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Purpose: To investigate whether imaging features from pretreatment planning CT scans are associ-
ated with overall survival (OS), recurrence-free survival (RFS), and loco-regional recurrence-free
survival (LR-RFS) after stereotactic body radiotherapy (SBRT) among nonsmall-cell lung cancer
(NSCLC) patients.
Patients and methods: A total of 92 patients (median age: 73 yr) with stage I or IIA NSCLC were
qualified for this study. A total dose of 50 Gy in five fractions was the standard treatment. Besides
clinical characteristics, 24 “semantic” image features were manually scored based on a point scale
(up to 5) and 219 computer-derived “radiomic” features were extracted based on whole tumor seg-
mentation. Statistical analysis was performed using Cox proportional hazards model and Harrell’s C-
index, and the robustness of final prognostic model was assessed using tenfold cross validation by
dichotomizing patients according to the survival or recurrence status at 24 months.
Results: Two-year OS, RFS and LR-RFS were 69.95%, 41.3%, and 51.85%, respectively. There was
an improvement of Harrell’s C-index when adding imaging features to a clinical model. The model
for OS contained the Eastern Cooperative Oncology Group (ECOG) performance status [Hazard
Ratio (HR) = 2.78, 95% Confidence Interval (CI): 1.37–5.65], pleural retraction (HR = 0.27, 95%
CI: 0.08–0.92), F2 (short axis 9 longest diameter, HR = 1.72, 95% CI: 1.21–2.44) and F186 (Hist-
Energy-L1, HR = 1.27, 95% CI: 1.00–1.61); The prognostic model for RFS contained vessel attach-
ment (HR = 2.13, 95% CI: 1.24–3.64) and F2 (HR = 1.69, 95% CI: 1.33–2.15); and the model for
LR-RFS contained the ECOG performance status (HR = 2.01, 95% CI: 1.12–3.60) and F2
(HR = 1.67, 95% CI: 1.29–2.18).
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Conclusions: Imaging features derived from planning CT demonstrate prognostic value for recur-
rence following SBRT treatment, and might be helpful in patient stratification. © 2017 American
Association of Physicists in Medicine [https://doi.org/10.1002/mp.12309]

Key words: computed tomography, image features, radiomics, semantics, stereotactic body radio-
therapy (SBRT), survival

1. INTRODUCTION

Stereotactic body radiotherapy (SBRT) is a technique that
allows delivery of very high doses of radiation per fraction to
a focused target with relatively less irradiation of normal tis-
sues. SBRT is a treatment option for early stage nonsmall cell
lung cancer (NSCLC) patients who are medically inoperable
or who refuse surgery, or have high surgical risk. The treat-
ment outcomes of SBRT are comparable to surgery,1–3 and
the disease-free survival rates are reported to be 48.3% at
3 yr.1 In patients that progressed after SBRT, 84% of cases
occurred within the first 2 yr,4 in which period radiation-
induced lung injury is invariably observed. Distinguishing
between recurrence and lung injury is problematic. Previous
studies5–7 have identified standardized uptake value of FDG-
PET and CT-based “high-risk features” that were correlated
with recurrence, but the most reliable features cannot predict
recurrence until 12 months after treatment. A delay in detect-
ing recurrence may lead to delays in implementation of sal-
vage therapy. Thus, it is important to identify factors
associated with recurrence so that patients may benefit early
from salvage treatment or systemic therapy. Furthermore,
tumor recurrence after SBRT may be due to dose insuffi-
ciency.8 Hence, if tumor response could be predicted prior to
treatment, dose prescription could be adjusted to improve
local control. Prior studies on staging PET-CT images9–12

have been inconclusive. A few studies of pretreatment CT13–

15 showed that tumor growth rate and pleural attachment were
associated with survival or recurrence.

However, a thorough quantitative analysis of pretreatment
CT images is lacking. There are a large number of features
that can be used to characterize lung tumors; not only manu-
ally scored radiological features (semantics) but also com-
puter-derived features (radiomics), which may improve
predictive accuracy. Recently, the emerging quantitative
imaging field, also known as radiomics, has shown great
potential for prognosis in a variety of cancers.16–19 Radiomics
enables the high-throughput extraction of large numbers of
quantitative features from medical images.20,21 Most of these
features cannot be detected by radiologists directly, thus pro-
vide complementary information to semantic features. A pre-
vious study22 showed that the predictive power of clinical
and size features could be significantly improved by incorpo-
rating radiomic features in stage III NSCLC treated with
chemo-radiation therapy.

In this study, 24 radiological image traits were systemati-
cally scored by two radiologists on a point scale (up to 5) and
219 radiomic features were automatically extracted on the
delineated regions of interest on the pretreatment CT images

used for SBRT planning. Then clinical, semantic and radio-
mic features were combined to create multivariate prognostic
models for overall survival (OS), recurrence free survival
(RFS) and loco-regional recurrence free survival (LR-RFS)
after SBRT. In this paper, we show that simulation CT scans
and patient clinical data are prognostic in NSCLC patients
treated with SBRT.

2. PATIENTS AND METHODS

2.A. Patients

This retrospective analysis was approved by the institu-
tional review board (IRB #105996). The cohort had 92 evalu-
able patients (from 213 patients considered) treated with
SBRT between January 2009 and July 2013. The inclusion
criteria included patients with primary NSCLCs confirmed
by biopsy without prior lung irradiation or prior lung tumor
history, and TNM stage ≤ IIA (node negative). Excluded
patients included those with more than one lung tumor or
concurrent other tumors (N = 19), nonavailability of biopsy
confirming malignancy (N = 9), or lack of data to confirm
recurrence (N = 4). In 2 patients, the tumors were located at
the bronchus and could not be scored. Patients who had been
treated with lung cancer before were also excluded (N = 45).
Patients were required to be followed up for at least 2 yr, or
until they developed recurrence or passed away within 2 yr.
Forty-two patients were excluded because of lack of follow-
up. Clinical data included age at diagnosis, gender, clinical
TNM stage, clinical T stage, smoker status, pack-years smok-
ing history, O2 dependence or not, and Eastern Cooperative
Oncology Group (ECOG) performance status.

2.B. CT scanning and treatment protocol

The patients were placed in supine position, typically
underwent abdominal compression, and immobilized with a
BodyFix double-vacuum cradle (Elekta AB, Stockholm,
Sweden). CT simulation scans were performed using a helical
four dimensional (4D) CT scanner (Philips Brilliance CT,
Philips Medical Systems, Cleveland, OH, USA). Scanning
parameters were as follows: 120 kVp, 224 mA, and 3 mm
reconstruction slice thickness. Average-CT or 50% phase-CT
images were used for analysis. The CT scans were performed
at a median time of 15 days before SBRT.

The heterogeneity corrected collapsed cone convolution
(CCC) algorithm were used for planning. Either 3D confor-
mal or volumetric arc therapy (VMAT) techniques were used,
with photon beam energies ranging from 6 to 15 MV. The
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patients were treated on a Trilogy or a TrueBeam medical lin-
ear accelerator (Varian Medical Systems, Palo Alto, CA,
USA) equipped with a 120-leaf Millennium multi-leaf colli-
mator (5-mm leaves in the central portion of the field). Daily
image guidance was provided by cone beam computed
tomography (CBCT), with alignment to the visible tumor on
the planning scan. Dose voxel size was kept at 2 mm.

All patients were treated with SBRT using a risk-adapted
fractionation scheme. Briefly, 50 Gy in five fractions was
the standard treatment option used for most of the patients.
A regimen of 48 Gy in four fractions was an alternative
while 60 Gy in eight fractions was used for “central”
lesions (near the hilum/proximal airways, peri-mediastinal/
epicardial).

2.C. Follow-up and clinical outcomes

Follow-up evaluations were based on CT images and
clinical examination performed every 3 months in the first
2 yr after SBRT, then every 4–6 months for the following
3 yr, and annually thereafter. An 18F-FDG-PET/CT scan
was recommended when recurrence or metastasis was sus-
pected. Local recurrence was defined as progression of the
original primary lesion or new tumors in the same lobe of
the primary tumor. Regional recurrence was defined as hilar
or mediastinal lymph node metastasis. Distant metastasis
was defined as tumors in other lobes of the lung or outside
the lung. Recurrence was confirmed by biopsy, PET/CT, or
CT images at follow-up. The recurrence date was recorded
as the date of first CT or PET/CT scan that showed signs of
progression.

We evaluated three clinical endpoints in this study: overall
survival (OS), recurrence-free survival (RFS), and loco-
regional recurrence-free survival (LR-RFS). OS was calcu-
lated from the start date of SBRT to the last follow-up date
(for censored cases) or date of death. RFS was calculated
from the start date of SBRT to the date of local, regional or
distant metastasis, or the date of death, or censored at the last
follow-up date. LR-RFS was calculated from the start date of
SBRT to the date of local or regional recurrence or death, or
censored at the last follow-up date.

2.D. Image assessment

Pretreatment planning CT images were reviewed using
both mediastinal (width, 350 HU; level, 40 HU) and lung
(width, 1500 HU; level, �600 HU) window settings. A clini-
cal radiologist with 4 yr of experience (Q. L.) in thoracic
imaging interpreted all the CT images. In order to compare
the semantic interpretations, a subset of 40 CT scans ran-
domly chosen was reviewed by another radiologist (Y.L.).
Both of them were blinded to clinical and histologic findings.
The concordance between the two radiologists for the 24
semantic features was evaluated. Description of the features
can be found in Table S1.

Automatic extraction of radiomic features was accom-
plished using Definiens Developer� (Munich, Germany)

image analysis software. Firstly, the preprocessing per-
formed automatic organ segmentation with the main goal of
segmenting the aerated lung with correct identification of
the pleural wall in order to facilitate the semi-automatic seg-
mentation of juxtapleural lesions. In some cases, the pul-
monary boundaries were further manually corrected. Then,
whole tumor segmentation was done by adopting the ensem-
ble click and grow segmentation method developed by our
group.23 The delineated region was later corrected by the
radiologist (Q.L.) to encompass the tumor region. At last,
the 219 3D image features from size, shape and texture cate-
gories were extracted in the delineated region of interest
(Fig. 1, features and their definitions are listed in Table S2).
Examples of tumor segmentations can be seen in Figs. 2(c)
and 2(d).

2.E. Statistical analysis

Agreement between the two readers was measured by
intra-class correlation coefficient (ICC) for continuous vari-
ables and (weighted) Kappa index for categorical variables
(see Table S1 for the whole list of variables). The Kappa
value was interpreted as follows: < 0: poor agreement; 0.01
to 0.2: slight agreement; 0.21 to 0.4: fair agreement; 0.41 to
0.6: moderate agreement; 0.61 to 0.8: substantial agreement;
> 0.8: almost perfect agreement.24

FIG. 1. The processes of radiomic feature extraction using definiens. [Color
figure can be viewed at wileyonlinelibrary.com]
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2.E.1. Feature screening

Among all the semantic features, distribution, contour,
attenuation, and calcification were excluded, because the
majority of patients fell into the same category and thus these
features are not prognostic of endpoints. For radiomic fea-
tures, Pearson’s correlation analysis was performed to iden-
tify redundant features and to address collinearity. As such,
we eliminated 46 of the 219 features (Table S5) that were
highly co-dependent (Pearson’s correlation > 0.95). Hence,
this study investigated associations of 20 semantic features
and 173 radiomic features with patient outcomes.

2.E.2. Univariate and multivariate analysis

All statistical analyses were performed using SAS soft-
ware (version 9.4, Cary, NC) and all P-values were two-sided.
The Cox proportional hazards model25 (see equation below)
was used to explore the association with OS, RFS and LR-
RFS. The false discovery rate (FDR) with q-value of < 0.126

was used to control the expected proportion of incorrect
rejection for radiomic features. Features with P-value of
< 0.1 in univariate analysis for clinical and semantic models
and those with q-value of < 0.1 for radiomic model were
incorporated into the multivariable analysis (either stepwise
selection or backward elimination method was applied). The
hazard ratio (HR) and 95% confidence interval (CI) were
reported. The final multivariable model was built by combin-
ing clinical with imaging features (semantics and radiomics),
and a stepwise selection method was utilized. Harrell’s C
(Concordance) index27 was computed to assess the prognos-
tic power of a model. The higher the C index is, the more
accurate the Cox model predict. The model with highest

Harrell’s C-index was selected for the prognostic model. The
risk scores of OS, RFS and LR-RFS were developed based
on the Cox model, accordingly. Patients were dichotomized
into low and high risk groups on the basis of their median
risk score. Differences in the OS, RFS and LR-RFS between
the two groups were estimated and compared by the Kaplan–
Meier method.28,29

kðt,zÞ ¼ k0ðtÞeb
0 z

In this equation, kðt,zÞ is the hazard function for an individ-
ual with a p-vector z of covariates (which may include both
clinical and imaging features), and k0ðtÞ is the baseline haz-
ard function without any covariate effect. b0 ¼ ðb1; � � � ;bpÞ is
the p-vector of regression coefficients. Exp (b0) is the hazard
ratio. The risk scores were just calculated based on b0.

2.E.3. Cross validation

The robustness of the final Cox model was accessed by
dichotomizing the patients into short- and long-term survival
according to the survival or recurrence status at 24 months
(censored subjects within 24 months were excluded because
those patients are neither short- nor long-term survivors,
detailed information in Table S7). Multiple logistic regres-
sion model and tenfold cross validation were used. The area
under the receiver operating curve (AUC) was calculated
along with 95% CI.30,31

3. RESULTS

Among the 92 patients, 43 were females (46.7%) and 49
were males (53.3%) and the median age at diagnosis was 73.

(a) (b)

(c) (d)

FIG. 2. Examples of CT images showing typical semantic features and tumor segmentation (a): tumor with pleural retraction; (b): tumor with vessel attachment:
(c): one slice showing lung and tumor segmentation; (d): 3D view of lung and tumor segmentation). [Color figure can be viewed at wileyonlinelibrary.com]
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The median follow-up time was 39.2 months (range: 24–
74 months) in patients who were alive at the date of last fol-
low-up and did not develop recurrence. At the end of this
study, 25 patients (27.2%) developed loco-regional recur-
rence and 26 patients (28.3%) developed distant metastasis
(Table S3). Two-year OS, RFS and LR-RFS were 69.95%,
41.3%, and 51.85%, respectively. Detailed information is pro-
vided in Table I.

3.A. Reader reproducibility

The agreements between two readers ranged from 0.529–1
(see Table S4). Among all the features, location, lobulation,
nodules in primary tumor lobe, border definition, lym-
phadenopathy, attachment to vessel, peripheral emphysema,
and pleural attachment had almost perfect agreement, while
thickened adjacent bronchovascular bundles, bubble-like
lucency, fissure attachment, nodules in nontumor lobes, spic-
ulation, pleural retraction and contour were in substantial
agreement. Peripheral fibrosis and vascular convergence

showed moderate agreement. The ICCs for long and short
axis diameter were 0.985 (0.972–0.992) and 0.974 (0.950–
0.986), respectively.

3.B. Clinical features and clinical outcomes

Univariable analysis of clinical features demonstrated that
T stage and ECOG performance status were significantly
associated (P < 0.05) with OS, RFS and LR-RFS, while O2

dependence was marginally associated (P < 0.1) with OS and
LR-RFS.

In multivariable analysis, only ECOG (HR = 2.66, 95%
CI: 1.37–5.18; P = 0.004) was associated with OS and T-
stage (HR = 2.49, 95% CI: 1.50–4.13; P = 0.0004) with
RFS. Both T stage (HR = 1.81, 95% CI: 1.01–3.24;
P = 0.047) and ECOG (HR = 1.99, 95% CI: 1.08–3.65;
P = 0.027) were independently associated with LR-RFS.

3.C. Semantic features and clinical outcomes

Both long- and short-axis diameters were significantly
associated with all three clinical outcome endpoints
(P < 0.05) in univariable analysis. Additionally, vessel
attachment was significantly associated (P < 0.05) with RFS
and LR-RFS, border definition (P < 0.0001) was signifi-
cantly related with OS and LR-RFS, and pleural retraction
(P = 0.06) was marginally associated with OS.

In multivariate analysis, long axis diameter (P = 0.001,
HR = 1.77, 95% CI: 1.26–2.50) and pleural retraction
(P = 0.048, HR = 0.31, 95% CI: 0.09–0.99) remained inde-
pendently associated with OS. Short axis diameter
(P = 0.001, HR = 1.58, 95% CI: 1.21–2.05) and vessel
attachment (P = 0.003, HR = 2.24, 95% CI: 1.31–3.81) cor-
related significantly with RFS. Long axis diameter
(P = 0.001, HR = 1.65, 95% CI: 1.24–2.20) was the only
independent indicator of LR-RFS.

3.D. Radiomic features and clinical outcomes

In the univariate analysis, 18, 68, and 8 radiomic features
were found to be prognostic to OS, RFS, and LR-RFS,
respectively. However, in multivariate analysis, only F2 [short
axis 9 longest diameter (mm2)] (P < 0.001) was indepen-
dently related with OS (HR = 1.98, 95% CI: 1.44–2.72),
RFS (HR = 1.85, 95% CI: 1.47–2.33) and LR-RFS
(HR = 1.73, 95% CI: 1.35–2.23). A subsequent analysis with
nonsize related features revealed that F15 (AV-Dist-COG-to-
Border, P = 0.001, HR = 2, 95% CI: 1.31–3.05), F51
(avgLRE, P = 0.033, HR = 0.38, 95% CI: 0.15–0.92), F186
(Hist-Energy-L1, P = 0.018, HR = 2.60, 95% CI: 1.18–5.74),
and F214 (3D-WaveP1-L2-25, P = 0.027, HR = 1.39, 95%
CI: 1.04–1.85) were independently prognostic of OS. F17
(MIN_Dist_COG_To_Border, P < 0.0001, HR = 1.81, 95%
CI: 1.39–2.36) and F93 (3D-Laws-35, P = 0.036,
HR = 0.68, 95% CI: 0.47–0.97) were related with RFS. F17
(MIN_Dist_COG_To_Border, P = 0.0004, HR = 1.69, 95%
CI: 1.26–2.25) also remained significant in prognosis of LR-

TABLE I. Clinical and treatment characteristics of NSCLC patients treated
with SBRT.

Variables Level Number Percentage (%)

Gender Female 43 46.7

Male 49 53.3

TNM stage IA 65 70.7

IB 23 25.0

IIA 4 4.3

T stage 1A 34 37.0

1B 31 33.7

2A 23 25.0

2B 4 4.3

Smokera No 64 71.1

Yes 26 28.9

Pack-years smokinga < = 43 22 25.3

44–79 41 47.1

> = 80 24 27.6

O2 dependence
a No 65 72.2

Yes 25 27.8

ECOG
performance status

0 21 22.8

1 49 53.3

2 21 22.8

3 1 1.1

Dose and fractions 50 Gy in 5 fractions 82 89.1

48 Gy in 4 fractions 4 4.3

60 Gy in 5 or 8 fractions 6 6.5

Pathology Adenocarcinoma 36 39.1

Squamous cell carcinoma 33 35.9

NSCLC, nonspecified 20 21.7

Large cell carcinoma 3 3.3

ECOG, Eastern Cooperative Oncology Group; NSCLC, nonsmall cell lung
cancer.
aThe pack-years smoking history cannot be determined in 5 cases and 2 of them
cannot be identified as smoker or nonsmoker. The O2 dependence information
cannot be confirmed in 2 subjects.
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RFS. F15 (AV-Dist-COG-to-Border) and F17 (MIN_Dist_-
COG_To_Border) stand for average or minimum distance of
center of gravity of the ROI to border. F51 (avgLRE), that is,
average long run emphasis, examines runs of similar gray val-
ues in an image, and long runs of the same gray value corre-
spond to coarser textures. F186 (Hist-Energy-L1) is a feature
based on histogram analysis, measures the energy of HU val-
ues within the lesion. F93 (3D Laws features L5 L5 W5
Layer 1) and F214 (3D Wavelet decomposition P1 L2 C3
Layer1) were based on law and wavelet analysis, respectively.
These features described the tumor heterogenicity quantita-
tively and have been demonstrated highly reproducible (test-
retest concordance correlation coefficient ≥ 0.90, dynamic
range ≥ 0.90) by our previous work.20 Detailed information
about the significant features was listed in Table S6.

3.E. Prognostic model and Prognostic Index

The final prognostic models (Tables II and III) were built
by combining the clinical and imaging features together. It
can be seen that there was an improvement of the Harrell’s C
index by adding the imaging features [semantic, size related
radiomics feature (F2) or nonsize related radiomics feature
(F186)] to the clinical model. In an exploratory analysis, the
OS risk score (OSRS), RFS risk score (RFRS) and LR-RFS
risk score (LRRS) were developed accordingly (Kaplan–
Meier curves in Fig. 3):

• OSRS == 0.541 9 (F2–average
(F2)) + 0.240 9 (F186–average (F186)) + 1.021 (if
ECOG was 2 or 3)–1.294 (if pleural retraction was posi-
tive)

• RFRS = 0.524 9 (F2–average (F2)) + 0.755 (if vessel
attachment was positive).

• LRRS = 0.515 9 (F2–average (F2)) + 0.696 (if ECOG
was 2 or 3).

When patients were dichotomized, these models still
remained to be prognostic (Table II). According to the
tenfold cross validation, the AUCs of OS, RFS and LR-
RFS prognostic model were 0.728, 0.747, and 0.690,
respectively.

4. DISCUSSION

In this study, we performed a comprehensive analysis of
pretreatment planning CT images among lung cancer patients
treated with SBRT and found that besides clinical features
(ECOG performance status and T stage), tumor size (F2),
pleural retraction, vessel attachment, and Hist-Energy-L1
were also independently associated with OS or recurrence
related survival.

Various features related to tumor size, including clinical T
stage, semantic features of long- or short-axis diameter, and
the radiomic feature F2 (short axis 9 longest diameter), were
consistently prognostic for OS, RFS and/or LR-RFS. These
data strongly support the idea that tumor size is a key predic-
tor of outcome in NSCLC patients treated with SBRT.13 Bhatt
et al32 observed that T-stage was associated with tumor
shrinkage during SBRT treatment, with T1 tumors showing
greater decrease than T2 tumors. These data imply that
patients with larger tumors might benefit from dose escala-
tion (if normal tissue constraints allow). Compared with 2-D
semantic features (long/short-axis diameter), 3-D radiomic
feature (F2) showed higher HR and Harrell’s index in predict-
ing all three kinds of survival, which implies that accurate
volumetric measurement of the tumor is key in predicting
survival.

TABLE II. Features involved in prognostic models of OS, RFS and LR-RFS.

Features Level P-value

Hazard ratio Validation

Point

95% CI
Logistic regression

analysis AUC (95% CI)
10-fold cross-validation

AUC (95% CI)Lower Upper

OS F2a (short axis 9 longest diameter) 0.002 1.72 1.21 2.44 0.753 0.728

F186a) (Hist-Energy-L1) 0.048 1.27 1.00 1.61 (0.627–0.878) (0.578–0.878)

ECOG 0 or 1 Reference

2 or 3 0.005 2.78 1.37 5.65

Pleural retraction 0 Reference

1 0.035 0.27 0.08 0.92

RFS F2a (short axis 9 longest diameter) < 0.0001 1.69 1.33 2.15 0.765 0.747

Vessel attachment 0 Reference (0.667–0.864) (0.649–0.844)

1 0.006 2.13 1.24 3.64

LR-RFS F2a (short axis 9 longest diameter) 0.0001 1.67 1.29 2.18 0.691 0.690

ECOG 0 or 1 Reference (0.577–0.804) (0.573–0.807)

2 or 3 0.020 2.01 1.12 3.60

aPer 1 standard deviation increase. OS, overall survival; RFS, recurrence-free survival; LR-RFS, loco-regional recurrence-free survival; ECOG, Eastern Cooperative Oncol-
ogy Group, AUC: area under the receiver operating curve, CI: confidence interval.
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Shultz14 and Yamamoto et al15 found that contacting with
the mediastinal pleura or broad attachment to the pleura was
negative predictor of loco-regional control or distant metasta-
sis. In our study, pleural attachment was also associated with
poorer OS (HR = 1.66), RFS (HR = 1.45) and LR-RFS
(HR = 1.3), but without reaching statistical significance
(P > 0.05). Interestingly, pleural retraction showed prognos-
tic value in OS. Pleural retraction is usually taken as a sign of
malignancy.33 However, Webb34 suggested that it was not
indicative of malignant lesions and did not aid in the differen-
tiation of benign and malignant lesions. In our study, pleural
retraction was associated with improved OS. Clearly, further
study is needed.

Vessel attachment was an independent poor prognostic
factor for RFS in our study. Blood vessel involvement is one
of the steps of metastatic process.35 A previous study of
resected NSCLC36 found that even microscopic vascular
invasion was an indicator of poor survival. Tumor attachment
to vessel in radiology may reflect pathologic vascular inva-
sion. Tsuchiya et al37 discovered that the prognosis of stage
IA NSCLC with vessel invasion is similar to stage IB
NSCLC, but can be improved significantly by postoperative
chemotherapy. Therefore, in patients with the sign of vessel
attachment, further treatment may be necessary.

ECOG performance status was negatively associated
with RFS and also an independent prognostic marker for
OS and LR-RFS in this analysis. Patients with worse
ECOG performance status tended to have poorer survival,
and maybe their dose ought to be adjusted accordingly.
Compared with using clinical features only, when imaging

TABLE III. Harrell’s C-index for prognostic models of OS, RFS and
LR-RFS.

Models Features

Harrell’s C index

Point

95% CI

Lower Upper

OS

Clinical alone ECOG 0.614 0.539 0.690

Clinical & imaging
features (semantic
and radiomics)

ECOG, Pleural
retraction, F2a, F186a

0.722 0.637 0.806

RFS

Clinical alone T-stage 0.614 0.559 0.669

Clinical & imaging
features (semantic
and radiomics)

Vessel attachment, F2a 0.702 0.642 0.762

LR-RFS

Clinical alone T-stage, ECOG 0.625 0.551 0.698

Clinical & imaging
features (semantic
and radiomics)

ECOG, F2a 0.659 0.585 0.733

aPer 1 standard deviation increase. OS, overall survival; RFS, recurrence-free sur-
vival; LR-RFS, loco-regional recurrence-free survival; F2: short axis 9 longest
diameter [mm]; F186: Hist-Energy-L1; ECOG, Eastern Cooperative Oncology
Group.

(a)

(b)

(c)

FIG. 3. Kaplan-Meier Plots of OS, RFS and LR-RFS according to the prog-
nostic risk scores incorporating the clinical, semantic, and radiomic features.
(OS: overall survival; RFS: recurrence free survival; LR-RFS: loco-regional
recurrence free survival). [Color figure can be viewed at wileyonlinelibrary.-
com]
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features were incorporated, there was an improvement of
the outcome discriminating ability.

The clinical and semantic features were common features
used in daily practice, while radiomic features were quite dis-
tinct. Semantically, we would categorize a tumor as homoge-
neous or heterogeneous. More specifically, we classified the
tumor as solid or part-solid, and whether there was bubble-
like lucency or calcification inside. In contrast, radiomics
enables quantifying tumor (segmented region of interest)
heterogenicity using imaging features extracted via high-
throughput computing. For example, there are radiomic fea-
tures about the distribution of the tumor density (histogram),
and features that calculate the average of volumes of air
spaces inside tumors (Table S2). Radiomic features are com-
plementary to traditional features and has shown great poten-
tial in clinical decision support.16 Previously, it has reported
that texture measures of CT images following SBRT could
predict recurrence,6 and our study demonstrated that recur-
rence could be predicted using radiomic features even before
treatment. These features, including AV-Dist-COG-to-Border,
MIN_Dist_COG_To_Border, avgLRE, Hist-Energy-L1,
along with another Laws and wavelet features, were all inde-
pendent predictors either of OS, or RFS, or LR-RFS. Huynh
et al38 had similar findings, they also showed that pretreat-
ment radiomic features were prognostic for some outcomes
that conventional imaging metrics did not predict, which is
different from the findings in our study where clinical,
semantic and radiomic features were all prognostic and their
combination was better than any category alone. The reason
may be as follows. Firstly, more semantic features were used
in our study. We performed a systemic semi-quantitative anal-
ysis of 24 semantic features (Table S1) by two radiologists,
while Huynh et al38 used only three conventional features
related to tumor size in their study. Secondly, we used differ-
ent radiomic features. The plurality and lack of standardiza-
tion of radiomic features is one of the problems in the
emerging field of the radiomics.39

There are several limitations in our study besides its retro-
spective nature. First, the sample size was comparatively
small because of the strict inclusion and exclusion criteria;
secondly, the resolution of simulation CT was limited and
may have comparatively limited consistent texture related to
prognosis; thirdly, an independent validation is needed to fur-
ther confirm findings. However, we did perform extensive
cross-validation analyses to conduct internal validation.

5. CONCLUSION

We showed that recurrence related survival of SBRT
patients could be prognosticated prior to treatment from their
imaging characteristics. We find tumor size, pleural retrac-
tion, vessel attachment along with some radiomic features to
be useful in the prognostication. The image features derived
from planning CT would be helpful in patient stratification
and risk scores could be used to individualize radiotherapy
planning for each patient. Finally, we also showed that prog-
nostic models composed of clinical, conventional, and

radiomic features performed better than models having only
one of these feature categories.
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