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Abstract

Dextran, the α-1,6-linked glucose polymer widely used in biology and medicine, promises new 

applications. Linear dextran applied as a blood plasma substitute demonstrates a high rate of 

biocompatibility. Dextran is present in foods, drugs, and vaccines and in most cases is applied as a 

biologically inert substance. In this review we analyze dextran’s cellular uptake principles, 

receptor specificity and, therefore, its ability to interfere with pathogen–lectin interactions: a 

promising basis for new antimicrobial strategies. Dextran-binding receptors in humans include the 

DC-SIGN (dendritic cell–specific intercellular adhesion molecule 3-grabbing nonintegrin) family 

receptors: DC-SIGN (CD209) and L-SIGN (the liver and lymphatic endothelium homologue of 

DC-SIGN), the mannose receptor (CD206), and langerin. These receptors take part in the uptake 

of pathogens by dendritic cells and macrophages and may also participate in the modulation of 

immune responses, mostly shown to be beneficial for pathogens per se rather than host(s). It is 

logical to predict that owing to receptor-specific interactions, dextran or its derivatives can 

interfere with these immune responses and improve infection outcome. Recent data support this 

hypothesis. We consider dextran a promising molecule for the development of lectin–glycan 

interaction-blocking molecules (such as DC-SIGN inhibitors) that could be applied in the 

treatment of diseases including tuberculosis, influenza, hepatitis B and C, human 

immunodeficiency virus infection and AIDS, etc. Dextran derivatives indeed change the pathology 

of infections dependent on DC-SIGN and mannose receptors. Complete knowledge of specific 

dextran–lectin interactions may also be important for development of future dextran applications 

in biological research and medicine.

INTRODUCTION

Dextran is a glucose polymer with a prevalence ofα-1,6-linked units and is usually linear 

(Figure 1). Dextran is a component of vaccines, cosmetics, foods, and drugs. In addition, it 

is one of the most widely used blood plasma substitutes. Dextran-based molecules (e.g., 

fluorescent markers) play an important role in biomedical research. Dextran’s properties 
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provide various advantages including adjustable molecular size and viscosity; chemical 

stability and simplicity of modification; ability to target certain cell types and cellular 

compartments; relative biological inertness. We are the first to highlight that dextran shares 

specific receptors with many pathogens. According to recent studies, this commonality lends 

dextran the capability to have antimicrobial properties.

Detailed publications on dextran have been written for medical professionals (1), 

biochemists, pharmacists, and biotechnology specialists (2–4). However complex work is 

lacking on dextran’s fate at the cellular level. Topics that must be addressed include types of 

cells that take up dextran, its receptors and interference with infectious processes. Dextran’s 

biological inertness is implied in many of its applications: it is often used as a nonfunctional 

biocompatible core molecule conjugated with the functional groups (fluorescent dyes, drugs, 

charged or hydrophobic groups). However, dextran-binding receptors that belong to the 

family of C-type lectins, namely mannose receptors (MRs), dendritic cell (DCs)-specific 

intercellular adhesion molecule-3 (ICAM-3)-grabbing nonintegrin (DC-SIGN), L-SIGN (the 

liver and lymphatic endothelium homologue of DC-SIGN), and langerin, are involved in the 

immune recognition and uptake of numerous pathogens such as human immunodeficiency 

virus (HIV) and Mycobacterium tuberculosis (5).

In HIV infection, DC-SIGN binding to gp120 is considered to be a critical phase in the entry 

of HIV-1. DC-SIGN antibodies (6), short hairpin RNAs suppressing DC-SIGN gene 

expression (7) and carbohydrate-binding agents (8) have been touted to inhibit DC-SIGN 

binding of the HIV-1 envelope complex to DCs and to prevent viral transmission. We have 

successfully reported inhibition of DC-SIGN and gp120 interaction by screening known 

inhibitors and carbohydrate-binding agents by devising a novel target-specific high-

throughput screening assay (9). We also found that DC-SIGN plays a critical role in 

infection through human T-lymphotropic virus-1 (HTLV-1) envelope glycoprotein binding 

and DCs to T-cell transmission (10, 11). Overall, in these studies blocking of DC-SIGN was 

shown to prevent the binding and transmission of human retroviruses, indicating the 

suitability of the dextran-binding receptor, DC-SIGN, as an antiretroviral drug target.

Hepatitis B and C viruses, influenza, and various fungi and protozoa are also associated with 

uptake via C-type lectins, specifically the dextran-binding receptors. These receptors take 

part in uptake of the pathogens by DCs and macrophages and also participate in the 

modulation of intracellular signaling and immune responses. In many cases such modulation 

is beneficial for pathogens (5). Pathogens’ interactions with MR and DC-SIGN suppress T-

helper type 1 (Th1) immune responses which are crucial for defense against intracellular 

pathogens (12). Dextran unlike the surface molecules of pathogens is an inert ligand of 

mannose receptor and DC-SIGN that does not induce production of cytokines suppressing 

Th1 response (13). Therefore we suggest that dextran owing to receptor-specific interactions 

might interfere with an unfavorable immune response and give preference to Th1-inducing 

pathogen-Toll-like receptor signaling. Moreover dextran could prevent binding and uptake of 

many viruses via its receptors. To indicate all areas that show potential promise for future 

applications of dextran as a receptor-specific molecule, we point towards its existing medical 

and research applications (Figure 2). At last, the paradigm of “biologically inert” dextran 
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can be revised, as this molecule affects the infectious process, most likely owing to the 

lectin-glycan interaction mechanism.

DEXTRAN-BINDING RECEPTORS

Mannose receptor

Macrophage mannose receptor (MR, CD206) is a carbohydrate receptor from the 

superfamily of C-type lectins (14, 15). It is expressed in liver and spleen endothelial cells, in 

macrophages, and to a lesser extent, in DCs (16). Its main role in mammals is the 

metabolism of glycoproteins taking place predominantly in the liver (17, 18). MR is also 

responsible for recognition and phagocytosis of pathogens and allergens, promotion of Th2 

immune responses, and antigen presentation (13, 15). Moreover, the uptake of dextran via 

MR has been proven before (19). A list of all the cell types expressing MR that are able to 

take up dextran is depicted in Table 1.

DC-SIGN family receptors

DC-SIGN is a receptor expressed by monocyte-derived dendritic cells (MDDCs) in vitro and 

in vivo (20), and by dermal/intestinal/genital mucosae dendritic cells in vivo (21, 22). It is 

also expressed on activated B cells (23), wound-healing (IL-4-activated) and alternative (M-

CSF-activated) monocyte-derived macrophages, tumor-associated macrophages (24), certain 

tissue macrophages such as in the alveoli and lung (25). This receptor is responsible for the 

interactions of DCs with T cells (26), vascular and lymphatic endothelial cells (27), 

including umbilical vein (28) as well as blood-brain barrier endothelial cells (D. Sagar and P. 

Jain, unpublished results), and also pathogens (12) and allergens (29) (providing their uptake 

and/or intracellular signaling). Signaling via DC-SIGN limits Th1 responses influencing 

Toll-like receptor dependent pathways through Raf1 kinase (30). DC-SIGN is involved in 

the reception of pathogens of bacterial, viral, fungal, and protozoan origin, as well as those 

from multicellular parasites. This group of pathogens recognized by DC-SIGN includes 

mycobacteria, Helicobacter pylori, the worm Schistosoma mansoni, HIV-1, Ebola virus, 

cytomegalovirus, and Leishmania. Antigenic interaction with DC-SIGN shifts the T helper 

type1/T helper type 2 balance, causing a chronic infection (12). DC-SIGN receptor in 

humans has one homologue, L-SIGN (liver/lymph node-specific intercellular adhesion 

molecule (ICAM)-3-grabbing nonintegrin), expressed mainly in the liver (31); there are 

eight orthologues in mice, including SIGN-R1 to SIGN-R8 (32). Uptake of dextran via DC-

SIGN family receptors (DFRs) DC-SIGN, L-SIGN, SIGN-R1, and SIGN-R3 is proven (33–

36). Cells that express these receptors are able to take up dextran (Table 1).

Langerin and LSECtin

Langerin is a receptor specific to Langerhans cells of the skin (37) and uptake of dextran via 

langerin is proven (36). Human and mouse liver and lymph node sinusoidal endothelial C-

type lectin receptors (LSECtins) are expressed mainly by liver endothelial sinusoidal cells 

and lymph endothelium (38). Although these receptors are not proven to bind dextran, it 

seems probable because of specificity similar to other dextran-binding receptors. Cells 

expressing these receptors take up dextran (Table 1).
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RECEPTOR-DEPENDENT AND INDEPENDENT ENDOCYTOSIS OF 

DEXTRAN

In the context of possible antimicrobial application of dextran, it is important to note that 

this molecule can be taken up into the cells. Clinical dextrans (linear molecules with 

molecular masses 35,000–80,000 that can curculate in the bloodstream from hours to days) 

are more potent to be taken up into the cells compared to oligodextrans (linear oligomers of 

α-1,6-linked glucose) (36). The rate of endocytosis is critical for the development of new 

applications: bigger molecules provide prolonged action and delivery into the cells, while 

smaller molecules do not provide the receptor clustering and are more potent as the entry 

inhibitors because they do not induce receptor-dependent endocytosis by themselves.

Dextran is recognized and taken up by macrophages, DCs, LSECs and some other cell types 

prefferedly via specific receptors (33–36). However dextran can also be taken up via 

mechanisms of nonspecific fluid-phase endocytosis (FPE). Table 2 specifies the mechanisms 

of dextran internalization associated with certain cell types and receptors. MR (14) and DC-

SIGN (56) participate in the clathrin-mediated endocytosis (CME) mechanism. MRs and 

DFRs are necessary and sufficient for receptor-mediated dextran uptake in human immature 

MDDCs (33, 57).

Use of dextran as a marker for different endocytosis processes requires the discrimination 

between CME, phagocytosis, and FPE. In CME the uptake of dextran can be dependent on 

receptors including MR, DC-SIGN (human), L-SIGN (human), SIGN-R1 (mouse), SIGN-

R3 (mouse), and langerin. CME is available for particles up to 200 nm (72). Uptake of small 

particles via CME (and other endocytosis mechanisms) is sometimes called phagocytosis. 

This term has specific implications. Phagocytosis indeed uses the machinery of different 

types of endocytosis at the initial stage. However, owing to the initiation of additional 

mechanisms, it allows uptake of much bigger particles of 500 to 2000 nm or more in 

diameter. Phagocytosis of dextran-based or dextran-covered particles can be dependent on 

the same receptors as CME (MRs, DFRs, langerin). Dextrans dissolved in media can be 

taken up by FPE mechanisms independent of ligand recognition. In the case of FPE, 

potential mechanisms include macropinocytosis or cdc42-dependent—so-called CLIC/

GEEC—pinocytosis. The main molecules participating in this process are clathrin-

independent carriers (CLICs) and glycosylphosphatidylinositol-enriched endocytic 

compartments (GEECs). Different endocytosis mechanisms may be activated 

simultaneously.

Fluorescently labeled dextrans became quite popular in endocytosis studies when Schröder 

et al. first developed fluorescently labeled dextran (fluorescein isothiocyanate, FITC-

dextran) in 1976 (73). Ohkuma and Poole published their classical work on lysosomal 

acidification control using FITC-dextran in 1978 (74). In recent decades the labeled dextrans 

have been used extensively as lysosomal markers (75). They were used to evaluate FPE (76), 

endocytic activity in general (77), phagocytosis (78, 79), macropinocytosis (80), and 

macropinocytosis plus MR-mediated uptake (19). They were also applied as the ligands of 

MR (81), SIGN-R1 (35), and as the ligand of MR and DC-SIGN simultaneously (57). All 

the terms clathrin-mediated endocytosis, phagocytosis, fluid-phase endocytosis, and 
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macropinocytosis applied to dextran (or dextran-containing particles) as an endocytotic or 

lysosomal marker are applicable, but in different cases: dependent on cell types and 

phenotypes.

When clinical dextran is injected into the bloodstream, one part is taken up by cells, another 

part is excreted by the kidney and a third part is retained in the bloodstream. Ratio of these 

parts depends on the molecular weight and the dose (for more specific data see (39, 82, 83)). 

The main organs of dextran uptake are liver, spleen, lung, and kidney. From the blood, 

dextran can enter into interstitial fluid, then the lymph, and then back to the bloodstream. 

Hepatocytes are able to transport small amounts of dextran to the bile (39, 84–87). Kidney 

filtration of dextran is dependent on the molecular mass/size: molecules smaller than ~50 

kDa are excreted quickly, whereas larger ones stay in the blood longer (Figure 3A and B) 

(85, 88). Cells that take up dextran are able to metabolize it slowly into glucose by acid and 

neutral α-glucosidases expressed in all cell types (89–92). These glucose molecules 

participate in glucose metabolism and can yield dextran-derived exhaled carbon dioxide (93, 

94).

DEXTRAN DERIVATIVES IN TUBERCULOSIS, CANDIDIASIS, AND 

INFLUENZA MODELS

Dextran has shown to be inert to DC cytokine reactions while the ligands of pathogens 

binding to MR and DFRs restrict Th1 response (12, 13). The studies of dextran or dextran-

drug conjugates in models of bacterial, fungal, and viral infections that are dependent on 

dextran-binding receptors (Table 3) are of great interest. In such models, the dextran core is 

able to interfere with pathogen macrophage and pathogen-DC interaction. Possible 

inhibition of pathogen uptake or changes in immune response by dextran should influence 

infection outcomes and several studies confirm this notion.

Dextran-isoniazid has shown interesting results in a model of tuberculosis-like 

granulomatosis induced by Bacillus Calmette–Guérin (BCG) injection. The intensity of 

fibrotic lesions in this model after treatment with dextran conjugate was compared with free 

isoniazid treatment. Fibrosis of the lung decreased 30%, of the spleen 3.5-fold, and of the 

liver more than fourfold. Hepatotoxicity decreased 2.2-fold, and the development of necrosis 

into granulomas decreased 10-fold (159). Decreased lung remodeling may be beneficial for 

prevention of caviation and subsequent transmission (160) of tuberculosis, and could also 

help drugs reach the mycobacteria inside granulomas, that is itself an important problem 

(161).

Dextran influences the phagosomal-lysosomal fusion and the death rate of mycobacteria 

BCG inside mouse peritoneal macrophages. The control rate of death inside macrophages 

was 33%, and with dextran (22 μg/ml) it was 39%. Isoniazid treatment (7 μg/ml) yielded a 

bacterial death rate of 43%, while the conjugate of dextran with isoniazid (25 μg/ml, same 

isoniazid content) yielded a 53% death rate.

The latter result may be explained by targeted delivery of dextran into the phagosomes and 

lysosomes where the pathogen is taken up (162). An increase in phagocytic activity after 
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dextran uptake is probably connected with NADPH oxidase 2 upregulation which is 

responsible for antimicrobial activity (163). In the systemic candidiasis model the dextran-

amphotericin B conjugate given 10 days after infection decreased the number of granulomas 

in the liver by fourfold (164). In experiments on dextran–rimantadine this conjugate has 

shown to have a significantly better defencive effect in the chicken embryo and mouse 

models for influenza A and B virus and in the mouse model of tick-borne encephalitis (165). 

It remained unclear whether dextran alone could cause similar effects in the treatment of 

infections.

Regularly infused in mice in a model of BCG-induced granulomatosis, oxidized dextran 

(OD; in these studies-the molecule of clinical dextran containing less than 3% of glucose 

units oxidized with formation of aldehyde groups) reduced the number and size of 

granulomas in the organs; increased numbers of fibroblasts (with reduced activity) in the 

granulomas; decreased destructive and necrotic changes in the liver; and decreased fibrosis 

in the liver and lungs (166). In a mouse influenza model, OD decreased fatality by 3.3-fold 

and significantly decreased lung fibrosis (167). In a model of systemic candidiasis, the 

number of granulomas in the brain decreased eightfold after OD treatment compared with 

antifungal amphotericin B. While the control group of mice died, 60% of OD-treated mice 

survived (168).

The mechanism of OD action is still undiscovered; however, this form of dextran has been 

shown to increase the degree of adhesion of peritoneal cells, which may indicate increased 

activity of macrophages (169). OD reduces the viability of these cells, but conversely it 

stimulates metabolic and oxidative processes (169). In vitro dextran, and to a greater extent 

OD, are able to stimulate macrophage production of granulocyte-macrophage colony-

stimulating factor (169), which supports the differentiation and activation of antigen-

presenting cells (170). OD causes a shift in the balance of activities between nitric oxide 

synthase and arginase towards increasing nitric oxide production by macrophages (171). 

Another effect is increased macrophage ROS production (172).

Chemical differences between dextran and OD are not significant; it is unknown whether 

oxidation played a role in in vivo results. Probably specific binding of MR and DFRs by 

dextran modulates pathogen-induced T helper responses (Figure 4) (173, 174). Thus 

antifibrotic action of dextran in BCG model (159, 166) could be linked to restricted Th2 

reaction contributing to tissue remodelling. If this hypothesis is true, dextran could also 

modulate the immune response to Th2 overreaction-inducing allergens dependent on MR 

(175) and DC-SIGN (176, 177).

Preliminary results are available concerning the in vivo action of nonmodified dextran in 

models of infections dependent on dextran-binding receptors. Dextran introduced 

intranasally simultaneously with heat-killed M. tuberculosis H37Rv decreased lung 

concentrations of both IFN-γ and IL-10, while the IFN-γ/IL-10 ratio decreased 2.5-fold, a 

result that rather illustrates suppression of Th1 response (178).

Dextran introduced intranasally simultaneously or a day before infection with 10 LD50 of 

the H5N1 influenza virus saved or prolonged lives of mice (179). These experiments do not 
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provide evidence on dextran’s mechanisms of action, a question that will be addressed in 

future works. They show, however, that dextran may be a promising molecule to add to the 

long list of treatments against infections dependent on dextran-binding receptors (Table 3).

DEXTRAN IN PREVENTING HIV INFECTION AND TRANSMISSION

Sexual transmission of HIV is the most prevalent route for infection (180, 181). DCs of 

intestinal and genital mucosae express DC-SIGN (21). They can be productively infected 

with HIV and have high capacity to transinfect the T cells—the main HIV targets. DC-SIGN 

itself is an important player in the formation of DC-T cell infectious synapses (182, 183); 

signaling via DC-SIGN promotes increased viral uptake (184) and productive infection 

(185), and also influences DCs regulatory roles (30). HIV entry inhibitors are commonly 

used antiretrovirals (186), but there are still no inhibitors of HIV-DC-SIGN interaction 

introduced into the clinics, in spite of proven importance of receptor in myeloid cells 

infection and trans-infection of T cells.

Dextran 60 given before and after infection provides significant decrease of the HIV-1 viral 

RNA inside the B-THP-1/DC-SIGN cells. Dextran oligomers also inhibit infection (S. 

Pustylnikov and P. Jain, unpublished results) and indeed carbohydrate-binding domain of 

DC-SIGN binds to ~3 carbohydrate units (187). This suggests dextran is an effective 

inhibitor of HIV-DC-SIGN interaction. It was shown that dextran decreases the mortality 

rate of HIV-infected human monocyte-derived macrophages from 84% to 48% (188). This 

could be a result of the inhibition of the minor HIV-DC-SIGN binding (189), as well as a 

result of the inhibition of HIV-MR interaction shown in macrophage infection and viral 

transmission (98).

We suggest that dextran as a DC-SIGN and MR ligand could not only decrease the rates of 

HIV infection and trans-infection in myeloid cells, but could also serve to deliver the 

antiretrovirals or vaccines to DCs. Anti-HIV gel formulations have proven their efficiency in 

clinical trials (190); use of viral entry inhibitors in gel formultions can provide full 

protection in vivo (191). If dextran proves to be an HIV entry inhibitor, it could be used as a 

gel formulation.

CONCLUSIONS

The combination of dextran properties is unique. Dextran is a hydrophilic, nonionic 

molecule with adjustable molecular mass distribution (Figure 2) and viscosity/density in 

solutions. Dextran’s lack (or near lack) of toxic effects, pyrogenic or allergic reactions and 

accumulation in the body; its thermal and chemical stability allowing sterilization and 

obtaining the derivatives; its applicability in mass production at comparably low costs (82, 

192): all make dextran an appealing biopolymer for multiple applications.

Antimicrobial strategies that could exploit dextran is a speculative topic due to the lack of 

data. However currently dextran is already used in a great amount of diverse aplications in 

fields of research and medicine which can benefit from our analysis of the dextran-binding 

receptors (Figure 2). Dextran is a popular component of conjugates and nano-particles. 

Numerous works on drug-dextran conjugates show interesting results in vitro and in vivo 
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and provide arguments for improved pharmaceutical properties of such compounds 

(reviewed in (193–198). Our analysis suggests that concept of targeted delivery—the 

conjugation of dextran with antimicrobials to reach the pathogens inside the specific cells 

that take up dextran (liver cells, macrophages and DCs)—being itslef not a new idea, can 

benefit from knowledge of dextran-binding receptors and their roles in a number of 

infections.

Dextran’s influences on infections has not been studied comprehensively to date and only 

minor influences are known. Dextran-binding MR, DC-SIGN (in human)/SIGN-R1/SIGN-

R3 (in mice), L-SIGN, and langerin play large roles in infectious diseases (Table 3). Besides 

regulation of immune cell interplay, these receptors participate in binding, recognition, and 

uptake of different pathogens. Targeting of dextran-binding receptors (e.g., MR and DC-

SIGN) is a popular concept. In recent years studies devoted to the development of DC-SIGN 

therapeutic ligands have yielded new data in cell biology (203), immunology (204), and 

biochemistry (205, 206). The concept of therapeutic DC-SIGN antagonists/inhibitors is 

promising and in need of further development (9, 207). Targeting the MR is suggested for 

vaccine development (201), for delivery of cargo into macrophages (202) or liver cells (195). 

Dextran can play a role in the prevention of pathogen binding, entry and signaling in MR-

expressing myeloid cells wich participate in blood-brain barrier disruption in neuroinvasive 

infections (208): this was probably the case in prevention of C. albicans infection in the 

brain (168). Skewing the T helper responses could be a mechanism that allowed dextran 

derivatives to decrease tissue remodelling in the BCG infection model (159, 166) (Figure 4). 

Dextran has been recently used as a backbone for the nucleic acids delivery conjugate and 

our analysis could help in the development of this field (199). We also note that dextran 

could be of use in the glycosilation of adenoviruses used for gene transfer (200), possibly 

improving the biocompatibility and providing predictable uptake by certain cell types and 

receptors.

Further, the route of delivery of dextran and its derivatives require to be taken into 

consideration. Infusion will result in primary uptake in the liver, which is not a target of 

respiratory or mucosal infections. Dextran-based sprays or gels are an option, but they are 

not helpful in generalized infections. Clinical dextrans with molecular weights in the range 

35,000 to 80,000 cannot reach a systemic infection if given orally, but smaller molecules 

such as dextran with an average molecular weight of 1,000 probably can. Dextrans with high 

molecular weights induce active endocytosis, while smaller molecules do not (36). They 

may not only decrease the amount of available dextran-binding receptors on the cell surface 

but also prevent endocytosis and following recycling of receptors (shown for both MR (209) 

and DC-SIGN (210)) and keep the cells’ endocytic capacity at its initial level.

Medical and biological applications of dextran can be considered in a new way via the prism 

of receptor-specific interactions. This can be an instrument to interpret the data on dextran 

conjugates and derivatives. If antimicrobial properties of dextran can be applied in humans, 

dextran might become an approved, specific, nontoxic, cheap, and accessible 

immunomodulatory drug. These qualities are extremely important in the case of deadly 

infections that affect resource-limited populations. Dextran may possess antimicrobial and 

antiallergic effects owing to binding to MR, DFRs, and langerin. This review suggests a 
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primary aim for future studies: testing of the ability of dextran to act against a panel of 

pathogens exploiting dextran-binding receptors to enter the cells and to modulate the 

immune responses.
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List of abbreviations

APC antigen-presenting cell

BCG Bacillus Calmette Guérin

cdc42 cell division control protein 42 homolog

CLIC clathrin-independent carriers

CME clathrin-mediated endocytosis

DC dendritic cell

DC-SIGN dendritic cell specific ICAM-3-grabbing nonintegrin

DFRs DC-SIGN family receptors

FITC fluorescein isothiocyanate

FPE fluid-phase endocytosis

GEEC glycosylphosphatidylinositol-enriched endocytic 

compartments

gp120 HIV envelope glycoprotein

HIV human immunodeficiency virus

HIV-1 HIV type 1

HTLV-1 Human T-lymphotropic virus 1

ICAM-3 intercellular adhesion molecule-3

IFN interferon

IL-4 interleukin 4

LD50 median lethal dose

LSEC liver sinusoidal endothelial cells

L-SIGN liver/lymph node-specific ICAM-3-grabbing nonintegrin
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MDDCs monocyte-derived dendritic cells

MR mannose receptor

M-CSF macrophage colony-stimulating factor

NADPH nicotinamide adenine dinucleotide phosphate

OD oxidized dextran

Raf1 proto-oncogene serine/threonine-protein kinase

SARS severe acute respiratory syndrome

SIGN-R1 (-R2 …-R8), murine homologues of DC-SIGN

SIV simian immunodeficiency virus

Th1 (2) Type 1 (2) T helper cell

TLRs toll-like receptors
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Figure 1. 
Types of α-1,6 glucosides. A) Isomaltose (two glucose molecules with α-1-6 linkage). B) 

Isomaltotriose. C) Linear dextrans. D) Branched dextrans (schematically). e) α-

Cyclodextran.
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Figure 2. 
Dextran applications. Many dextran applications, especially medical and biological, can 

benefit from taking into account the receptor specificity of dextran. FITC = fluorescein 

isothiocyanate.
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Figure 3. 
A) Dextran metabolism and excretion pathways. Dextran from the blood circulates in the 

interstitial fluid and lymph ducts and interacts with most cell types. The main organs of 

active dextran uptake are the liver, spleen, and lungs. Kidney cells take up dextran via 

pinocytosis and do not metabolize it, providing only temporarily retention. B) Time 

dependence of clinical dextran excretion and metabolism. After dextran injection, kidneys 

excrete the fractions with low molecular mass. Heavier fractions circulate in the body fluids 

or are taken up into the endosomes. Endosomal compartment volume is limited and some 

injected dextran may remain in the circulation. In the endosomes, dextrans are metabolized 

to glucose or excreted by transcytosis. Owing to metabolism, new endosomal volume 

becomes available and can be filled with dextran molecules from the blood. Thus the dextran 

endosomal pool depletes when dextran concentration in the blood does not provide its 

renewal. LSEC, liver sinusoidal endothelial cells.
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Figure 4. 
Dextran and glycan-lectin interactions. This simplified scheme shows that if dextran 

decrease the availability of MR and DC-SIGN for the pathogens, this may influence immune 

responses. It is known that DC-SIGN ligands prevent binding and entry of pathogens, 

interfere with trans-infection of T cells by DCs, skew the myeloid cells activation 

phenotypes and influence immune response.
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Table 1

Expression of mannose receptor, LSECtin, langerin, and DC-SIGN family receptors correlates with dextran 

uptake capacity

Organ Receptor expression Dextran uptake

Liver 1) MR: Kupffer cells, LSEC (16) 1) Dextran uptake is present in Kupffer cells (39) and in LSEC 
(40)

2) L-SIGN, LSECtin: LSEC (31) 2) Dextran uptake is present in LSEC (40); dextran uptake is 
present in liver DCs (41)

Spleen 1) MR: splenic macrophages, endothelial cells (16) 1) Dextran uptake is present in phagocytes (39) and can be 
presumed according to dextran uptake along capillaries in 
endothelial cells (42)

2) SIGN-R1: spleen macrophages (35)
DC-SIGN: spleen DCs (26)

2) SIGN-R1-dependent dextran uptake is present in spleen 
macrophages (35); dextran uptake is present in spleen phagocytes 
(39) and in spleen DCs (41)

Lung 1) MR: alveolar macrophages (16) 1, 2) Dextran uptake is present in alveolar macrophages (43)

2) DC-SIGN: alveolar macrophages (25)

Kidney MR: macrophages, glomerular mesangial cells (16) Dextran uptake is present in phagocytes (39) and in mesangial 
cells (44)

Heart muscles MR: macrophages (16) Dextran uptake is present in phagocytes (39)

Brain MR: retinal microglia cells (45) Dextran uptake is present (45)

Skin MR: dermal microvascular endothelial cells (46) Dextran uptake is present (46)

Lymphatic system 1) MR: endothelial cells of the lymph ducts (47) 1) Dextran uptake (or at least binding) seems to be present in 
lymphatic endothelial cells due to dextran use in visualization of 
lymph vessels (49–51)

2) L-SIGN and LSECtin: endothelial cells of the 
lymph ducts and lymph nodes (31, 48); LSECtin: 
peripheral blood and thymic DCs (31)

2) Dextran uptake or binding seems to be present in lymphatic 
endothelial cells due to dextran use in visualization of lymph 
vessels (49, 51)

APC 1) MR: APCs in skin, muscles, salivary gland, 
thyroid, pancreas (52)

1, 2, 3) Dextran uptake is present in human immature MDDCs and 
Langerhans cells (53), plasmacytoid DCs (54), activated B cells 
(55)

2) DC-SIGN: human immature MDDCs, mucosal 
DCs, immature DCs on periphery (skin, tonsils), 
and mature DCs in lymphoid organs (26); 
plasmacytoid DC precursors (25); activated B cells 
(23)

3) Langerin: Langerhans cells

APC, antigen-presenting cell; DC-SIGN, dendritic cell–specific intercellular adhesion molecule (ICAM) 3-grabbing nonintegrin; L-SIGN, liver/
lymph node-specific intercellular adhesion molecule (ICAM)-3-grabbing nonintegrin; LSEC, liver sinusoidal endothelial cell; MDDC, monocyte-
derived dendritic cell; MR, mannose receptor.

J Pharm Pharm Sci. Author manuscript; available in PMC 2017 August 11.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Pustylnikov et al. Page 28

Table 2

Dextran endocytosis

Endocytosis Characteristics of dextran uptake

CME, receptor-dependent uptake 1) MR-dependent CME of fluorescent dextran in:

• Human immature MDDCs, simultaneously with macropinocytosis (19)

• Human immature MDDCs, dependent on MR expression (58)

• Human inflammatory dendritic epidermal cells (59)

• Human retinal microglia cells (45)

• Mouse immature spleen and bone marrow DCs, macrophages (fluorescent dextran 
3/70/500/2000) (60)

• Mouse liver sinusoidal endothelial cells (61)

2) DFRs-dependent CME of fluorescent dextran in (receptor-positive cells here means transfectants):

• Human embryonic kidney SIGN-R1-positive and SIGN-R3-positive HEK293T cells (36)

• Mouse spleen macrophages in vivo, SIGN-R1-dependent uptake (35)

• Mouse leukemic SIGN-R1-positive RAW264.7 transfectants and mouse spleen macrophages, 
SIGN-R1-dependent uptake (62)

• Mouse spleen marginal zone SIGN-R1 −/− macrophages do not take up fluorescent dextran 
(63)

• Hamster ovary L-SIGN-positive Cho cells (34)

3) Langerin-dependent CME of fluorescent dextran in langerin-positive HEK293T cells (36)

Macropino-cytosis or FPE FPE of fluorescent dextran in:

• Human immature DCs, simultaneously with MR-dependent CME (19)

• Human epithelial carcinoma cells (64)

• Mouse synovial fibroblasts (65), embryo fibroblasts NIH3T3 (66)

• Mouse bone marrow – derived macrophages (67)

• Mouse bone marrow – derived immature (not in mature) DCs (68)

• Mouse bone marrow macrophages (macro- and micropinosomes are present) (69)

• Mouse bone marrow macrophages (uptake is accompanied by leaks of fluorescent dextran 
into cytosol) (70)

• Madin-Darby canine kidney cells (71)

Phagocytosis Use of this term is misleading for dextran particles <0.5 μm in diameter

CME, clathrin-mediated endocytosis; DFR, DC-SIGN (dendritic cell–specific intercellular adhesion molecule [ICAM]-3-grabbing nonintegrin) 
family receptors; FPE, fluid-phase endocytosis; L-SIGN, liver/lymph node-specific intercellular adhesion molecule (ICAM)-3-grabbing 
nonintegrin; MDDC, monocyte-derived dendritic cell; MR, mannose receptor.
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Table 3

Dextran-binding receptors: roles in infections

Receptor Pathogens Receptor role in infection

Mannose receptor 1. Mycobacterium tuberculosis; M. kansasii, M. 
phlei, and M. smegmatis

1. Uptake of bacteria (95), inhibition of phagosomal-
lysosomal fusion (96) and restriction of Th1 response (13); 
uptake (97)

2. Retroviridae (HIV-1; Visna/Maedi virus; 
lentivirus)

2. Uptake of virus (98), induction of IFN-γ (99), increase 
of sexual transmission efficiency (100); virus uptake, in 
sheep (101); increased organ damage (102)

3. Candida albicans 3. Impaired killing (103), uptake (104)

4. Orthomyxoviridae (influenza viruses) 4. Uptake of virus (105)

5. Flaviviridae (Dengue virus) 5. Uptake of virus (106)

6. Rhabdoviridae (vesicular stomatitis virus) 6. Induction of IFN-γ (99)

7. Herpetoviridae (herpes simplex virus) 7. Induction of IFN-γ (99)

8. Hepadnaviridae (hepatitis B virus) 8. Uptake of virus (107)

9. Schistosoma mansoni 9. Induction of Th2 phenotype (108)

10. Bunyaviridae (Rift Valley fever virus, Toscana 
virus, Uukuniemi virus)

10. Uptake of virus (109)

11. Paramyxoviridae (measles virus) 11. Virus attachment, DCs and T cells infection (110)

12. Francisella tularensis 12. Bacteria uptake (111)

13. Yersinia pestis 13. Bacteria uptake (112)

14. Leishmania spp. 14. Uptake of the pathogen, modulation of immune 
response (113, 114)

DC-SIGN 1. M. tuberculosis 1. Uptake of mycobacteria by DCs (115), restriction of Th1 
response (12)

2. Retroviridae (HIV-1; human T-lymphotropic 
virus 1)

2. Uptake of virus and transinfection of other cells (6); 
cross-talk with Nef-1 signaling and decrease of IL-6 
production (116); binding (11), uptake of virus, infection 
and transinfection (10)

3. Candida albicans 3. Uptake of fungi (117)

4. Orthomyxoviridae (influenza viruses) 4. Uptake of virus and transinfection of other cells (118); 
improved viral replication (119)

5. Coronaviridae (SARS; infectious bronchitis 
virus)

5. Uptake of virus (120); uptake of virus (121)

6. Arenaviridae (Lassa virus, Junin virus) 6. Uptake of virus (122); uptake of virus (123)

7. Flaviviridae (hepatitis C virus; Dengue virus; 
West Nile virus, Tick-borne encephalitis virus)

7. Uptake of virus (124); uptake of virus (125), platelet 
activation (126); uptake of virus (127); predisposition to 
severe forms of encephalitis (128)

8. Paramyxoviridae (human respiratory syncytial 
virus)

8. Modulation of immune response (129)

9. Herpesviridae (cytomegalovirus, herpesvirus 8) 9. Uptake of virus and transinfection of other cells (130), 
virus uptake (131, 132)

10. Filoviridae (Ebola virus; Marburg virus) 10. Uptake of virus, transinfection (120, 133)

11. Helicobacter pylori 11. Uptake of bacteria, modulation of immune response 
(134)

12. Leishmania sp. 12. Uptake of the pathogen, modulation of immune 
response (114, 134–136)

13. S. mansoni 13. Binding of the surface molecule to the host cells, 
modulation of immune response (137)

14. Togaviridae (Sindbis virus) 14. Uptake of virus (138)
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Receptor Pathogens Receptor role in infection

15. Escherichia coli 15. Support of phagocytosis (139)

16. Klebsiella pneumoniae lipopolysaccharide 
serotype O3

16. Binding of bacteria (134)

17. Bacteroides fragilis 17. Processing and presentation to T cells (140)

SIGN-R1 1. M. tuberculosis 1. Binding of bacteria, modulation of immune response 
(141)

2. Candida albicans 2. Uptake of fungi (142)

3. Streptococcus pneumoniae 3. SIGN-R1 plays a defensive role (143), being important in 
development of IgM response (144)

SIGN-R3 1. M. tuberculosis 1. Binding, modulation of immune response (145)

2. Leishmania spp. 2. Binding and uptake of bacteria, modulation of immune 
response (136)

L-SIGN 1. M. tuberculosis 1. Binding, modulation of immune response (141)

2. Retroviridae (HIV-1, HIV-2; SIV) 2. Uptake of virus and transinfection of other cells (48, 146)

3. Coronaviridae (infectious bronchitis virus) 3. Uptake of virus (121)

4. Arenaviridae (Lassa virus, Junin virus) 4. Uptake of virus (123)

5. Flaviviridae (hepatitis C virus; West Nile virus) 5. Uptake of virus (124, 147); uptake of virus (127)

6. S. mansoni 6. Binding of the pathogen (148)

7. Filoviridae (Ebola virus; Marburg virus) 7. Uptake of virus and transinfection of other cells (133, 
149); uptake of virus (120)

8. Coronaviridae (SARS coronavirus) 8. Uptake of virus (120)

9. Togaviridae (Sindbis virus) 9. Uptake of virus (138)

10. Leishmania infantum 10. Uptake of bacteria (135)

Langerin 1. Mycobacterium leprae 1. Uptake and antigen presentation (150)

2. Retroviridae (HIV-1) 2. Uptake of virus and its degradation (151)

3. Candida spp. (including C. albicans), 
Saccharomyces species, and Malassezia furfur

3. Binding and phagocytosis of fungi (152)

4. Paramyxoviridae (measles virus) 4. Uptake of virus (153)

LSECtin (probable 
dextran-binding 
receptor)

1. Hepadnaviridae (hepatitis B virus) 1. LSECtin downregulates inflammation but prolongs the 
time of virus liver clearance (154)

2. Filoviridae (Ebola virus) 2. Binding of the virus, infection enchancement (155, 156)

3. Coronaviridae (SARS coronavirus, SARS) 3. Binding, infection enchancement (155)

4. Flaviviridae (hepatitis C virus) 4. Virus binding (157)

5. Arenaviridae (Lassa virus) 5. Virus binding (158)

DC, dendritic cell; DC-SIGN, dendritic cell specific intercellular adhesion molecule (ICAM)-3-grabbing nonintegrin; IFN, interferon; L-SIGN, 
liver/lymph node-specific intercellular adhesion molecule (ICAM)-3-grabbing nonintegrin; SARS, severe acute respiratory syndrome; SIV, simian 
immunodeficiency virus.
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