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The growing impact of lyophilized cell-free protein expression systems
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ABSTRACT
Recently reported shelf-stable, on-demand protein synthesis platforms are enabling new possibilities in
biotherapeutics, biosensing, biocatalysis, and high throughput protein expression. Lyophilized cell-free
protein expression systems not only overcome cold-storage limitations, but also enable stockpiling for on-
demand synthesis and completely sterilize the protein synthesis platform. Recently reported high-yield
synthesis of cytotoxic protein Onconase from lyophilized E. coli extract preparations demonstrates the
utility of lyophilized cell-free protein expression and its potential for creating on-demand biotherapeutics,
vaccines, biosensors, biocatalysts, and high throughput protein synthesis.
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Introduction

Custom protein synthesis is a 50C billion USD indus-
try that impacts most parts of human lives including
the clothes we wear, the food we eat, the beverages we
drink, and the lifesaving therapeutics many require.1

The original workhorse of custom recombinant pro-
tein synthesis is Escherichia coli, which remains the
most cost-effective method and can produce many
complex proteins (including insulin2 and antibodies3).
Other synthesis chassis including yeast and mamma-
lian cells have been developed for proteins requiring
advanced assembly and post-translational modifica-
tions such as glycosylation and lipidation.4,5

Additionally, cell-free protein expression systems have
introducedmany attractive advantages to protein synthe-
sis technology.6 Because the reaction environment is not
confined within a cell wall, proteins can be expressed
from rapidly-produced PCR gene products,7 and
dynamic optimization of the reaction environment
becomes possible.8,9 Changes in reaction conditions such
as redox potential, pH, hydrophobicity, and temperature
enable expression of a variety of active proteins that are
often difficult to produce in vivo. Innovative examples
include cytotoxic proteins,10 membrane proteins,11,12

metallic holoenzymes,13,14 and virus-like particles.15-17

Cell-free protein synthesis (CFPS) reactions also allow
the incorporation of unnatural, even toxic18 amino
acids.19-23

A major limitation of both in vivo and cell-free pro-
tein expression methods is the cold storage chain
essential for chassis storage. Lyophilizing, or freeze
drying, is a common technique for rendering bio-
chemical and bioactive mixtures stable. Lyophilization
of wheat-germ extracts and its activity in cell-free pro-
tein expression has been reported.24 Inspired by this
report and seeking to overcome scale-up and RNA
stabilization challenges of this system, we created a
lyophilized cell-free protein synthesis system based on
E. coli cell extracts for shelf-stable storage and trans-
portation.25 The system, in addition to breaking the
cold-storage chain, has the added benefits of 1) a just-
add-water C DNA format where protein can be pro-
duced rapidly on-demand – in as little as 1 h, 2) con-
sistent scalable production from 250 mL up to 100 L26,
and 3) sterilization of the system to prevent release of
residual genetically modified bacteria if transported or
used in-field.27

Thus shelf-stable, on-demand protein synthesis plat-
forms are enabling new possibilities in biotechnology
applications. As a particularly innovative example, Par-
dee et al. have applied lyophilized cell-free systems to
enable rapid detection of Ebola and Zika viruses. This
cell-free platform was lyophilized into a paper support,
and when reconstituted, allowed portable virus
detection.28,29 We recently reported the on-demand pro-
duction of the cytotoxic cancer therapeutic Onconase
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from a lyophilized cell-free protein expression system,
which allows for shelf-stable storage of the extract for
90 d before use. The resultant protein was produced at
high yields and was immediately available for screening
without purification.10 In this article, we will highlight
technological advances and future applications enabled
by lyophilized, on-demand protein expression systems.

Therapeutic production from shelf-stable
expression system: Onconase10

Onconase (ranpirnase) is a potent biotherapeutic that
has been used to treat cancer and viral infections.30,31

Its cytotoxic mechanism of action is the degradation
of tRNA, which paralyzes protein production.4 As a
result, high-yield production in living cells is only pos-
sible if the protein folds incorrectly into inclusion bod-
ies directly following synthesis. Refolding requires
several steps and multiple days to recover some of the
original activity.32,33

Initial expression of Onconase in E. coli cell-free
protein synthesis (CFPS) reactions resulted in 80% of
produced Onconase being soluble, likely attributed to
CFPS’s slower expression rates and 25-fold less-
crowded environment.34 However, initial protein
yields were less than 3% of those obtained with model
protein GFP through E. coli CFPS (0.03 mg/mL of
Onconase compared to 1.45 mg/mL of model protein
GFP). To address the hypothesized tRNA degradation
caused by Onconase, tRNA was systematically added
to the open CFPS reaction environment. This resulted
in an overall Onconase yield of 1.86 mg/mL with
more than 95% being soluble. It is also significant to
note that the estimated production cost of Onconase
is less than 30 USD per milligram.

Following cell-free synthesis, Onconase was added
without purification to a breast cancer cell line (MCF-7)
and assayed for cell viability. Controls also added to
MCF-7 included refolded Onconase expressed in E. coli,
doxorubicin, and cell-free reagents without Onconase.
Cell-free produced Onconase inhibited cancer cell
growth 60 times more effectively than refolded Onconase
and slightlymore effectively than doxorubicin.

In order to demonstrate the enhanced flexibility
afforded by lyophilization, Onconase was then synthe-
sized from lyophilized extracts. Onconase yields from
lyophilized extracts compared favorably with those
from standard extracts, matching or exceeding the
standard extract Onconase yields. Taken with our

previous results, which showed extract viability after
up to 90 days storage at room temperature,25 these
results demonstrate that a difficult-to-express thera-
peutic could be produced on-demand, even in remote
locations using lyophilized extracts stored at sub-opti-
mal conditions.

Future applications of shelf-stable expression
systems

The ability to render protein expression systems shelf-
stable enables many exciting applications for cell-free
protein synthesis. Among these are personalized and
on-demand biotherapeutics and vaccines, biothera-
peutics and vaccine production in remote locations,
biosensing, on-demand biocatalysis in chemical sup-
ply chains, and high throughput protein production
for screening, engineering, and protein evolution
(Fig. 1).

Personalized biotherapeutics and vaccines

The process of creating personalized vaccines typically
involves isolating nucleic acid from the patient’s
affected cells in order to express proteins that are then
administered to the patient. These proteins take the
form of antigens designed to elicit an immune
response. Researchers have already demonstrated the
creation of personalized therapeutic vaccines for the
treatment of lymphoma using cell-free protein synthe-
sis systems.35,36 Especially in cases of late-stage cancer
diagnosis where the time window for effective treat-
ment is severely restricted, rapid and on-demand pro-
tein generation is critical. Cancer vaccines have the
potential to become increasingly effective and avail-
able with the ability to stockpile lyophilized CFPS sys-
tems. In addition to creating cancer vaccines,
stockpiling of protein expression systems enables
rapid vaccine production in response to a viral pan-
demic threat.37 Shelf-stable protein expression may
additionally impact dendritic cell immunotherapy
techniques,38 enable effective immunotherapy for
combating warts,39 and supply rapid purification-free
production of vectors for gene delivery.40,41

Biotherapeutics and vaccines in remote locations

As modern medical treatments depend increasingly
on biotherapeutics, the ability to synthesize proteins
in remote and adverse environments will be
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invaluable. Shelf-stable protein expression systems
allow for economic transportation and enable the uti-
lization of biotherapeutics in remote locations. Travel-
ers, humanitarians, and defense units could be
outfitted with pre-assembled, just-add-water kits simi-
lar to the systems used to produce Onconase. Addi-
tionally, lyophilized systems make vaccine production
technologies available for generation in remote loca-
tions, e.g. in response to an epidemic or in other
humanitarian efforts.

Biosensing

Biosensors are biochemical constructs designed to
indicate the presence of a given analyte, and utilize
the specificity of a bioreceptor. Biosensor designs that
require active proteins in their operations are begin-
ning to be impacted by portable and on-demand
CFPS systems. For example, Pardee et al28 utilized
lyophilization to integrate cell-free protein expression
triggered by riboregulators into a paper-based biosen-
sor platform. A chromogenic indicator, visible to the
naked eye, was engineered to indicate a positive
response from the biosensor. The result was a porta-
ble assay, activated simply by adding water and a
sample of specific RNA sequence. Applying this pre-
viously engineered technology, the authors created a
highly specific biosensor for Ebola and Zika. The
entire creation process, from in silico design to in

vitro naked-eye detection, required less than 6 d. It is
also significant to note that the diagnostic test itself,
including sample collection, RNA extraction, and
cell-free reaction requires about 3 h to execute, and
the lyophilized biosensor platform is shelf-stable for
up to one year.

On-demand biocatalysts

Lyophilized CFPS reactions can also be used to create
on-demand biocatalysts, fortifying chemical supply
pipelines with increased versatility and economy. Bio-
catalysts are leading the effort for “green chemistry” in
the chemicals industry, eliminating harsh chemical
catalysts and waste streams while reducing thermal
energy costs. With biocatalysts that can be rapidly
synthesized, chemical supply pipelines can be altered
in response to a change in the demand of a chemical
commodity. Thus chemical feedstock can potentially
be more efficiently used to create the chemical product
that is most profitable.

High throughput production

Increasingly rapid gene synthesis technology com-
bined with shelf-stable on-demand protein synthesis
is a powerful tool for high throughput protein produc-
tion. Currently, gene product structure and function
understanding lags far behind available gene sequence
data. Methods for high throughput and economic

Figure 1. Future applications of shelf-stable protein expression systems. Lyophilized protein expression reactions are activated by the
addition of water and nucleic acid, and have the potential to enable innovative applications in personalized biotherapeutics and vac-
cines, biotherapeutic and vaccine production in remote locations, biosensing, on-demand biocatalysis, and high throughput production.
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screening of protein gene products are a significant
advantage to researchers seeking to decipher the pro-
teome.42,43 High throughput protein synthesis is also
indispensable in rational protein engineering and
directed protein evolution. Because standard cell-free
extracts must be used quickly or stored frozen, and
because preparation of the extracts requires several
hours, dependency on such has the potential to bottle-
neck execution of rapid protein expression cycles. On-
demand protein expression systems, that transcribe
and translate from rapidly-produced DNA44 and facil-
itate activity assessment without product purification,
enable parallel synthesis cycles to be executed in as lit-
tle as 3 to 4 h.10

Conclusion

In an emerging epoch of novel protein systems engi-
neered to meet human needs, technologies providing
on-demand protein expression will become funda-
mentally useful. From cytotoxic cancer therapeutics to
Zika virus detectors and on-demand biocatalysts,
lyophilized cell-free protein synthesis platforms place
exciting new tools in the hands of biotechnologists.
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