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The functionally elusive RabI chromosome configuration directly regulates nuclear
membrane remodeling at mitotic onset
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ABSTRACT
Despite its ubiquity in interphase eukaryotic nuclei, the functional significance of the RabI configuration, in
which interphase centromeres are clustered at the nuclear envelope (NE) near the centrosome and
telomeres localize at the opposite end of the nucleus, has remained mysterious. In a broad variety of
organisms, including Schizosaccharomyces pombe, the RabI configuration is maintained throughout
mitotic interphase. The fission yeast linker of nucleoskeleton and cytoskeleton (LINC) complex mediates
this centromere association. The functional significance of centromere positioning during interphase has
been recently revealed using a conditionally inactivated LINC allele that maintains LINC stability but
releases interphase centromere-LINC contacts. Remarkably, this interphase release abolishes mitotic
spindle formation. Here, we confirm these observations using an alternative strategy to explore the role of
centromere-NE association without modifying the LINC complex. We analyze spindle dynamics in cells
lacking Csi1, a stabilizer of centromere-LINC associations, and Lem2, a NE protein harboring lamin
interacting domains. We recapitulate these observations and their implications for the functional
significance of centromere positioning for cell cycle progression in fission yeast and most likely, a wide
range of eukaryotes.
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Introduction

In the 1880s, studies performed by Carl Rabl in salamander
larvae cells revealed that the chromosomal polarization
imposed by anaphase, in which centromeres are pulled in
opposite directions toward the poles and telomeres extend
behind, persists in the following mitotic interphase.1 This chro-
mosome organization has since been known as the Rabl config-
uration.2 The temporal persistence of the RabI configuration
varies between species; in organisms such as S. pombe, it is
maintained throughout interphase.3 Despite the longevity of
these observations, the function of the Rabl configuration has
been a mystery. The absence of mutants able to fully disrupt
the association of centromeres with the nuclear envelope (NE)
beneath the spindle pole body (SPB, centrosome equivalent in
yeast) during interphase while preserving intact kinetochores
and SPBs has thwarted our ability to assess the relevance of
centromere positioning.

These problems were solved recently. Centromere-NE asso-
ciations are mediated by the LINC complex, which consists of
the SUN-domain protein Sad1, lodged in the inner nuclear
membrane, and its outer nuclear membrane spanning KASH
domain partners Kms1 and Kms23,4 (Fig. 1). The development
of a new thermo-sensitive allele of Sad1, Sad1.2, in which cen-
tromere-LINC contacts are inactivated at 36�C while Sad1
nonetheless remains stable at the SPB, has disclosed a crucial
role of centromere-LINC associations as a controller of spindle
assembly.5 This control is exerted via regulation of the partial

NE breakdown required for SPB insertion into the NE, a crucial
prerequisite for spindle assembly.

Although S. pombe is considered to undergo a closed mitosis
in which the spindle forms within an intact NE, the SPB sits on
the cytoplasmic face of the NE throughout interphase. Hence,
to nucleate a spindle in the compartment harboring the chro-
mosomes, the NE must be locally disassembled beneath the
SPB at mitotic onset. This crucial step generates a NE hole
known as a fenestration. Once the SPB is duplicated, the 2
SPBs descend into this fenestration and form the spindle. This
localized and transient NE disassembly in fission yeast is remi-
niscent of the nuclear envelope breakdown (NEBD) process in
metazoans, in which the entire NE is disassembled to license
the access of the spindle to the chromosomes.6 Release of all
centromeres from their normal LINC association during inter-
phase, via inactivation of the LINC complex using the Sad1.2
allele, abolishes NE fenestration.5 The conservation of NE
disassembly, albeit to differing extents, as well as the LINC
complex and the centromere components, raises the possibility
that centromere-LINC contacts are a conserved controller of
NE disassembly.

The completeness of the linkage between centromeres and
Sad1 is mediated by Csi1 (chromosome segregation impaired 1),
a Sad1-interacting protein identified in a screen for factors
required for proper chromosome segregation.7 Deletion of csi1
confers centromere clustering defects in »80% of cells; however,
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in all csi1D cells at all times, at least one centromere remains
associated with Sad1.7 The penetrance of csi1D defects is
increased upon loss of the inner nuclear membrane protein
Lem2, suggesting that Csi1 and Lem2 cooperate in linking cen-
tromeres to the LINC complex during interphase. Indeed, a
small subset of still images of csi1D lem2D cells show all centro-
meres dissociated from the SPB.8

We found that the interaction of only one centromere with
the LINC complex during interphase is sufficient to confer
proper NE disassembly and spindle formation in mitosis and
meiosis.5,9 These observations provide a potential explanation
for the overall lack of spindle defects in csi1D lem2D cells. If
the total centromere-LINC dissociation seen in some csi1D
lem2D cells were transient, the residual centromere-LINC con-
tact level would be permissive for spindle formation. Con-
versely, if simultaneous loss of Csi1 and Lem2 were to
occasionally confer irreversible and complete centromere disso-
ciation, our work predicts events of spindle failure. To examine
these possibilities, we examined the behavior of csi1D lem2D
cells using live microscopy. We find that while centromere dis-
sociation induced by sad1.2 mutations is irreversible, the asso-
ciation between centromeres and Sad1 in a csi1D lem2D
background is destabilized rather than severed; dissociated cen-
tromeres often return to the SPB this scenario. Nevertheless, we
observe a low frequency of csi1D lem2D cells with all centro-
meres persistently dissociated from the LINC complex. In this
subset of cells, similar spindle formation defects to those
observed in sad1.2 cells at restrictive temperatures are observed.
These observations confirm that centromere localization per se,
whether in a sad1C or sad1-deficient background, is required
for spindle nucleation.

Results

Transient centromere-LINC associations in csi1D lem2D
cells

We used time-lapse imaging to quantify the number of cells in
which all centromere foci are separated from the SPB (Fig. 2A)
during the 40 min before mitotic SPB duplication, when cells
are in interphase. To visualize the position of the centromeres
with respect to the interphase SPB, we endogenously tagged a
centromeric protein, Mis6, with GFP and a SPB component,
Sid4, with mCherry; tubulin was visualized via ectopic expres-
sion of mCherry-Atb2 to identify cells in interphase. In wt cells,
all centromere signals localize to a single focus beneath the
interphase SPB (¡30 min to¡10 min in Fig. 2B). In csi1D cells,
this centromere clustering is disrupted; although at least one
centromere localizes to the SPB, additional Mis6-GFP foci are
seen elsewhere (7; ¡50 min to ¡10 min in Fig. 2B). Deletion of
lem2 in csi1D cells confers greater defects in centromere clus-
tering8; some csi1D lem2D cells show all centromere foci sepa-
rated from the interphase SPB (¡60 min in Fig. 2B). In most
instances, dissociated Mis6 foci return to the SPB region during
interphase (¡40 min to ¡10 min in Fig. 2B). This transient
centromere-SPB association differs from the irreversible cen-
tromere dissociation induced by sad1.2 cells at restrictive tem-
perature (ref. 5; Figure 2B). To analyze instances of total
centromere dissociation (ie, excluding cells with one or more
centromere(s) remaining beneath the SPB throughout inter-
phase), we allocated cells into 2 categories: (1) transient total
dissociation, in which centromeres return to the LINC complex
region beneath the SPB during the 40 minutes preceding SPB
duplication, and (2) persistent total dissociation, in which cen-
tromeres fail to return to the SPB. After 4 hours at restrictive
temperature, »18% of sad1.2 cells show persistent total dissoci-
ation (5; Fig. 2C) while transient total dissociation is never seen
(Fig. 2D). In contrast, »10% of csi1D lem2D cells show tran-
sient total dissociation while only »1% maintain persistent total
dissociation (Fig. 2C and D). Therefore, Csi1 and Lem2 redun-
dantly stabilize centromere associations with Sad1, whose func-
tion is absolutely required to anchor centromeres to the region.

Persistent centromere dissociation in csi1D lem2D cells
abolishes spindle formation

The occasional occurrence of persistent total centromere-LINC
dissociation by simultaneous deletion of csi1 and lem2 provides
the opportunity to determine whether loss of centromere con-
tacts abolishes spindle formation even if Sad1 is fully intact
(sad1C). In wt cells, the SPB duplicates before mitosis, during
which the elongating spindle separates the 2 SPBs (Fig. 2B).
The partial centromere dissociation observed in csi1D cells
does not affect spindle formation (Fig. 2B); this is in accord
with our observations that a single centromere-SPB contact
confers proper spindle assembly.5,9 Those csi1D lem2D cells
showing transient total dissociation are also able to promote
spindle formation (¡40 min to ¡10 min in Fig. 2B). However,
those csi1D lem2D cells showing persistent total dissociation
accomplish SPB duplication but fail to separate the duplicated
SPBs (30 min in Fig. 2B, yellow arrow); this behavior mirrors
that of sad1.2 cells at restrictive temperature (20 min Fig. 2B,

Figure 1. Schematic of the LINC complex in fission yeast. The LINC complex con-
sists of 2 components: Sad1, the SUN-domain protein (pink) in the inner nuclear
membrane and a KASH-domain protein (yellow) in the outer nuclear membrane.
In fission yeast, Sad1 anchors all centromeres to the inner nuclear membrane.
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Figure 2. Persistent total centromere dissociation in csi1D lem2D cells results in spindle failure. (A) In wt cells, all centromeres are clustered beneath the SPB during
mitotic interphase. Double deletion of csi1 and lem2, or sad1.2 cells grown at restrictive temperature (36�C), lead to centromere dissociation from the SPB during inter-
phase. (B) Series of frames of films of mitotic cells harboring Sid4-mCherry (SPB), Mis6-GFP (centromeres) and ectopically expressed mCherry-Atb2 (Tubulin). Bars, 5 mm.
Numbers indicate mitotic progression in minutes; tD 0 is the SPB duplication stage. Yellow arrowheads point to SPBs failing to separate. (C-D) Quantitation of centromere
dissociation exemplified in (B). Total centromere dissociation of the centromeres from the SPB is never observed in wt or csi1D cells. sad1.2 grown for 4h at 36 �C com-
mence total centromere dissociation from the SPB.
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yellow arrow). Hence, the complete loss of centromere-Sad1
contacts, even in the context of a wt Sad1 protein, confers spin-
dle failure, thus confirming that the spindle failure seen in
sad1.2 cells stems specifically from centromere release (Fig. 3).

Discussion

The Sad1-interacting proteins Csi1 and Lem2 reinforce
centromere positioning beneath the SPB during inter-
phase.7,8,10,11 While the loss of Csi1 leads to penetrant defects
in the persistence of centromere clustering,7 centromere-
LINC associations are largely intact in lem2D cells.8,10 Models
for how centromeres are connected with the LINC complex
need to account for the facts that most csi1D lem2D cells
show at least one centromere-LINC association, and that Csi1
and Lem2 remain stably associated with Sad1.2 at restrictive
temperatures despite the irreversible loss of centromere asso-
ciations.5 At least two, not mutually exclusive, possibilities
can accommodate our observations thus far. First, a still
unidentified third factor may mediate centromere-LINC asso-
ciations in a Sad1-dependent but largely Csi1/Lem2 indepen-
dent manner. Second, kinetochore proteins might interact
with Sad1 directly, with Csi1 and Lem2 stabilizing this inter-
action to different degrees (Fig. 4). Such stabilization could be
via interactions between Csi1/Lem2 and the kinetochores, via
conformational alteration of Sad1 by Csi1/Lem2, or via con-
formational alteration of kinetochores by Csi1/Lem2. Sad1.2
harbors two substitutions: threonine to serine at position 3
and serine to proline at position 52,5 both of which are
required for the sad1.2 phenotype. These mutations may lead
to a conformational change in the Sad1 N-terminal domain
that compromises interaction with the ‘third’ element, be it a
kinetochore factor or an additional connecting factor. Current
genome-wide screens aim to identify those factors involved in
connecting centromeres to the LINC complex.

Spindle failure in the absence of centromere-LINC contacts
is preceded by failure of NE disassembly5; indeed, this failure
alone can account for the role of centromere-LINC contacts in
promoting spindle formation.6 How might centromeres
impinge on NE fenestration? Although the mechanisms gov-
erning NE disassembly remain unclear, it has been observed
that disassembly of NE-associated components, such as the
nuclear pore complexes or nuclear lamina, is integral to NEBD
and requires precise phosphorylation events. These modifica-
tions are coordinately catalyzed by the activity of cyclin-depen-
dent kinase (CDK1), polo-like kinase (PLK1) and Aurora B.
The ability of centromeres to recruit enzymes like CDK1 and
PLK16,12 suggests the possibility that centromere-LINC interac-
tions might concentrate these enzymes at the NE to trigger its
disassembly. Alternatively or in addition, centromeres might
recruit membrane wedging proteins to the region. We are cur-
rently exploring these ideas to discern how specific regions of
the chromosome interface with the NE remodeling and cell
cycle control machineries. These control modules may provide
coupling between events within and outside of the nucleus,
ensuring that NEBD and spindle assembly cannot occur
prematurely.

Methods

Strains and growth conditions

Strains used in this work are listed in Table 1. Standard fission
approaches13 were performed. Gene C-terminal tagging was
performed as described.9,14 Insertions of mCherry-Atb2 at the
aur1 locus15 used pYC19-mCherryAtb216 provided by T. Toda
(Hiroshima University). Final concentrations of aureobasidin
A (0.5 mg/mL), nourseothricin (100 mg/mL clonNAT), G418
(150 mg/mL geneticin), hygromycin B (300 mg/mL), thiabenda-
zole (10–15 mg/mL TBZ) were used for selection.

Fluorescence microscopy and live analysis

Fluorescence microscopy data were obtained using the DeltaVi-
sion microscope system (Applied Precision, Seattle, WA). Cells
were adhered to 35 mm glass culture dishes (MatTek) using
0.2 mg/ml soybean lectin (Sigma) and immersed in EMM (with
required supplements). Time-lapse imaging was performed at
30�C and 36�C in an Environmental Chamber with a DeltaVi-
sion Spectris (Applied Precision) comprising an Olympus IX70

Figure 3. Centromere-LINC interactions promote mitotic spindle formation. In wt
cells, the clustering of centromeres beneath the SPB promotes spindle formation.
In sad1.2 cells or csi1D lem2D (sad1C) cells, centromere dissociation from the SPB
abolishes spindle formation and cell division.

Figure 4. Schematic of centromere-LINC organization during interphase. Proposed
organization in wt, sad1.2, and csi1D lem2D cells; see text for details. INM, inner
nuclear membrane; ONM, outer nuclear membrane.
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wide field inverted epifluorescence microscope, an Olympus
UPlanSapo 100x NA 1.4 oil immersion objective, and a Photo-
metrics CCD CoolSnap HQ camera. Images were acquired over
26 focal planes at a 0.35 mm step size. Images were deconvolved
and combined into a 2D image using the maximum intensity
projection setting using SoftWorx (Applied Precision).

Abbreviations

LINC linker of nucleoskeleton and cytoskeleton
NE nuclear envelope
NEBD nuclear envelope breakdown
SPB spindle pole body
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