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Abstract

Background—Dynamic functional network connectivity (dFNC) analyzes time evolution of 

coherent activity in the brain. In this technique dynamic changes are considered for the whole 

brain. This paper proposes an information theory framework to measure information flowing 

among subsets of functional networks call functional domains.

New Method—Our method aims at estimating bits of information contained and shared among 

domains. The succession of dynamic functional states is estimated at the domain level. 

Information quantity is based on the probabilities of observing each dynamic state. Mutual 

information measurement is then obtained from probabilities across domains. Thus, we named this 

value the cross domain mutual information (CDMI).

Results—Strong CDMIs were observed in relation to the subcortical domain. Domains related to 

sensorial input, motor control and cerebellum form another CDMI cluster. Information flow 

among other domains was seldom found.

Comparison with existing methods—Other methods of dynamic connectivity focus on 

whole brain dFNC matrices. In the current framework, information theory is applied to states 

estimated from pairs of multi-network functional domains. In this context, we apply information 

theory to measure information flow across functional domains.

Conclusion—Identified CDMI clusters point to known information pathways in the basal 

ganglia and also among areas of sensorial input, patterns found in static functional connectivity. In 

contrast, CDMI across brain areas of higher level cognitive processing follow a different pattern 

that indicates scarce information sharing. These findings show that employing information theory 

to formally measured information flow through brain domains reveals additional features of 

functional connectivity.
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Introduction

Brain functional connectivity has revealed important relationships among spatially 

distributed brain networks. Distinctive patterns of resting state functional connectivity have 

been observed among patients with bipolar and major depressive disorder (He et al., 2016), 

addictive substance users (Sutherland et al., 2012), schizophrenia and other brain illnesses 

(Fox et al., 2010). Existing analyses tend to view the brain in either fine spatial segregation 

with coarse time averaging or coarse spatial and finer time scales. More recently there has 

been interest in analyzing sets of brain networks grouped by broad functional categories 

called domains (Miller et al., 2016a). The study of functional domains increases 

interpretability and allows the extraction of additional information.

Functional connectivity studies, which are derived from functional magnetic resonance 

imaging (fMRI) data, have revealed the existence of resting state networks (RSN) that are 

characterized by their temporally coherent activation patterns (van den Heuvel et al., 2009). 

Many of these observations have been obtained using correlation measures over relatively 

long periods of time (five minutes or longer) and overlooking behavior at finer time scales 

(Allen et al., 2011; Erhardt et al., 2011). Dynamic functional network connectivity (dFNC) 

is a technique that overcomes time scale limitations by analyzing short time synchronous 

behavior (Allen et al., 2012; Sakoğlu et al., 2010). The whole brain synchronous state is 

estimated at each time step using all RSNs. However, temporal changes at more functionally 

localized scales can be lost in this type of analysis.

The current work introduces a method to analyze dynamic functional connectivity changes 

among biologically defined RSN domains. RSNs within a domain tend to relate to each 

other based on functional considerations (Buckner et al., 2008; van den Heuvel et al., 2009). 

We will name our method dynamic functional domain connectivity (dFDC) because it 

focuses on evaluating domain information. This method has the advantage of revealing 

connectivity patterns on individual domains disentangled from a whole brain analysis. The 

dFDC is then analyzed using an information theory framework to assess the amount of 

information (in bits) shared among domains.

Dynamic Functional Domain Connectivity

Preprocessing and Estimation of Domains

Regular fMRI analysis requires a set of preprocessing steps. Depending on the type of 

analysis, these steps includes, but are not limited to, slice-timing correction, realignment, co-

registration, spatial normalization, transformation to standard space, motion correction, and 

smoothing (Churchill and Strother, 2013; Power et al., 2014; Vergara et al., 2016). 

Preprocessed fMRI is then further analyzed to identify regions of interest in the brain and 

obtain their temporal behavior. Sets of distinctive brain networks have been identified (Allen 
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et al., 2011; Buckner et al., 2008; Raz, 2004; Shirer et al., 2012) and described by their 

spatial content and temporal behavior. We will denote the spatial content of these brain 

networks as S, which is a three dimensional image, and the temporal behavior as X[t] where 

t designates discrete time. In the context of our approach, initial fMRI analysis delivers a set 

of networks NN[t] = [(S1, X1[t]), (S2, X2[t]), … (SN, XN[t])] describing spatio-temporal 

properties.

Identified brain networks are not isolated units. There is evidence that supports the concept 

of functionally interrelated brain networks (Rosazza and Minati, 2011; van den Heuvel et al., 

2009). Based on the concept of brain areas having similar functional properties, we organize 

the set of all networks NN[t] as a class containing subsets of functionally related networks 

such that NN[t] = [N1[t], N2[t], …, NM[t]]. The subindex indicating subset size was dropped, 

but may be used if necessary. In several studies the subsets in NN[t] are grouped according to 

anatomical and functional properties (Allen et al., 2011). The subsets Ni[t] in NN[t] will be 

referred to as domains. In parallel with the function of specific brain regions, the definition 

and extent of the domains is a topic of evolving research. Examples of important functional 

domains found in the literature are sensorimotor, executive control, default mode, salience, 

visual, cerebellum and language (Shirer et al., 2012).

Dynamic Functional Domain Connectivity

The study of dynamic relationships between networks is achieved through the assessment of 

time-based connectivity using metrics such as coherence, correlation or covariance (Allen et 

al., 2012). Given a connectivity operator o(•,•), the relationship R between two networks (Sa, 

Xa[t]) and (Sb, Xb[t]) will be denoted as Ra,b = o(Xa[t], Xb[t]). R has been estimated either 

by measuring over a sufficiently long period of time, which implies assumptions such as 

stationarity, or assessing the time evolution of coherence over shorter periods of time. 

Sliding windows (Chang and Glover, 2010) and wavelets (Yaesoubi et al., 2015) have been 

suggested through the literature to estimate the instantaneous coherence Ra,b[t].

The dynamic study of brain domains starts with the assessment of the dynamic domain 

connectivity matrix DZ,Y[t] containing all the instantaneous relationships Rz,y[t] between the 

two domains Z[t] and Y[t]. A clustering algorithm is applied to each DZ,Y[t] separately, 

resulting in a set of κ clusters with centroids Cκ
Z,Y = [D1

Z,Y, D2
Z,Y, …, Dκ

Z,Y] and a 

membership function mZ,Y[t] ∈ Cκ
Z,Y. Each cluster contains information about a particular 

dynamic state in the dFDC. A similar procedure has been previously described (Allen et al., 

2012) using the complete connectivity matrix. In contrast, this work applies clustering to 

connectivity submatrices defined by pairs of domains. Fig. 1 illustrates this procedural 

difference between dFNC and dFDC. The proposed procedure results in a total number of 

dFDCs determined by the possible number domain pairs.

Membership mZ,Y[t] indicates the closest cluster centroid at moment k estimated using an 

arbitrary distance measure d(•,•). Examples of distance measures include L1, L2 norms and 

correlation. Similar to the procedure used in dFNC for the identification of whole brain 

dynamic states (Allen et al., 2012), the current dFDC method allows for the estimation of 

dynamic states at the domain level. States are characterized by the time-varying domain 

connectivity matrices DZ,Y[t], algorithmically grouped into clusters with centroids Cκ
Z,Y. 
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States and membership functions mZ,Y[t] are the base constituents of the dFDC analysis. 

Although initially defined for two different domains, the dFDC can also be assessed for a 

domain with itself resulting in a within domain dFDC.

Entropy and Mutual Information

It will be useful at this point to make an analogy with the concepts of information theory. 

Consider each of the dFDC states in the set Cκ
Z,Y as elements from an alphabet. State 

centroids in the set Cκ
Z,Y can aid in building a conceptual representation of this alphabet. 

The corresponding membership function mZ,Y[t] defines when and how frequently each 

dynamic state (alphabet element) appears. The membership function also allows us to make 

an estimate of the probability of a given state with centroid Di
Z,Y, which we will denote as 

. This probability also indicates the occupancy rate of a particular state. Using  we 

can calculate a dFDC entropy as

(1)

In theory, entropy indicates the smallest number of bits necessary on average (using log base 

2) to describe each time-point of the membership function. For example, assume that we are 

going to store the membership function in a digital memory device. According to concepts 

of data compression (Cover and Thomas, 2012), entropy indicates the smallest number of 

bits per time-point necessary to save the membership information in that memory device. 

Data compression algorithms rarely achieve enough efficiency to compress down to the 

entropy level. However, entropy is recognized as the amount of non redundant information 

contained in data. Entropy can also be used to measure uncertainty. At maximum entropy, all 

states are equally likely to be observed and thus indicate maximum uncertainty. This means 

that the membership for a random observation of the domain connectivity cannot be 

predicted. This also means that a large number of bits are necessary to describe all the 

possible outcomes of the membership function. In contrast, zero entropy indicates that one 

of the clusters is always the outcome, but the other ones have a zero probability of being 

observed. This case indicates a static membership that can be predicted because it does not 

change with time. Notice that all dynamic properties vanish in this extreme case of zero 

entropy degenerating to a static membership case with one single dFDC state. In our digital 

memory device example, there would be no need to store the outcome of the membership 

function.

Cross Domain Information Measure

We would like to estimate how much can be known about the connectivity between domains 

Z and Y given that connectivity between domains A and B is known. In many respects, this 

approach is similar to the relationship transmitter-receptor studied in communications which 

has been widely described using Information Theory (Tononi et al., 1998). The definition of 

the joint distribution is
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(2)

The estimation of  is based on the temporal co-occurrence of membership states in 

mZ,Y[t] and mA,B[t]. In practice the joint probability can be calculated from frequency 

estimates. Adhering to the classical definition of mutual information, we define the cross 

domain mutual information (CDMI) measure IAB,ZY as

(3)

Another measure that is readily available is the amount of independent information defined 

by the conditional entropy. For example HZ,Y|A,B will be the amount of information between 

the domains Z and Y that does not depend on the connectivity between domains A and B. 

This calculation can be carried out by the simple equation:

(4)

Methods

Subjects

Data from a total of 121 healthy subjects, 71 of which were female, was used for this study. 

The age of this cohort ranged from 18 to 53 years with mean and standard deviation of 25.4 

± 8.3. There was no significant difference in age between males and females after a two-

sample t-test (p>0.37). Subjects did not exhibit injury to the brain, brain-related medical 

problems, bipolar or psychotic disorders, ADHD or a history of substance abuse/dependence 

including alcohol. All participants provided informed consent in accordance with 

institutional guidelines at the University of New Mexico.

Imaging

All images were collected on a 3 Tesla Siemens Trio scanner. A five-minute resting state run 

was completed by each participant using a single-shot, gradient-echo echo planar imaging 

sequence [TR = 2000 ms; TE = 29 ms; flip angle = 75°; FOV = 240 mm; matrix size = 64 × 

64]. Foam padding and paper tape was used to restrict motion within the scanner. Thirty-

three contiguous, axial 4.55 mm thick slices were selected to provide whole-brain coverage 

(voxel size: 3.75 × 3.75 × 4.55 mm). The first five images were eliminated to account for T1 

equilibrium effects leaving a total of 145 images. Data were preprocessed using the 

statistical parametric mapping (http://www.fil.ion.ucl.ac.uk/spm) software (Friston, 2003). 

The preprocessing steps included slice-timing correction, realignment, co-registration, 
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spatial normalization and transformation to the Montreal Neurological Institute (MNI) 

standard space.

Time courses were orthogonalized with respect to i) linear, quadratic and cubic trends; ii) the 

six realignment parameters; iii) realignment parameters derivatives; and iv) spike regressors. 

The DVARS method (Power et al., 2012) was used to find spike regressors where the RMS 

exceeded three standard deviations. The fMRI data were smoothed using a FWHM Gaussian 

kernel of size 6 mm.

gICA and dFNC Preprocessing

The data were then analyzed with Infomax-based group independent component analysis 

(gICA) (Calhoun and Adali, 2012) with 120 and 100 components for the first and second 

decomposition levels respectively. A total of 42 components out of 100 estimated 

components were selected based on frequency content and visual inspection in order to 

include components that were low noise and free of major artifacts (Allen et al., 2011). The 

gICA time courses were then filtered using a band-pass filter from 0.01 to 0.15 Hz.

The set of RSNs were identified and grouped in their functional domains. Spatial overlap 

with functional brain areas were confirmed by visual comparison with the 90 spatial maps 

defined by Shirer (Shirer et al., 2012) and by running peak activation coordinates through 

the meta-analysis software publicly available at http://www.neurosynth.org/. The functional 

domains are SBC (Subcortical), CEB (Cerebellar), AUD (Auditory), SEN (Sensorimotor), 

VIS (Visual), SAL (Salience), DMN (Default Mode Network), ECN (Executive Control 

Network), LAN (Language) and PRC (Precuneus). Chosen RSNs have peak activations in 

grey matter, low spatial overlap with known vascular, ventricular, motion, and susceptibility 

artifacts.

dFDC

A total of 55 = (10*11)/2 dFDCs (unique pairs of functional domains) were obtained from 

the 10 domains under consideration. Of these, 10 dFDCs represent within domain (for 

example DDMN,DMN[t]). The other 45 dFDCs capture cross domain connectivity (for 

example DECN,DMN[t]). On each of the 55 dFDCs, we used k-means clustering (Lloyd, 

1982) with a correlation distance metric and a window size of 80 seconds. The number of 

clusters for each dFDC was set to three after using the elbow criterion on the cluster validity 

index (Allen et al., 2012).

State probabilities were estimated for all domains in each subject. Subject-wise probabilities 

are estimated using the state frequency designated by the membership function within each 

subject. Each of the state probabilities on each dFDC was subject to a linear model including 

age and sex. From a straightforward clustering point of view, these probabilities are simply 

cluster occupancy rates (adding to one over the three clusters in each dFDC). We regressed 

the dFDC probabilities on age and gender to understand how these probabilities are affected 

by demographic factors. The estimation of entropy summarizes the information from all 

states within the dFDC into only one value per subject and dFDC. From Eq. (1) it is clear 

that the maximum possible entropy value will be log2 (number of states in the dFDC). We 
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estimated CDMIs for all combinations of dFDCs and organized the values in matrix form. 

We also estimated the static functional network connectivity (sFNC) matrix to compare its 

structure with the CDMI matrix. In addition, relationships with age and sex were determined 

using subject-wise CDMI and a linear regression model.

Results

Fig. 2 displays mean state probabilities, averaged over the subject dimension, along with 

corresponding entropies calculated from the three mean state probabilities on each dFDC. 

Some dFDCs did not show preference for a given state. Specifically, the entropies of dFDCs 

SEN-SEN and VIS-VIS were very close to the maximum entropy achievable (1.585 bits) for 

three states. There were however many of the dFDC that exhibited a noticeable preference 

for one of the three states over the other two as indicated by the red color (high probability) 

in Fig. 2. The occurrence of preferred states lowers the value of entropy. However, the 

highest state preference (maximum probability of 0.56) was not strong enough to produce a 

large dynamic range of entropy.

Relationships with age and sex were tested for subject-wise entropy and state probabilities. 

Fig. 2 displays the results where increments and decrements of state probabilities are 

indicated by triangles in the case of age and arrows in the case of sex. More information 

about these linear regression results is provided in Supplementary Table I. Only the dFDC 

SBC-DMN showed a significant relationship with age. This increment is reflected in the 

significant change of state probabilities, making the three probabilities more similar. While 

the highest state probability decreases, the lowest state probability increases. There was no 

significant relationship of occupancy or entropy with sex on any dFDC.

We estimated the CDMI values using estimated single and joint probabilities from every pair 

of dFDCs as required by Eq. (3). Similar to what is done in previous functional connectivity 

analysis, we have organized the CDMI values in matrix form. The results for within dFDC 

mutual information, those within the same domain (for example SBC-SBC versus SBC-

SBC) are not considered in this section. The reason is that within dFDC mutual information 

is equal to the entropy, I(X; X) = H(X) (Cover and Thomas, 2012). The CDMI matrix is 

displayed in Fig. 3 where the main diagonal, composed of I(X; X) type values, is set to zero. 

Excluding the main diagonal, there are 1485 off-diagonal mutual information computations 

ranging between 0 and 0.15 bits. Fig. 3 also displays the sFNC matrix for comparison.

In order to find which mutual information values, I, warrant further analysis, we 

bootstrapped the CDMI using 108 iterations and estimated significance thresholds. The 

threshold for a p<0.01 was estimated to be I>0.094 and for p<0.05 was I>0.063. After this, 

fifteen mutual information values passed the level p<0.01 as displayed in Fig. 4. Most of the 

surviving results were related to SBC and sensorimotor areas. In order to visualize the effect 

of having a relatively high I, we tested the ordered joint probabilities from significant 

(p<0.01) mutual information against the rest (p>0.01). As seen in Fig. 5, there is a 

significant difference between the two groups for the highest and lowest joint probabilities. 

This indicates that as mutual information grows there will be certain pairings of states with 

higher co-occurrence, which in turn increases the mutual information. For example, we have 
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identified the mutual information between SBC-DMN and SEN-VIS, which is significantly 

affected by age (p<0.01). The complete list of mutual information results related to age and 

sex is provided in Table I. We choose SBC-DMN vs. SEN-VIS because is the only pair of 

dFDCs in Table I that have all four different domains and thus can illustrate how two 

unrelated dFDCs influence each other. Fig. 6 displays the joint probabilities, spatial maps 

and state centroids. Two pairs of cross-domain states exhibit high joint probability with more 

than double the joint probabilities of the other seven co-occurring states.

Discussion

The current method establishes a framework to study information content in dynamic 

functional domain connectivity. Previous dynamic connectivity work (Allen et al., 2012), 

upon which we based our present study, considered whole brain clustering. Instead, the 

current approach addresses dynamic connectivity at the functional domain level including 

domain connectivity patterns and mutual information measures. Our current proposal does 

not intend to specify the baseline functional connectivity method employed. For example, 

instead of gICA (Calhoun and Adali, 2012), atlas based methods (Shirer et al., 2012) may be 

used as well in finding timecourses. For our current work, we selected gICA to have a more 

data-driven approach. Although we have utilized clustering, other alternatives such as PCA 

(Leonardi et al., 2013) exist; however, a full comparison among different approaches is 

outside of the scope of this paper. This last remark, also applies to the parameter set of the 

current analysis. The parameter set was chosen for stability based on previous work 

suggesting to filter frequencies higher than 0.15 Hz, apply a window size in the range of 30 

to 120 seconds, and use 100 components for gICA (Allen et al., 2012). Further advances in 

dFNC provide highly refined whole brain techniques including time-frequency coherence 

(Yaesoubi et al., 2015) and weighted dynamic connectivity (Miller et al., 2016b). Future 

work may incorporate these and other important techniques into the study of domain 

connectivity, providing a more detailed characterization of dynamic connectivity than is 

possible with whole brain analyses.

One of the basic goals of applying information theory to dFDCs is to determine the amount 

of information carried in the dynamic succession of states at the domain level. Our results 

indicate that the amount of information is typically close to the maximum that can be 

theoretically expected (i.e., the maximum entropy). These high entropies point toward a 

highly dynamic system with much information content. Results also suggest a highly 

unpredictable system in which the underlying language for single dFDCs (assuming 

decoding is possible) is very difficult to infer. Nevertheless, the dependency of entropy on 

age found between the SBC and DMN domains suggests an increase on the number of bits 

required to describe the dFDC through the aging process. The two SBC and DMN domains 

involve brain regions (see Fig. 6) with important roles in fMRI resting state studies. The 

SBC brain areas are known to be affected in patients of attention deficit hyperactivity 

disorder (Cao et al., 2009), major depression (Greicius et al., 2007; He et al., 2016), 

schizophrenia (Rashid et al., 2016) and other disorders during resting state. The DMN 

domain is fundamental for resting state brain function (Buckner et al., 2008). The significant 

increase of entropy indicates a disruption where preferred dynamic states are less probable 

to occur. At a basic level, entropy is a nonlinear summary measure that can be used as an 
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alternative to linear summaries such as averaging. However, the semantic behind entropy is 

directly related to amounts of information. Particularly, the mechanism behind increments of 

entropy and lack of state preference is related to changes of information shared with other 

dFDCs. This is exemplified by the increase of CDMI in relation to age (details available in 

Table I) observed between SBC-DMN (the dFDC significantly related to age) and other 

dFDCs including SEN-VIS, SAL-SAL and ECN-LAN. First, the resting state activity of the 

DMN is known to reduce with normal aging (Damoiseaux et al., 2008). Second and in 

addition to the DMN, the disruption produced during normal aging involves other brain 

areas including the salience network (in our data represented by the SAL domain) and the 

fronto-parietal network (Marstaller et al., 2015), which is an integral part of the ECN. In our 

data, the increments of CDMI with age suggest a recruitment of information into the SBC-

DMN from other important dFDCs such as SAL and ECN that in contrast to the DMN are 

not involved in self-referential activity. A possible explanation includes the need of more 

information from other brain areas as a mechanism of compensation due to reduced DMN 

activity. In relation to sex, the dFDC CER-CER also shows different CDMI in SEN-SEN, 

SEN-VIS and DMN-LAN. Differences between cerebellum and motor areas are known to 

exist between the sexes (Ingalhalikar et al., 2014). However, this did not produce a 

difference in entropy for the CER-CER dFDC. The mechanism producing this CDMI 

difference in CER-CER might vary from the one acting in SBC-DMN. Although our study 

does not focus on such questions, obtained results indicate that the proposed information 

theoretic framework is sensitive to changes in uncertainty and information flow among 

domains.

Moving beyond the results for single dFDC entropy, the CDMI results show a more 

predictable pattern of information sharing (measured in bits) among the dFDCs. Observed 

CDMI patterns exhibit similarities with the arrangement of sFNC matrices and provides 

validation for the observed configuration of the CDMI matrix. These similarities emerge 

when comparing subcortical, sensorimotor and cerebellum areas. SBC related dFDCs have 

strong CDMI values with other dFDC containing SBC (SBC-CER, SBC-AUD, etc.), which 

can be compared to existing static connectivity between SBC and the other domains (see 

Fig. 3 and Fig. 4). Also similar to static connectivity is the noticeable cluster of 

sensorimotor, visual and cerebellum areas. In spite of both matrices displaying different 

types of measures, the comparison indicates some overlap between strong functional 

connectivity and relatively high number of bits shared across domains. However, the 

differences also indicate that neither measure implies the other. Although not completely 

absent, there is a noticeable lack of strong mutual information among SAL, ECN, DMN, 

LAN and PRC domains. These observations suggest that, in spite of notable similarities, 

functional connectivity does not provide the same type of information as CDMI. CDMI has 

its own characteristics that enhance our ability to analyze the brain.

CDMI results may be related to known information pathways in the brain. The main 

components of the SBC domain are the putamen and the thalamus, two important brain areas 

of information relay belonging to the cortico-striatal loops (Alexander et al., 1986). One 

fundamental question is whether information is processed in parallel or if there is some sort 

of funneling in where data arriving from different cortical areas then intermix (Parent and 

Hazrati, 1995). In the case of parallel processing, dFDCs excluding the SBC domain (for 
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example SEN-SEN, SEN-VIS, CER-ECN and other similar dFDCs) would be able to share 

information with the SBC-SBC dFDC influencing membership probabilities. If this were the 

case, then unrelated dFDCs would compete for access to the SBC domain and affect its 

connectivity. However, Fig. 4 shows no evidence of this outcome. CDMI is strong and 

frequent among dFDCs that include the SBC domain (e.g., SBC-LAN, SBC-ECN, SBC-

DMN, etc.) forming the SBC cluster in the superior-left corner of Fig. 3 and Fig. 4. This 

SBC cluster supports the hypothesis of interaction among the different connections between 

cortical areas and the striatum (Parent and Hazrati, 1995). In this scenario, it is more feasible 

that a domain X affects the membership of the SBC-SBC dFDC only though its connection 

dFDC X-SBC dFDC. Furthermore, information overlap is exemplified by the CDMI 

between dFDCs with SBC as a common node such as the strong CDMI between SBC-SEN 

and SBC-PRC displayed in Fig. 4. The SBC case is not unique in Fig. 4; the dFDCs in the 

sensorimotor cluster (dFDCs involving the AUD, SEN, VIS, and CER domains) follow a 

similar CDMI pattern, suggesting that information overlap might be a common mechanism.

At the other end of the spectrum, the CDMIs for networks other than SBC and sensorimotor 

were rarely significant. This reduced communication could be linked to the resting state 

nature of the data. Specifically, it is plausible that ECN (Seeley et al., 2007) and DMN 

(Raichle, 2015) domains do not require a significant amount of CDMI bits since the ECN 

might not be particularly required during the resting state, while the DMN is known to be 

active in the absence of explicit tasks (Fox et al., 2005). This argument does not imply a 

direct relationship between activity and CDMI, but as with the case of phase in sFNC 

measures, activity might have some effect on CDMI. Reduced and absent CDMI among 

dFDCs might result from lack of activity exhibited by data acquired during subjects resting 

state.

The two CDMI patterns discussed suggest the existence of two different processes 

happening during resting state. One process is exogenous in nature involving communication 

among areas dedicated to input signals. The other process is endogenous with little 

communication among domains, as evidenced by the scarcity of significant CDMIs, but with 

high information content since information values were always high within domains (i.e., 

dFDCs exhibit high entropy). This bipartite observation is in line with the hypothesis of two 

default modes in brain function proposed previously (Fransson, 2005). One mode drives the 

self-referential mental activity anchored at the DMN (Greicius et al., 2003; Raichle, 2015). 

The other mode interrupts self-referential activity and temporary shifts into an extrospective 

state of mind. This extrospection maintains readiness in case attention to the outside 

environment is necessary (Fransson, 2005). Other studies have also provided evidence of 

dual resting state modes where activation can be influenced even when subjective attention 

and control is voluntarily enforced (Van Calster et al., 2016). Most conclusions found in the 

literature are based on anti-correlations between brain networks, but the functional 

significance of these results is not fully understood yet (Chen et al., 2017). The contribution 

of this CDMI study indicates that there is limited data exchange between brain domains of 

endogenous self-referential and exogenous attention control and readiness. Albeit high data 

processing activity may occurs continuously within each functional domain.
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One broad finding that comes from computing CDMI is that the number of bits shared 

across the brain is rather small. For example, the CDMI of Fig. 6 (SBC-DMN vs. SEN-VIS) 

only have about 0.061 bits, but this low amount of information is no surprise. Considering 

that each of the 55 dFDCs can share its approximately 1.585 bits (maximum entropy) with 

the other 54 dFDCs, an even distribution of CDMI results in an assignment of 0.03 bits for 

each dFDC. The CDMI of Fig. 6 doubles this quantity, which by comparison does not seem 

small. Furthermore, the maximum CDMI observed is five times the hypothetical 0.03 bits. 

Fig. 5 and Fig. 6 clearly illustrate the effect that small CDMI values can have over the 

dynamic states. A CDMI of 0.15 will increase the value of some joint probabilities and 

decrease some others such that observing a state in one dFDC increases the probability of 

determining the state of another dFDC. This is the case of Fig. 6 where the chances are as 

high as 24% of the time. Based on this discussion, it is normal to expect small CDMI values.

An assumption in our framework that has advantages and disadvantages is that brain 

networks have been correctly organized in functional domains. There is considerable 

evidence for the existence of this domain organization. One of the most studied domains is 

the DMN (Buckner et al., 2008), which has been the main focus in studying many diseases 

(Garrity et al., 2007; Zhou et al., 2012). It is critical for our method that domains are 

correctly organized around functionally related networks. However, the order can be 

different depending on the context of each study. Grouping appropriateness is an evolving 

topic in the literature (Buckner et al., 2008; Fox et al., 2005; Shirer et al., 2012; van den 

Heuvel et al., 2009). In applying the method presented, it is important to keep in mind that 

results are dependent upon the predefined domains. The current approach suffers from 

several of the issues that have also limited dFNC analysis. Some of these issues are related 

to physiological noise, preprocessing, clustering and window length. In our case, we assume 

that data processing, including all steps taken for windowing and clustering, were correct 

and stable. We also have to consider that different clustering methods, connectivity and 

distance metrics can change the final results. One detail left for future work is the search for 

the underlying code driving the communication of bits among dFDCs. Our presented results 

provide evidence for the existence of such a code based on shared information bits. For 

example, the two pairs of states (1,1) and (1,2) which occur more frequently in Fig. 6 might 

be the key components of a code used between the dFDCs SBC-DMN and SEN-VIS. The 

estimation of such a communication code will require further investigation and development 

of new techniques.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• An Information Theory Framework for Dynamic Functional Domain 

Connectivity

• Functional domains (groups of brain networks) share information with each 

other.

• As in communication theory, information can be measured in bits using 

entropy.

• The entropy metric utilizes the dynamic succession of connectivity states.

• Results provide evidence for mutual information links among brain areas.

• The manuscript defines an information theory framework for functional 

connectivity.
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Fig. 1. 
The same clustering technique used in dFNC is also used in dFDC to cluster data from 

domain pairs. The difference strives in the use of submatrices instead of the whole functional 

connectivity matrix.
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Fig. 2. 
Entropy and cluster probability results. Triangles and arrows facing upward and downwards 

indicate significant increment and decrement related to age and sex correspondingly. There 

was no significant relationship with sex. Significance was assessed at p<0.01. Completely 

random situations are described by an entropy value of 1.58.

Vergara et al. Page 17

J Neurosci Methods. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
This figure compares sFNC and mutual information matrices. Both matrices show a similar 

relationship among SEN, VIS, AUD and CER domains. Also, the SBC domain exhibits a 

strong connection and mutual information with other domains in both matrices. The patterns 

are different in the case of DMN, ECN, LAN, SAL and PRC domains.
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Fig. 4. 
Mutual information matrix displaying values complying two different significant thresholds: 

p<0.05 and p<0.01. Mutual information was bootstrapped to obtain the p-value thresholds. 

Green circles display 15 points with p<0.01. The points where p<0.05 are displayed to better 

illustrate the matrix structure where the SBC domain have strong within mutual information. 

The other noticeable pattern is the appearance of strong mutual information within and 

among cerebellum, sensorial and motor domains.
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Fig. 5. 
This figure illustrates the differences of joint probability values between those passing the 

p<0.01 threshold and those that do not pass. The nine joint probabilities (since there are 

three dynamic states per dFDC) of ally dFDC pairs were sorted in ascending order. The two 

largest probabilities were significantly higher (p<0.01) for the group of 15 cross domain 

information measures with p<0.01 (displayed with green circles in Fig. 4) compared to the 

rest. In addition, the two smallest joint probabilities were significantly lower. This difference 

explains the enhanced cross domain information measure observed.
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Fig. 6. 
Displayed result was selected from the set that showed significant relationships with 

considered covariant. The cross domain information for SBC-DMN vs. SEN-VIS (mean 

I=0.06) showed significant increment with age (beta = 0.0063 and p=0.0018). The circles on 

the state centroids axis designate the brain region displayed. The two joint probabilities 0.22 

and 0.24 drive the cross information measure since both are similarly larger than the rest.

Vergara et al. Page 21

J Neurosci Methods. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Vergara et al. Page 22

Ta
b

le
 I

L
is

t o
f 

C
D

M
Is

 h
av

in
g 

si
gn

if
ic

an
t r

el
at

io
ns

hi
p 

w
ith

 s
ex

 (
*)

 o
r 

ag
e 

(*
*)

.

pa
ir

1
P

ai
r2

I
H

1
H

2
se

xb
et

a
se

xp
va

l
ag

eb
et

a
ag

ep
va

l

SB
C

-C
E

R
E

C
N

-L
A

N
0.

00
50

1.
50

19
1.

55
91

0.
05

66
0.

10
72

0.
00

55
**

0.
00

96

SB
C

-C
E

R
L

A
N

-P
R

C
0.

00
44

1.
50

19
1.

56
84

0.
02

08
0.

54
53

0.
00

69
**

0.
00

10

SB
C

-D
M

N
SE

N
-V

IS
0.

06
06

1.
47

52
1.

53
57

−
0.

04
39

0.
18

32
0.

00
63

**
0.

00
18

SB
C

-D
M

N
SA

L
-S

A
L

0.
00

18
1.

47
52

1.
53

69
−

0.
00

08
0.

98
31

0.
00

81
**

0.
00

03

SB
C

-D
M

N
E

C
N

-L
A

N
0.

00
37

1.
47

52
1.

55
91

0.
02

19
0.

51
83

0.
00

53
**

0.
00

94

SB
C

-L
A

N
C

E
R

-V
IS

0.
00

57
1.

40
55

1.
48

45
−

0.
02

01
0.

50
05

−
0.

00
50

**
0.

00
58

SB
C

-L
A

N
SA

L
-L

A
N

0.
03

11
1.

40
55

1.
56

53
−

0.
09

64
* 0

.0
05

8
−

0.
00

26
0.

20
10

C
E

R
-C

E
R

SE
N

-S
E

N
0.

02
22

1.
54

70
1.

58
21

−
0.

10
20

* 0
.0

03
7

−
0.

00
12

0.
56

25

C
E

R
-C

E
R

SE
N

-V
IS

0.
00

68
1.

54
70

1.
53

57
−

0.
08

64
* 0

.0
04

4
0.

00
26

0.
13

91

C
E

R
-C

E
R

D
M

N
-L

A
N

0.
00

11
1.

54
70

1.
57

44
−

0.
08

20
* 0

.0
08

5
0.

00
20

0.
28

75

C
E

R
-V

IS
V

IS
-E

C
N

0.
06

78
1.

48
45

1.
56

64
−

0.
02

56
0.

45
68

−
0.

00
54

**
0.

01
00

C
E

R
-P

R
C

SA
L

-D
M

N
0.

00
42

1.
41

87
1.

53
07

−
0.

09
17

* 0
.0

05
1

−
0.

00
26

0.
18

30

A
U

D
-S

E
N

SA
L

-S
A

L
0.

00
73

1.
54

45
1.

53
69

−
0.

01
39

0.
68

37
0.

00
55

**
0.

00
75

A
U

D
-S

A
L

SE
N

-V
IS

0.
01

24
1.

57
82

1.
53

57
−

0.
10

76
* 0

.0
03

7
0.

00
44

0.
04

28

SE
N

-V
IS

SA
L

-S
A

L
0.

01
51

1.
53

57
1.

53
69

−
0.

05
50

0.
12

97
0.

00
61

**
0.

00
51

SE
N

-V
IS

SA
L

-E
C

N
0.

03
37

1.
53

57
1.

57
91

−
0.

05
34

0.
11

62
0.

00
56

0.
00

64

SE
N

-P
R

C
V

IS
-E

C
N

0.
01

82
1.

51
40

1.
56

64
0.

00
03

0.
99

35
−

0.
00

51
**

0.
00

98

SA
L

-D
M

N
D

M
N

-L
A

N
0.

06
78

1.
53

07
1.

57
44

−
0.

12
15

* 0
.0

02
5

−
0.

00
20

0.
40

30

D
M

N
-D

M
N

L
A

N
-P

R
C

0.
00

80
1.

54
46

1.
56

84
0.

09
44

* 0
.0

03
1

−
0.

00
11

0.
56

15

D
M

N
-E

C
N

E
C

N
-E

C
N

0.
06

79
1.

55
19

1.
57

39
0.

10
76

* 0
.0

06
9

0.
00

24
0.

29
95

J Neurosci Methods. Author manuscript; available in PMC 2018 June 01.


	Abstract
	Introduction
	Dynamic Functional Domain Connectivity
	Preprocessing and Estimation of Domains
	Dynamic Functional Domain Connectivity
	Entropy and Mutual Information
	Cross Domain Information Measure

	Methods
	Subjects
	Imaging
	gICA and dFNC Preprocessing
	dFDC

	Results
	Discussion
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Table I

