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Abstract

Purpose of the review—Lipid peroxidation has long been established as a key player in the 

pathophysiology of critical care illnesses. Recent developments in oxidative lipidomics have aided 

in deciphering the molecular mechanisms of lipid oxidation. This review discusses the 

achievements and recent developments of oxidative lipidomics and its contribution to the 

understanding of critical illness.

Recent findings—Most studies involving acute injury focus on identifying the end products of 

lipid peroxidation. This misses the early events and targets of peroxidation mechanisms. Recent 

developments in LC-MS based oxidative lipidomics have enabled the identification of a wide 

variety of enzymatically generated lipid oxidation products both in clinical as well as animal 

injury models. Such lipid mediators have been found to play an important role in injury, 

inflammation, and recovery in disease states such as sepsis or head trauma.

Summary—Oxidative stress produces multiple lipid oxidation products either through enzymatic 

pathways or through free radical reactions. These products are often biologically active and can 

contribute to the regulation of cellular signaling. Oxidative lipidomics has contributed to the 

understanding of lipid peroxidation products, the mechanism of their production, time course of 

development after injury, and synergistic functioning with other regulatory processes in the body. 

These advances in knowledge will help guide the future development of interventions in critical 

illness.
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Introduction

Lipids represent a highly diverse group of cellular components that are known primarily as 

structural elements of the biological membranes as well as the storage of energy. However, 

the diversity of lipids and the huge number of proteins involved in lipid metabolism point to 

a functional role for them in cellular homeostasis. One such function is the production of 

specialized lipid mediators that signal or regulate various important events within the cell. 

The majority of lipid mediators are derived from oxidized lipids, particularly oxidized 

polyunsaturated fatty acids (PUFA), either in a free form or in an esterified form in 

phospholipids. Oxidative lipidomics, one of the latest fields to join the “-omics” arena, has 

improved the understanding of the role of oxidized lipids in cellular homeostasis as well as 

in disease pathologies. In the following sections, we will review the recent advancements in 

oxidative lipidomics methodologies and their role in understanding the contribution of 

oxidized lipids to critical illness.

Lipid peroxidation

Broadly speaking, lipid peroxidation can be defined as “insertion of a hyrodperoxy group 

into a lipid”[1]. Free and esterified (into phospholipids) PUFA are the primary targets of 

oxidation owing to the presence of an easily abstractable hydrogen atom located between the 

two double bonds. Lipid peroxidation can be triggered either by enzymatic or non-enzymatic 

reactions. Enzymes involved in lipid oxidation include lipoxygenases (LOX), 

cyclooxygenases (COX), and various cytochromes such as cytochrome p450 and 

cytochrome C. Non-enzymatic pathways mainly involve the formation of free radicals from 

the reaction of transition metals with reactive oxygen species through Haber-Weiss or 

Fenton’s reaction. In either pathway, the lipid peroxidation involves initiation, propagation 

and termination [1]. The primary products formed are lipid-hydroperoxides (L-O-OH), 

which subsequently degrade into various secondary metabolites. [1] The (L-O-OH) and their 

secondary metabolites can function as signaling molecules [2].

Oxidative lipidomics

Lipidomics refers to the comprehensive analysis of lipids using analytical methods such as 

chromatography, nuclear magnetic resonance (NMR) and mass spectrometry (MS) [3,4]. 

Oxidative lipidomics is the recent addition to lipidomics that includes the structural, 

functional, and quantitative analysis of oxidatively modified lipids and their relationships to 

cellular signaling [5, 6].

Historically, oxidized lipids were identified through their end products via calorimetric 

assays, immunoassays, electron-spin-resonance, high performance liquid chromatography 

(HPLC), and gas chromatography–mass spectrometry (GC-MS) [7]. Current oxidative 

lipidomics methods mostly rely on liquid chromatography tandem mass spectrometry (LC-

MS/MS) techniques. Oxidative lipidomics usually consists of four steps: 1) lipid extraction 

from fluid/tissue samples; 2) LC-MS/MS analysis; 3) data analysis; 4) integration of the 

obtained information into a biological system or disease mechanism.
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While lipid extraction is well established, major advancements are happening in LC-

MS/MS. Oxidized free fatty acids are mostly analyzed using targeted analysis in which a 

specific translational daughter ion formed in the fragmentation analysis (MS/MS) is 

monitored in parallel with the parent ion. Targeted analysis methods were established for 

151 oxidized fatty acids [8**]. In human tears, targeted analysis was used to analyze 47 lipid 

mediators including an additional 22 not included in the aforementioned study [9**]. Our 

recent study which used a global oxidative lipidomics approach, showed 244 oxidized free 

fatty acids after trauma. However, we were only able to confirm the identity of 41 oxidized 

fatty acids using exact mass, fragmentation pattern, and retention time [10**]. This study not 

only indicated the presence of more oxidized fatty acids but also showed the need for novel 

comprehensive global analysis methods.

High throughput oxidative lipidomics can be challenging as many methods, including the 

above mentioned ones, require extensive sample preparation and clean-up. An improved LC-

MS method that simplified the extraction and clean-up steps in a simple online column-

switching HPLC setup demonstrated identification of 7 prostanoids directly from 

hepatocytes in a 96 well format [11*]. Similarly, a pilot study demonstrated the possibility of 

identifying degraded products of oxidized free fatty acids directly from exhaled breath in 

smokers in a high throughput manner [12*].

The analysis of oxidized phospholipids is complicated by their diversity. Using a lipidomics 

work flow that contained multiple chromatographic separations and in-house bioinformatics 

tools, Slater et al. identified 111 oxidized phospholipids in resting, thrombin-activated, and 

aspirinized platelets [13**]. More importantly, many of them were not previously identified 

and the structural details of these oxidized phospholipids were confirmed by fragmentation 

analysis. This study also identified three novel oxidized free fatty acids such as 14-

hydroxynonadecatetraenoic, -trienoic and -dienoic acids [13**]. Using a simple 

chromatographic method, we identified 130 oxidized phospholipids from Pfa1 cells based on 

exact mass and retention time. This method also identified phospholipids containing di- and 

tri-hydroxyl PUFAs [14**, 15*]. To date, these two studies represent the highest number of 

identified oxidized phospholipids.

Following the recently developed nanoelectrospray direct-infusion mass-spectrometry-based 

metabolomics and lipidomics procedure [16], Taylor et al. developed a high-resolution, non-

targeted, nanoelectrospray ionization (nESI) direct infusion mass spectrometry (DIMS). 

Based on the exact mass, the authors identified more than 100 oxidized lipids [17*]. Even 

though this method could be advantageous in terms of the time required for the analysis, 

inherent issues with the direct infusion make it likely that this method may still need 

optimization.

Despite criticisms [18*], colorimetric assays to measure the concentration of byproducts of 

lipid peroxidation such as thiobarbituric acid reactive substances are still used in assessing 

lipid peroxidation [19,20,21]. The calorimetric assays are nonspecific and do not provide 

quantitative information for in vivo measurements, however high sensitivity mass 

spectrometry methods for such analysis are being developed [22]. Another lipid peroxidation 

end product 4-hydroxynanoenol (4-HNE) often covalently attaches to proteins and thereby 
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alters cellular functioning. HNE modified proteins are identified by calorimetric and 

immunological methods. Recently targeted proteolipidomics strategies have also been 

developed for the detection of 4-HNE modified proteins [23, 24*].

Oxidative lipidomics in critical illness and related pathophysiological 

pathways

Disturbances in cellular redox status are often involved in the pathophysiology of many 

critical illnesses such as sepsis, trauma, ischemia reperfusion, and other acute injuries. 

Oxidative lipidomics led to a paradigm shift in this field as it established the role of oxidized 

lipids as mediators of the body’s response to injury.

Sepsis and shock are manifested by a deluge of inflammatory responses. A variety of 

oxidatively modified free fatty acids such as prostaglandins, hydroxyl, and dihydroxyl fatty 

acids are generated in such responses [25]. Oxidative lipidomics has contributed to this field 

by providing a system-level approach in understanding the precise balance between the 

mediators and their effects in modulating inflammatory processes. Analysis of the 

production of 141 lipid mediators upon infection of mice with influenza viruses of varying 

virulence showed a correlation of 5-LOX products with the inflammatory process and 12/15-

LOX products with the resolving phase of inflammation [26]. The ratio of two linoleic acid 

oxidation products, 9- hydroxyoctadecadienoic acid (HODE) and 13-HODE, was reported to 

be a marker of pro and anti-inflammatory stages. This finding was also confirmed in a 

similar analysis in nasopharyngeal lavages of humans infected with influenza virus [26]. 

Similar oxidative lipidomic profiling of peripheral blood mononuclear cells isolated from 

moderate to severe asthmatics that were treated with low molecular weight hyaluronan 

(generated through tissue injury or inflammation, accumulates in the asthmatic lung and 

serum, and correlates with disease severity) provided new evidence of the connection 

between inflammatory mediators and extracellular milieu [13**].

Oxidative lipidomics enables the identification of novel lipid mediators and their synthesis in 

the inflammatory process. Recently, 8-hydroxy-9, 11-dioxolane eicosatetraenoic acid 

(dioxolane A3, DXA3) was identified in thrombin-activated platelets [27*]. Lipidomics 

analysis also established the formation of eicosanoid-lysolipids from 2-arachidonoyl-

lysolipids by COX-2 and the release of eicosanoids from eicosanoid-lysolipid precursors by 

intracellular lipases (particularly, iPLA2γ) [28*]. Specialized proresolving mediators 

(SPMs) are a group of lipid mediators that have been identified with the aid of oxidative 

lipidomics. This group consists of lipid mediators such as lipoxins (LX), protectins (PD), 

maresins (MaR), and resolvins (RV) which are involved in the resolution phase of sepsis. 

Two maresins that are involved in the resolution of inflammation, 22-hydroxy-MaR1 and 14-

oxo-MaR1, were recently identified in Escherichia coli infectious exudates and added to this 

group of SPMs [29*].

Not only has oxidative lipidomics aided in the identification of new lipid mediators, these 

techniques have also allowed the study of the underlying mechanism in lipid-mediated 

cellular signaling. Resolvin-D2 has been found to act via the cell surface G protein-coupled 

receptor (GPR18/DRV2), CREB, ERK1/2, and STAT3 signaling pathways [30*]. The 
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response of conjunctival goblet cells to LXA4, was found to occur through the ALX/FPR2 

receptor mediated pathway [31]. Furthermore, analysis of human milk showed multiple 

SPMs such as RvD1, RvD2, RvD3, AT-RvD3, RvD4, PD1, MaR1, RvE1, RvE2, RvE3, 

LXA4, and LXB4 indicating potential maternal-infant biochemical imprinting towards the 

body’s response to infection and inflammation [32*].

The development of precise oxidative lipidomics methods have also been integrated into 

applied studies. A detailed comprehensive lipid mediator study in two models of sepsis 

induced by LPS and cecal ligation and puncture (CLP) reported a 2100% and 97% increase 

in prostaglandin-E2, respectively. Plasma oxylipin levels including epoxy-, hydroxyl-, and 

dihydroxy-fatty acids were significantly elevated in both models. This study also showed an 

organ-specific increase in selected oxidized free fatty acids after sepsis [33**]. In a mouse 

poly-microbial sepsis model, exposure of mesenchymal stromal cells to carbon monoxide 

improved therapeutic efficacy partially through promoting SPM production. These results 

shows the importance of SPMs in treating sepsis [34*]. In a different set of experiments with 

a similar sepsis model, NLRP3 inflammasome deficiency protected against sepsis by 

downregulating pro-inflammatory lipid mediators and upregulating SPMs, particularly 

through the increased synthesis of the arachidonic acid-derived lipid mediator, lipoxin B4 

[35*]. Along these lines, a lipid mediator study in medical ICU patients with sepsis showed 

higher pro- inflammatory mediators such as prostaglandin F2α and leukotriene B4 in non-

survivors and higher proresolving mediators such as resolvin E1, resolvin D5, and 17R-

protectin D1 in survivors [36**]. Oxidative lipidomics combined with bioassays on cultured 

bovine pulmonary artery endothelial cells (BPAECs) suggested that oxidized cardiolipin 

species may be hydrolyzed by iPLAγ2 to produce mono- and di-lysoCL which along with 

9- and 13- HODE may lead to impaired function of the pulmonary endothelial barrier 

function as well as necrosis [37]. Lipid mediators and their pathways can also be disrupted 

by interactions with pathogens. The lungs of cystic fibrosis patients with recurrent 

Pseudomonas aeruginosa infection often represent a chronic hyper-inflammatory 

environment. Detailed lipid mediator analyses indicate that this pathogen secretes cystic 

fibrosis transmembrane conductance regulator inhibitory factor (Cif) which hydrolyzes 

14,15-epoxyeicosatrienoic acid, thereby inhibiting the production of the proresolving lipid 

mediator 15-epi lipoxin A4 [38*].

Similar to oxidized free fatty acids, oxidized esterified fatty acids such as oxidized 

phospholipids (PLs) are involved in the inflammatory process. Oxidized phospholipids are 

now recognized as damage associated molecular patterns (DAMPs) and their pattern 

recognizing receptors (PRR) in signaling have been identified [39*]. Results from multiple 

studies have shown that oxidized PLs possess a pleotropic action of pro- and anti-

inflammatory functions and a balanced, harmonious action of oxidized phospholipids are 

necessary in the clearance of infection. In a heat-killed Staphylococcus aureus bacterial 

infection model, posttreatment with oxidized phosphatidylcholine dramatically accelerated 

lung recovery by restoring lung barrier properties [40]. Elevated amounts of oxidized 

phospholipids including mono- and di-oxygenated cardiolipin species were found in the 

lungs of the mice infected with Klebsiella pneumoniae [41]. A novel phospholipid oxidation 

product from 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (PAPC), deoxy-

A2/J2-isoprostanes-phosphocholine (deoxy-A2/J2-IsoP-PC), was identified and determined 
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to have an anti-inflammatory role [42*]. In activated platelets, an eicosanoid (DXA3) 

attaches to phosphatidylethanolamine to form esterified eicosanoids which activate the 

expression of neutrophil integrins [43*].

Lipid peroxidation has been extensively studied and has been identified as a major 

pathophysiological event after traumatic brain injury (TBI). Although the end products of 

lipid peroxidation after TBI have been established, the actual lipid species that undergo 

peroxidation were not identified until the advent of oxidative lipidomics. In our oxidative 

lipidomics analysis, we found that the major oxidized phospholipids early after TBI are 

cardiolipin and phosphatidylserine [44]. Oxidized cardiolipins are then hydrolyzed in the 

mitochondria through calcium independent phospholipase A2 to produce a plethora of 

oxidized lipid mediators [45]. Using a global free fatty acid analysis of the brain lipidome, 

we identified 244 distinct oxidized free fatty acid species after experimental controlled 

cortical impact (CCI) in rats. The results indicated a predominance of enzymatic lipid 

peroxidation after the injury in addition to a differential time course of pro- and anti-

inflammatory oxidized free fatty acids. Both the pro- and anti-inflammatory lipid mediators 

were synthesized and peaked at 1h after injury, the pro-inflammatory mediators cleared by 

24h, but the anti-inflammatory, proresolving mediators such as neuroprotectin D1, protectin 

DX1, resolvin D5, and resolvin D1 remained elevated until 24h following the CCI [10**].

Lipid peroxidation is the major event involved in ferroptosis, a specific cell death pathway 

implicated in critical illnesses such as acute renal injury. Thorough mining of oxidative 

lipidomics analysis from cells undergoing ferroptosis revealed oxidized arachidonic and 

adrenic acid containing phosphatidylethanolamines (PE) as ferroptotic navigators [14,15]. 

Detailed structural analysis further narrowed down these mediators to di- or tri-oxygenated 

arachidonic and adrenic acid-containing PE species. This connects the specific role of 

different players in ferroptosis, such as glutathione peroxidase4 (GPX4) (lipid 

hydroperoxide reductase; inhibits ferroptosis) acyl CoA synthetase long-chain family 

member-4 (ACSL4) involved in esterification of arachidonic and adrenic acids into PL; 

positively regulates ferroptosis). Moreover, these results highlight the usefulness of oxidative 

lipidomics in precisely decoding a complex cell death pathway which may aid in the design 

of targeted therapies in the future.

The deeper understanding of lipid peroxidation that has been made possible by oxidative 

lipidomics has also emphasized the fact that lipid peroxidation is a highly complex 

phenomena. This has necessitated in silico analysis of lipid mediator pathways as 

demonstrated by Gupta et al., who used existing oxidative lipidomic knowledge to model the 

molecular mechanisms of ω-3 and ω-6 lipid peroxidation in mammalian cells [46**] and by 

our use of phospholipid oxidation data to model the ferroptotic network [14].

Conclusion and future scope

Oxidative lipidomics has enabled the identification of various lipid oxidation products and 

the improved understanding of their pathophysiological functioning. However, this powerful 

technique is still in its infancy. The number of identified oxidized lipids is negligible 

compared to the total possible number that can be generated from known lipid structures. 
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The biggest limitation of oxidative lipidomics is this inability to identify and quantify all 

oxidized lipids. Given that oxidized lipids often activate metabolic pathways, they are 

usually present in very low quantities. Analysis of low-abundance, oxidized lipids in the 

presence of high-abundance, non-oxidized structural lipids is a daunting task. This requires 

very specific and sensitive methods including powerful robust software packages and a 

definitive oxidized lipid database. Nevertheless, oxidative lipidomics has begun to decode 

the complex mechanisms behind lipid peroxidation and its relationship to critical illness. 

Understanding the role of lipid mediators in different phases of injury or healing is important 

for selecting therapeutic targets. Interactions of lipid mediators with other molecules and the 

increasing availability of compounds that can inhibit their functions will help facilitate the 

design and development of new targeted therapies.
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Key points

• Oxidative lipidomics refers to structural, functional, and quantitative analysis 

of oxidatively modified lipids and their relationships to cellular signaling

• Oxidative lipidomics identified various lipid mediator and pathological 

pathways in critical illness

• Precise identification of mediators involved in cell death pathway is possible 

with oxidative lipidomics.
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