define the directionality spread index as the quantity

(4.1)

where [ℓ+d]n(j) is the sum ℓ+d modulo nj and is used to ensure that I0 is compared to all 

possible rotated versions of I. That is, ν2(I) is the rotation-invariant ℓ2 distance between the 

feature vectors of I and I0. Note that ν2 ranges between ν2(I) = 0, corresponding to the case 

where all neurites are perfectly straight and parallel to one another in the image I, and ν2(I) 
≈ 2, corresponding to the case of maximum misalignment, where the directional content is 

uniformly distributed among all directional bands.

However, while the use of the ℓ2-norm in (4.1) is a natural mathematical choice, it is not very 

‘physical’ (the inadequacy of ℓ2-norm to measure distances between features in well-known 

in computer vision, e.g., [9, 34]). As a more effective alternative, we can consider the Earth 

Mover’s Distance (EMD), known in mathematics as the Wasserstein metric, which is based 

on a solution of the transportation problem and was originally proposed to provide a 

consistent measure of distance or dissimilarity between two distributions of mass [33, 34]. 

This metric is particularly appealing in our context. In fact, the histogram associated with the 

vector Hj can be viewed as the amount of directional content piled over the various 

directionals bins. The directionality spread index associated with the EMD gives a measure 

of the minimum cost of turning these piles into the single pile corresponding to . In 

other words, it is measuring the cost of turning a network of possibly misaligned neurites 

into an ideal configuration where all neurites run parallel to one another. With respect to 

other notions of distances between histograms such as the information theoretic Kullback-

Leibler divergence [18] and the entropy, which account only for the correspondence between 

bins with the same index and do not use information across bins, EMD is a cross-bin 

distance measure, is not affected by binning differences and meaningfully matches the 

physical notion of closeness.
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To illustrate the use of our new definition, we have computed the directionality spread index 

ν2 and its variants associated with the EMD and other types of distances on a set of confocal 

fluorescent images similar to those in Fig. 5 in order to compare the axonal processes in 

brain tissues from control mice versus transgenic mice. The values of the directionality 

spread index associated with the ℓ2-norm, EMD, Kullback-Leibler distance (KLD) and the 

entropy distance are reported in Table 1. For each population (control animal, i.e., wild type, 

vs. transgenic animal), the table shows the mean directionality spread index computed over 8 

samples together with the standard deviation. Note that only the values of the directionality 

spread index associated with the EMD have passed the normality test. The numbers that we 

have obtained show that the difference between the directionality spread index of the two 

populations is statistically significant.

5. Conclusion

In this paper, we have shown that directional multiscale representations and, in particular, 

the shearlet representation offer a powerful and flexible framework for the analysis and 

processing of fluorescent images of complex biomedical data. The power of the shearlet 

representation comes for its ability to combine multiscale data analysis and high directional 

sensitivity, making this approach particularly effective for the representation of objects 

defined over a wide range of scales and with highly anisotropic features, such as the somas 

and neurites which are the main morphological constituents of imaged neurons. We have 

applied the shearlet representation to detect somas in fluorescent images of neuronal cultures 

and extract geometrical features from complex networks of neuronal processes in brain 

tissue. Our theoretical observations and numerical results show that the shearlet approach 

offers a very competitive analytical and computational framework for the geometric 

quantification of morphological features from large-scale fluorescent images of neurons.
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Figure 1. 

Frequency supports of the horizontal shearlets  for different values of a and s.
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Figure 2. 
Left: Cartoon-like model of a neurite and a soma. Right: The continuous shearlet transform 

of the cartoon-like image has rapid asymptotic decay everywehere except at the boundaries, 

for values of the shear variable corresponding to the normal orientation.
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Figure 3. 
Automatic detection of the soma. Panel A shows the maximum projection of a neuron 

imaged from fluorescent microscopy. Panel B illustrates the maximum response orientation 

components of the image (directions are color-coded) computed using the continuous 

shearlet decomposition at a single scale. Note that similar or slowly-changing colors are 

located along the neurites, unlike the soma region where there are no dominant orientations, 

that is, directional components vary randomly creating a white noise pattern. Using the 

directional ratio, we can accurately segment the soma from the rest of the structure in the 

image (Panel C).
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Figure 4. 
Values of directional ratio (color-coded) computed at various discrete scales; from left to 

right: , , and  according to the conventions of this paper. Using 

the convention of the discrete shearlet transform, from left to right we show the directional 

ratio at two, three and five scales below the resolution level of the original. As the scale 

becomes coarser, the values of the directional ratio in the interior of neurites become 

consistently more uniform and do not exceed a certain low threshold, whose existence is 

predicted by Theorem 3.2. In the interior of the soma and of thicker neurites, the values of 

directional ratio vary wildly, once again as predicted by Theorem 3.2.
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Figure 5. 
Representative confocal images of axonal processes in the dentate gyrus, a brain area 

important for cognitive function, in a control mouse (A) and in a transgenic mouse model of 

neurodegeneration (B). Axonal processes are labeled with an anti-beta-IV-spectrin antibody 

and visualized with an Alexa 488-conjugated secondary antibody. Note that the pattern 

distribution of beta-IV-spectrin is disrupted in the dentate gyrus of the transgenic animal. 

The boxed region is enlarged on the bottom right of each panel to highlight the orientation 

pattern of the axonal processes at a higher resolution. Scale bar = 10 μm.
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Table 1

Mean tortuosity scores using different metrics. Data are in the form: mean ± SD; p < 0.0001. The values are 

obtained from 8 sample images for each population.

Sample tissue EMD KLD ℓ2 ENTROPY

Wild type 28.1 ± 3.4 32.8 ± 3.4 1.9 ± 0.07 4.7 ± 0.11

Transgenic 37.3 ± 1.5 45.8 ± 1.9 1.5 ± 0.02 4.9 ± 0.01

Math Model Nat Phenom. Author manuscript; available in PMC 2017 August 11.


	Abstract
	1. Introduction
	2. The Shearlet Transform
	2.1. The wavelet transform
	2.2. The shearlet transform
	Proposition 1
	Theorem 2


	3. Soma identification in fluorescent images of neuronal cultures
	3.1. A shearlet-based Directional Ratio
	Theorem 3

	3.2. Proof of Theorem 3
	Proof

	3.3. Weak differentiability
	Proposition 4


	4. Quantitative measure of alteration in biological neural networks
	4.1. Shearlet-based histogram of directional content

	5. Conclusion
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Table 1

