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Abstract

Introduction—The aims of this study were to identify counties in the United States (US) with 

high rates of lung cancer mortality, and to characterize the associated community-level factors 

while focusing on particulate-matter pollution.

Methods—We performed a descriptive analysis of lung cancer deaths in the US from 2004 

through 2014. We categorized counties as “clustered” or “non-clustered” – based on whether or 

not they had high lung cancer mortality rates – using novel geospatial autocorrelation methods. We 

contrasted community characteristics between cluster categories. We performed logistic regression 

for the association between cluster category and particulate-matter pollution.

Results—Among 362 counties (11.6%) categorized as clustered, the age-adjusted lung cancer 

mortality rate was 99.70 deaths per 100,000 (95%CI: 99.1–100.3). Compared with non-clustered 

counties, clustered counties were more likely in the south (72.9% versus 42.1%, P < 0.01) and in 

non-urban communities (73.2% versus 57.4, P < 0.01). Clustered counties had greater particulate-

matter pollution, lower education and income, higher rates of obesity and physical inactivity, less 

access to healthcare, and greater unemployment rates (P < 0.01). Higher levels of particulate-

matter pollution (4th quartile versus 1st quartile) were associated with two-fold greater odds of 

being a clustered county (adjusted OR: 2.10; 95%CI: 1.23–3.59).

Conclusion—We observed a belt of counties with high lung mortality ranging from eastern 

Oklahoma through central Appalachia; these counties were characterized by higher pollution, a 

more rural population, lower socioeconomic status and poorer access to healthcare. To mitigate the 
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burden of lung cancer mortality in the US, both urban and rural areas should consider minimizing 

air pollution.
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Introduction

In the United States (US) cancer is the second leading cause of death, being responsible for 

more than 550,000 deaths annually [1–3]. Among specific cancers, lung cancer is the 

leading cause of cancer deaths for both men and women [3, 4]. Ambient particulate-matter 

pollution was recently classified as a group 1 carcinogen in human populations [5–10]. 

Outdoor air pollution includes a combination of various pollutants derived from natural and 

anthropogenic sources [5–7]. More specifically, particulate matter comprises fine particles 

<2.5 μg/m3 (PM2.5) present in ambient air; these are the result of combustion processes 

derived from sources such as exhaust from motor vehicles, power generators, industrial 

activity, biomass burning, and domestic heating and cooking [5–7].

To date, few studies have examined regional trends in lung cancer mortality and/or 

prevalence using geospatial epidemiologic methodology [11–14]. Underwood et al (2011) 

found that there are regional differences in lung cancer incidence, with the southern census 

region having the highest incidence rate for lung cancer corresponding to 74.7 cases per 

100,000 persons [14]. While prior studies provide information regarding the region affected, 

there remains a need for a more granular investigation of the geospatial trends in lung 

cancer, in addition to the assessment of community characteristics associated with these 

regions. Therefore, it is imperative that we examine and target the geographic areas within 

the US that are suffering from high lung cancer mortality rates, and deduce what factors 

drive this increased burden of lung cancer mortality and, specifically, whether exposure to 

particulate matter is higher in these areas.

Finding geospatial patterns of lung cancer deaths may provide further insight into the 

underlying socioeconomic and community factors associated with the disease. Because of 

the lack of literature regarding regional disparities in lung cancer mortality within the US, 

there are many unanswered questions about the community-level factors that may explain 

lung cancer mortality clusters. In this study we aimed to define US counties with high lung 

cancer mortality, and to assess the county-level characteristics associated with lung cancer 

mortality – focusing specifically on exposure to particulate matter.

Methods

Study design

We performed an ecologic study of deaths from lung cancer in the United States between 

2004 and 2014. We complemented county-level lung cancer mortality data from the CDC 

with county-level data obtained from the CDC, the 2014 County Health Rankings (CHR) 

and the American Community Survey (ACS)[15, 16]. We performed analysis at the county 
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level because of our focus on community-level factors (state-level analyses are not too 

granular) and of the most available granular data within the US (census tract and block 

group data were not readily available for variables of study).

County-level particulate matter exposure

Our primary exposure was county-level mean particulate matter <2.5 μg/m3 (PM2.5). We 

obtained data on PM2.5 for years 2003 through 2011 from the US Environmental Protection 

Agency (EPA) and the National Aeronautics and Space Administration (NASA) by 

assessing the CDC “wide-ranging online data for epidemiologic research” (Wonder) system 

[17, 18]. Al-Hamdan et al. (2009) generated continuous spatial surfaces of daily PM2.5 for 

the entire contiguous US for 2003 through 2011 using environmental data from the US EPA 

and NASA [17]. The daily PM2.5 values were estimated using satellite measurements of 

aerosol optical depth (AOD) from the moderate-resolution-imaging spectroradiometer 

(MODIS) instrument on the NASA Terra and Aqua satellites [19]. Using the daily PM2.5 

values for the contiguous US counties derived by Al-Hamdan et al (2009), we estimated the 

mean daily PM2.5 exposure for the time period for each county. For statistical analysis, we 

categorized PM2.5 into quartiles based on distribution at the county level.

County-level demographic characteristics

Demographic variables included the county-level proportions for age, sex, race, household 

income, population with college education, and rural/urban commuting area (RUCA) codes. 

We categorized race into five groups: White (non-Hispanic), Black (non-Hispanic), 

Hispanic, Asian/Pacific Islander (non-Hispanic), and Native American. We classified 

counties as urban or non-urban using the 2010 RUCA classifications. RUCA codes are based 

on population size and density, urbanization, and primary and secondary worker commuter 

flow patterns to larger urban areas and clusters [20]. The 11 RUCA codes were then 

aggregated into a dichotomized variable: (1) urban (i.e., population centers with ≥50,000 

residents) and (2) non-urban (i.e., towns or small cities with population centers of <50,000 

residents) [18, 20]. We obtained county-level demographic statistics from the 2014 ACS via 

the National Historical Geographic Information System (NHGIS) [15]. The 2014 ACS 

provided an aggregated estimate of demographic statistics for the preceding 5-year period 

(2010–2014).

County-level community characteristics

Community variables included the county-level proportions of adults who smoked, who 

were obese, physically inactive, unemployed or uninsured, those who could not see a doctor 

because of cost, and the total number of primary-care physicians. We calculated the ratio of 

primary-care physicians per 10,000 persons by dividing the total number of primary-care 

physicians by the county population and then multiplying the quotient by 10,000. 

Geographic region was defined using the census definition (i.e., Midwest, Northeast, South, 

and West) [21]. This analysis focused on the contiguous US, and therefore we did not 

include counties in Alaska, Hawaii, and other US territories in this analysis. We obtained 

county-level community characteristics from the 2014 county health rankings (CHR) [15, 

16].
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Identification of lung cancer deaths

We defined lung cancer deaths as deaths associated with cancers of the bronchus and lung 

for the years 2004 through 2014. Lung and bronchus cancer deaths were taken from the 

compressed mortality file (CMF) produced by the National Center for Health Statistics 

(NCHS) at the Centers for Disease Control and Prevention (CDC) [22]. The CMF data are 

derived from death certificates and include a record for every death of a US resident 

recorded in the United States. We identified the county-level total number of deaths related 

to lung cancer using the following ICD-10 codes: C34 (malignant neoplasm of bronchus and 

lung), C45.0 (mesothelioma of pleura), C45.9 (mesothelioma, unspecified/malignant 

neoplasms), and C78.0 (secondary malignant neoplasm of lung/malignant neoplasms), and 

C78.2 (secondary malignant neoplasm of pleura/malignant neoplasms). We included lung-

cancer-related deaths for all persons of aged ≥15 years during our observation period. We 

included deaths for persons aged 15–19 because the CMF uses a single reference standard 

population for ages 15–24, and therefore the inclusion of the 15–19-year age groups is 

necessary for the estimation of age-adjusted rates.

Defining lung mortality clusters

To date, there is no formal approach for identifying spatial disease clustering [23]. However, 

disease clustering has been defined as the spatial aggregation of cases in an identifiable 

subpopulation [24]. Therefore we adopted novel geospatial autocorrelation methods to 

define counties with highly clustered lung cancer mortality. We combined three separate 

spatial clustering methods to identify areas that were hotspots for lung cancer mortality [25]. 

We categorized county-level lung cancer mortality clustering into two groups: “clustered” or 

“non-clustered”. We considered a county to be clustered if it was identified as high-risk or a 

lung cancer mortality hotspot using two or more of the geospatial analyses: fifth quintile of 

smoothed empirical Bayes (EB) lung cancer mortality rates, high-high cluster using local 

indicators of spatial association (LISA), or a lung cancer mortality hotspot as defined by the 

Getis-Ord Gi* statistic [26, 27]. All other US counties were categorized as non-clustered.

First, we estimated the smoothed EB lung cancer mortality rates using the total number of 

lung cancer mortality events in each county divided by the county population, with 

smoothing performed using the EB tools in GeoDa 1.6.7.9 (http://geodacenter.asu.edu)[25]. 

We further categorized the EB smoothed lung cancer mortality rates into quintiles, and we 

defined counties as high-risk if the smoothed EB lung cancer mortality rates were in the fifth 

quintile. Second, we used LISA to measure similarity between counties and calculate values 

both within and across geographic boundaries, additionally identifying spatial outliers [25, 

26, 28]. For each US county we estimated local Moran’s I statistic values, using associated 

z-scores and P-values to assess the magnitude of spatial autocorrelation and statistical 

significance, respectively [25]. Counties with statistically significant positive z-scores 

indicate areas surrounded by areas with similar lung cancer mortality rates – either similarly 

high or similarly low (positive spatial autocorrelation)[25]. Lastly, we used the Gi* statistic 

to identify areas where lung cancer mortality rates with either high or low values clustered 

within the context of the neighboring county [25, 27, 29, 30]. In contrast to LISA, the Gi* 

statistic is not related to the global statistic of spatial association [26]. Moreover, while the 

LISA statistic includes a diagnostic for outliers with respect to a measure of global 

Moore et al. Page 4

Cancer Epidemiol. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://geodacenter.asu.edu


association, the Gi* only examines associations for counties that share borders [26]. Further, 

the LISA analysis allows for examining local associations while accounting for the global 

spatial association (that can be observed from the counties identified as either high-low or 

low-high outliers). Further details of the geospatial autocorrelation analysis were introduced 

by Nassel et al. (2014) and are described elsewhere [25].

Statistical analysis

We used the mean crude and age-adjusted mortality rates provided by the CMF, which uses 

the US census population estimates. All standardization was performed relative to the 2000 

US standard population. We performed multivariable Poisson regression to estimate both the 

crude and age-adjusted lung cancer mortality rates for each lung-cancer-clustering category 

(i.e., clustered or non-clustered). We additionally calculated the crude and age-adjusted lung 

cancer mortality rates for the entire contiguous US. We contrasted regional (i.e., Midwest 

versus Northeast versus South versus West) differences in high-risk lung cancer categories 

(EB, LISA, Gi*, and lung cancer mortality cluster category) using the chi-square test of 

association. We contrasted differences between clustered and non-clustered counties for 

demographic and community characteristics using the Wilcoxon test. We additionally 

examined the correlation of demographic and community characteristics with being a lung 

cancer mortality cluster county using a Spearmen correlation (ρ).

We performed logistic regression to determine the association between clustered counties 

and county-level daily mean PM2.5, with clustered as the outcome and categorized PM2.5 

as the exposure. We performed models adjusted for: (1) demographics which included age, 

race, and sex; (2) demographics plus socioeconomic status which included age, race, sex, 

household income, percentage completed college, proportion of adults smoking, proportion 

of adults obese, and proportion of adults physically inactive; and (3) demographics plus 

access to healthcare which included age, race, sex, proportion of adults uninsured, 

proportion of adults that could not see a doctor because of cost within the past year, and the 

primary-care physician ratio. We examined whether urban county residence was an effect 

modifier by performing our logistic regression models stratified by urban and non-urban 

status. We used ArcGis version 10.4 to produce all map images. We used SAS version 9.4, 

and GeoDa version 1.6.7.9 for all statistical analyses.

Ethical statement

The Institutional Review Board (IRB) of the University of Alabama at Birmingham deemed 

this study exempt from IRB review because we used publicly available, unidentifiable, and 

secondary data sources

Results

LISA, EB, and GI* analyses

Using the LISA analysis, 328 of the 446 (73.54%), P <0.01) “high-high” lung cancer 

mortality cluster counties were located in the southern United States (Table 1, Supplemental 

Figure 1). Overall, when using the smoothed EB analysis, 622 counties (20.01%) were 

categorized within the highest quintile for lung cancer mortality. Southern counties were 
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more likely to have EB rates within the fifth quintile (66.08%, P < 0.01) when compared 

with other US census regions (Table 1, Supplemental Figure 2). The Gi* analysis identified 

226 counties as “lung cancer hotspots”. Counties in the northeastern counties (30.97%) and 

southern counties (28.76%) were more likely to be identified as a lung cancer hotspot by Gi* 

criteria (Table 1, Supplemental Figure 3).

Demographic characteristics

Among a total of 3,108 contiguous US counties included in this study, 362 (11.65%) were 

classified as clustered counties and 2,746 (88.35%) were classified as non-clustered counties 

(Figure 1, Table 2). Clustered counties were more likely to have a higher proportion of NH-

White residents when compared with non-clustered counties (93.95% versus 84.10%, P 
<0.01, ρ = 0.23). Clustered counties were more likely to have residents aged ≥45 when 

compared with non-clustered counties.

Community characteristics

Clustered counties had higher levels of daily mean PM2.5 when compared with non-

clustered counties (Figure 2; 13.61 versus 11.70 μg/m3, P < 0.01, ρ = 0.18). Clustered 

counties had a higher proportion of residents with household income below $20,000 

(26.91% versus 19.82, P < 0.01, ρ = 0.34) and a lower proportion of adults without a college 

education (12.87% versus 18.59%, P < 0.01, ρ = −0.32) when compared with non-clustered 

counties. Clustered counties had a larger proportion of adults currently smoking tobacco 

(25.50% versus 18.70%, P < 0.01, ρ = 0.30), obese adults (32.90% versus 30.30%, P < 0.01, 

ρ = 0.21), adults that are physically inactive (33.10% versus 27.70%, P < 0.01, ρ = 0.31), 

and unemployed adults (9.00% versus 7.30%, P < 0.01, ρ = 0.24) when compared with non-

clustered counties. Clustered counties also had a larger proportion of adults without 

insurance (23.10% versus 21.05%, P < 0.01, ρ = 0.11) and of adults that could not see a 

doctor because of cost (18.35% versus 12.00%, P < 0.01, ρ = 0.23) when compared with 

non-clustered counties. In addition, clustered counties had a lower number of PCPs per 

10,000 persons (4.18 versus 4.99, P < 0.01, ρ = −0.09) when compared with non-clustered 

counties. Clustered counties were more likely to be in non-urban communities when 

compared with non-clustered counties (73.20% versus 57.39%, P < 0.01, ρ = 0.10).

Lung cancer mortality rates

During the observation period (2004–2014), and among persons aged 15 years and older, 

there was a total of 1,754,907 lung-cancer-related deaths, corresponding to a national crude 

mortality rate of 65.50 deaths per 100,000 persons (95%CI, 65.40–65.60; Table 3). Among 

the contiguous US counties, the age-adjusted lung cancer mortality rate was 78.20 (95%CI, 

78.00–78.30). Over the observation period, the crude lung cancer mortality rate was 1.85 

times higher for the clustered counties (116.80 deaths per 100,000 persons; 95%CI, 116.20–

117.40) when compared with the non-clustered counties (63.00 deaths per 100,000 persons; 

95%CI, 62.90–63.10). In addition, clustered counties (99.70 deaths per 100,000 persons) 

had higher age-adjusted lung cancer mortality rates when compared with non-clustered 

counties (75.60 deaths per 100,000 persons).
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Odds of lung cancer mortality clustering

When examining the odds of being considered a clustered lung cancer mortality county, 

counties with PM2.5 values within the highest quartile (4th quartile: 13.56–14.95 μg/m3) 

were more than five times more likely to be a clustered county before adjustment for 

confounders (crude OR: 5.41, 95%CI: 3.85–7.58; Table 4). After adjustment for 

sociodemographic characteristics (age, race, and sex), highest PM2.5 exposure was 

associated with greater odds of being a clustered county (model 1 OR: 3.48, 95%CI: 2.15–

5.66). In a model additionally adjusted for sociodemographics and socioeconomic 

characteristics (i.e., household income, college education, adult smoking, obesity, and 

physical inactivity) the association between the highest PM2.5 exposure and clustered status 

attenuated (model 2 OR: 1.59, 95%CI: 0.88–2.88). However, in a model adjusted for 

sociodemographics and access to healthcare characteristics (i.e., insurance, could not see 

doctor due to cost, and PCP) greater PM2.5 exposure was associated with increased odds of 

clustering (model 3 OR: 2.10, 95%CI: 1.23–3.59).

Odds of lung cancer mortality clustering by urban status

Among non-urban counties, a total of 265 counties were categorized as clustered. In the 

unadjusted analysis, higher levels of PM2.5 were associated with increased odds of lung 

cancer mortality clustering for the 2nd (crude OR: 1.85, 95%CI: 1.11–3.07), 3rd (crude OR: 

2.22, 95%CI: 1.35–3.65), and 4th quartiles (crude OR: 7.95, 95%CI: 5.07–12.45) of PM2.5. 

After adjustment for sociodemographic characteristics, counties with higher levels (within 

the fourth quartile) of PM2.5 were more likely to be clustered (model 1 OR: 4.06, 95%CI: 

2.23–7.39). However, after adjustment of both sociodemographics and socioeconomic 

characteristics the association between PM2.5 and clustering attenuated (model 2 OR: 1.86, 

95%CI: 0.90–3.87). When adjusted for sociodemographics and access to healthcare 

characteristics, higher levels (3rd and 4th quartiles, respectively) of PM2.5 were associated 

with increased odds of being clustered (3rd quartile model 3 OR: 2.35, 95%CI: 1.27–4.34 

and 4th quartile model 3 OR: 3.19, 95%CI: 1.70–5.96). When limited to urban counties only, 

there was a total of 97 counties categorized as clustered. In unadjusted analysis, counties 

with PM2.5 within the 4th quartile were at increased odds of lung cancer mortality clustering 

(crude OR: 3.26, 95%CI: 1.77–5.99) when compared to counties within the 1st quartile of 

PM2.5. However, the association between PM2.5 and lung cancer mortality clustering 

attenuated and became non-significant after adjustment for confounders.

Discussion

In this study we sought to examine county-level regional variation in lung cancer mortality, 

associated community characteristics, and the modifiable effects of fine particulate matter. 

Lung cancer mortality remains a huge public health burden in the US population, 

responsible for more than 1.7 million deaths in the period 2004 through 2014. During the 

observation period, 11.6% of the contiguous US counties (362/3,108) were categorized as 

clustered counties, defined as counties with high levels of lung cancer mortality using novel 

geospatial methods. PM2.5 levels were higher in clustered counties compared with non-

clustered counties. In addition, the age-adjusted lung mortality rate was 1.3 times higher for 

persons living in clustered counties when compared with citizens living in the non-clustered 
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counties. We observed that there was a specific cluster of high lung mortality counties 

ranging from eastern Oklahoma through central Appalachia. This cluster of high lung 

mortality counties formed a definitive “lung cancer mortality belt.” While simultaneously 

avoiding all major cities, the lung cancer mortality belt included counties within the states of 

Oklahoma, Arkansas, southern Missouri, southern Illinois, Kentucky, Tennessee, southern 

Ohio, West Virginia, and western Virginia. Non-urban communities with lower levels of 

education and income, higher rates of obesity and physical inactivity, poorer access to 

healthcare, and greater unemployment rates characterized clustered counties, and likewise 

the lung cancer mortality belt.

To our knowledge, this is the first study to employ multiple geospatial analyses (LISA, EB 

rates, Gi*) to define an aggregated cluster of counties suffering from high lung cancer 

mortality rates. In addition, we identified that counties with higher lung cancer mortality 

rates are in areas with greater community-level disadvantages such as greater poverty, poorer 

education, higher unemployment, and higher rates of uninsured adults. Research has 

consistently shown that greater access to healthcare and higher socioeconomic status is 

associated with lower risk of cancer mortality [31–34]. Tannenbaum et al (2014) found that 

individuals living in communities with the highest SES had a 13% reduced hazard (HR: 

0.87, 95%CI: 0.84–0.91) for lung cancer mortality compared to individuals living in 

impoverished communities. In addition, Torre et al (2016) found that lung cancer mortality 

is higher among people with lower SES and in the mid-south region (containing the states of 

Kentucky, Mississippi, Arkansas, and Tennessee) similar to our lung cancer mortality belt 

[34]. However, we found that even after adjustment for sociodemographics and access to 

healthcare, counties with higher PM2.5 levels are associated with a >2-fold increased odds 

of being in a lung cancer mortality cluster. We also note that, historically, regional disparities 

in other health outcomes have been found in the geographic area observed in this study [35–

46]. Similarly to the counties located in the western region of the lung cancer mortality belt 

(near the Mississippi river), other studies have shown that the Mississippi valley has higher 

rates of coronary heart disease [47]. Likewise, Moore et al (2016) found that there were 

sepsis mortality clusters in the Mississippi valley and Central Appalachian regions similar to 

the regions affected by high lung cancer mortality in this study [46]. These results further 

illuminate the fact that the current lung cancer mortality belt is a region within the United 

States that is representative of poorer health outcomes due to increased poverty risk and 

poorer access to health. Areas of greater unemployment and lower SES are subsequently 

victim to greater health disparities that alternatively perpetuate cultural patterns that further 

reduce access to healthcare and opportunities for sustainable disease prevention [48]. As a 

result, it is ever more important that US policy focuses on increasing employment 

opportunities and affordable healthcare for individuals throughout the US, specifically 

focusing on rural populations [49, 50].

Interestingly, clustered counties were more likely to be in non-urban areas and to have 

higher levels of environmental fine particulate matter. Historically, US urban areas have been 

the epicenter for land development, mass motor vehicle congestion, and industrial facilities, 

and therefore the majority of prior research investigating the relationship between 

environmental fine particulate pollution and health risks have been among urban populations 

[51–53]. However, consistent with the results of our study, studies suggest that rural 
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environments are potentially exposed to a variety of pollutants derived from industrial 

facilities, animal containment facilities, mining operations, and agricultural activities [52]. 

Moreover, Hendryx et al (2010) examined the distribution of pollution sources and mortality 

risk across rural and non-rural areas in the US and found that a greater density of pollution 

sources (i.e., number of fossil fuel plants and anthropogenic water pollution) was associated 

with higher adjusted cancer mortality in both rural and non-rural regions [52]. We found that 

there was no significant difference between the total number of active mining facilities 

between clustered and non-clustered communities (data not shown). However, it is plausible 

that other point pollution sources such as land use development and agricultural facilities 

account for a large proportion of fine particulate matter in rural areas. Furthermore, our 

results suggest that the improvement of air quality should not focus exclusively on large 

metropolitan areas, but should also focus on non-urban communities.

There is a biologically plausible relationship between PM2.5 and lung cancer. PM2.5 

includes inhalable particles that are small enough to penetrate the thoracic region of the 

respiratory system, including the airway and alveolar surfaces [54, 55]. Additionally, 

research has shown that exposure to fine particulate matter can induce inflammatory 

cytokines and alveolar epithelium–fibroblast interaction essential in the pathogenesis of 

chronic lung disease [56, 57]. Studies have shown that there are numerous negative health 

effects of chronic PM2.5 exposure, including an increased risk of physical inactivity [54], 

cardiovascular mortality and morbidity [58–60], asthma [61], community-acquired 

pneumonia [62], lung cancer incidence [5, 63], and all-cause mortality [54, 55]. Moreover, 

Pope et al (2002) observed that for every 10-μm increase in chronic exposure to fine 

particulate matter, lung cancer mortality increased by 6% [64]. Likewise, a prospective 

analysis performed in Europe found that a 10-μm increase in fine particulate matter was 

associated with a 22% increased hazard (HR: 1.22; 95%CI: 1.03–1.45) for lung cancer [10]. 

Our results further imply that fine particulate matter is associated with higher lung cancer 

mortality as indicated by the nearly two-fold increased odds of lung cancer mortality 

clustering among counties with PM2.5 levels within the highest quartile.

We additionally observed that after adjustment for adult smoking and socioeconomic factors 

(i.e., household income, % completed college, adult obesity, and physical inactivity) the 

association between PM2.5 and lung cancer mortality clustering attenuated. Therefore, high 

lung cancer mortality in these clustered areas are in part explained by common contributing 

factors to lung cancer, mainly smoking prevalence. Prior studies have noted that smoking is 

an effect modifier on the association between pollution and lung cancer [65, 66]. For 

example, in a large prospective cohort of 1.2 million participants, Turner et al (2014) found 

that approximately 14% of lung cancer mortality among cigarette smokers with high PM2.5 

may be attributable to interaction of smoking and PM2.5: attributable proportion (AP) = 

0.14, 95%CI = 0.00–0.25) [66]. Thus, it is likely that the effect of smoking prevalence 

provides a synergistic effect on the association between PM2.5 and lung cancer mortality. 

Furthermore, while smoking is a pertinent risk factor for lung cancer mortality, reductions in 

both smoking and air pollution seem warranted due to the deleterious effects of both on lung 

cancer mortality.
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The results of our study should be interpreted bearing in mind certain limitations. First, our 

results are subject to ecologic fallacy. Due to ecologic study design, we assessed the 

exposure (PM2.5) and outcome (lung cancer mortality) using data from similar dates: we 

used data from 2003 through 2011 for exposure and 2004 through 2014 for outcome. 

Moreover, our objective was not to determine causal inference, but rather to examine 

possible county-level clustering trends and associated socioeconomic characteristics. The 

lung cancer deaths in this study are derived from publicly available death records ascertained 

from the CMF, and thus the estimates are subject to misclassification of the listed causes of 

death. Additionally, the CMF suppressed county-level data representing fewer than ten 

events, and as a result we were unable to ascertain estimates if counties had less than ten 

lung cancer deaths over the total 11-year period. Thus, counties with much less than ten 

events were far more likely to be in areas of low clustering or non-significance during our 

analysis on geospatial autocorrelation. We identified lung cancer deaths using the 

International Classification of Diseases, 10th version, codes for lung and bronchus cancers, 

and consequently the estimates presented may be underestimates of the true number of lung 

cancer rates in the United States. We used demographic and community-level characteristics 

derived from US population survey samples, and therefore the estimates for these variables 

are subject to participation biases. However, the ACS and BRFSS are nationally 

representative samples that have been used in studies examining sociodemographic and 

community characteristics [46, 67]. While examining lung cancer incidence would have 

been more opportune for assessing the risk associated with pollution exposure, we examined 

lung cancer mortality due to data availability for the entire US population. However, it 

should be noted that the latest reports from the Surveillance, Epidemiology and End Results 

(SEER) program estimate an 18% 5-year survival for cancers of the lung and bronchus in the 

US for years 2007 through 2013 [68]. Therefore, lung cancer mortality estimates used in our 

analysis are likely reflective of lung cancer incidence patterns in the US population. Another 

limitation is that indoor air pollution may not be highly correlated with outdoor pollution 

levels; thus we were unable to account for variance in pollution exposure among US 

residents [69]. Lastly, we examined characteristics at the community level, and therefore 

individual factors associated with lung cancer mortality were not attainable.

There are, however, several strengths in the current study. The results of this study have great 

generalizability as estimates are derived using data from several nationally representative 

data sources, including the CDC, ACS, and CHR. This study further generates hypotheses 

regarding the region affected and the population-level characteristics that define the lung 

cancer mortality. Furthermore, the association found between the lung cancer mortality belt 

and increased PM2.5 warrants further investigation among a prospective cohort. We found 

that there was a significantly higher prevalence of adult smoking in clustered counties, thus 

indicating that smoking remains a key component in the risk of lung cancer mortality [70]. 

However, while smoking prevalence remains an important contributor, another cause for 

concern is the association seen between counties with a greater pollution burden and lung 

cancer mortality clustering.
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Conclusion

The results of this study warrant that implementation of lung cancer preventative resources 

and care should be considered across rural areas in the United States, specifically focusing 

on the clustered counties described as the lung cancer mortality belt. Particulate matter is a 

modifiable risk factor that can be reduced by reduction in chemical waste, combustion 

byproducts from industrial and agricultural facilities, and emissions from motor vehicles. 

Thus, to reduce the burden of lung cancer mortality in the United States, both urban and 

rural areas should consider minimizing air pollution.
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Highlights

• Clusters of high lung cancer mortality are defined using novel geospatial 

methods.

• Clustered counties ranged from eastern Oklahoma through central 

Appalachia.

• Clustered counties had higher pollution, rural population, and lower 

healthcare access.
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Figure 1. 
Lung cancer mortality clusters for county-level regional variation, contiguous United States, 

2004–2014.
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Figure 2. 
County-level lung cancer mortality clusters and particulate matter 2.5 μg/m3, contiguous 

United States.
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Table 2

County-level demographic and community characteristics by lung cancer mortality cluster category.

Clustereda (N = 362) Non-clustered (N = 2,746) P valueb ρc

Presented as median (IQR)

Race

 NH White 93.95 (86.10–96.20) 84.10 (65.20–93.30) <0.01 0.23

 NH Black 1.60 (0.40–5.40) 2.10 (0.50–11.30) <0.01 −0.06

 Hispanic 0.40 (0.20–0.70) 3.80 (1.90–9.60) <0.01 −0.25

 Asian 0.30 (0.02–0.05) 0.60 (0.40–1.20) <0.01 −0.25

 Native American 0.40 (0.20–0.07) 0.50 (0.30–1.20) <0.01 −0.13

Sex

 Male 49.31 (48.69–49.99) 49.60 (48.88–50.51) <0.01 −0.07

 Female 50.69 (50.01–51.31) 50.40 (49.49–51.12)

Age

 <18 21.90 (20.16–23.46) 22.99 (21.01–24.86) <0.01 −0.14

 18–29 13.04 (12.07–14.06) 14.22 (12.40–16.25) <0.01 −0.16

 30–44 17.62 (16.29–18.64) 17.72 (16.29–19.05) 0.06 −0.03

 45–64 28.70 (27.50–29.94) 27.93 (26.05–29.52) <0.01 0.13

 65–79 13.74 (12.36–15.58) 11.77 (10.04–13.66) <0.01 0.25

 80+ 4.46 (3.83–5.34) 4.17 (3.34–5.16) <0.01 0.09

Community characteristics

 Particulate matter 2.5 μg/m3 13.61 (11.54–14.02) 11.70 (10.35–13.30) <0.01 0.18

 Household income <$20,000 26.91 (23.69–30.67) 19.82 (16.05–24.42) <0.01 0.34

 % Completed college 12.87 (10.93–15.72) 18.59 (14.65–24.76) <0.01 −0.32

 % Adult smoking 25.50 (21.80–30.30) 18.70 (13.90–23.20) <0.01 0.30

 % Adult obesity 32.90 (30.90–34.50) 30.30 (28.10–32.80) <0.01 0.21

 % Physical inactivity 33.10 (29.60–35.90) 27.70 (24.20–30.60) <0.01 0.31

 % Unemployment 9.00 (7.80–10.40) 7.30 (5.50–9.10) <0.01 0.24

 % Uninsured 23.10 (20.30–25.60) 21.05 (16.30–26.20) <0.01 0.11

 % Could not see doctor due to cost 18.35 (13.60–22.60) 12.00 (0.00–16.50) <0.01 0.23

 PCP per 10,000 persons 4.18 (2.57–6.02) 4.99 (3.21–7.12) <0.01 −0.09

 Non-urband 265 (73.20) 1576 (57.39) <0.01 0.10

a
Defined as counties estimated as clustered by two of three cluster methods (local indicators of spatial autocorrelation, empirical Bayes, and Gi*).

b
Significance determined using Wilcoxon test.

NH, non-Hispanic; PCP, primary-care physician.

c
Spearman correlation with county-level lung cancer mortality cluster category.

d
Presented as N (Column %)

IQR, interquartile range; PCP, primary-care physician.
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Table 3

Lung cancer mortalitya in the United States by clustering category, 2004–2014, excluding Alaska and Hawaii.

Lung cancer clustering category Total

Clustereda (N = 362) Non-clustered (N = 2,746) All counties (N = 3,108)

Lung cancer deathsb 142,380 1,612,527 1,754,907

Mean county population 336,652 931,526 862,239

Crude Lung cancer mortality rate (95%CI) 116.80 (116.20 – 117.40) 63.00 (62.90 – 63.10) 65.50 (65.40 – 65.60)

Age adjusted (95%CI) 99.70 (99.10 – 100.30) 75.60 (75.40 – 75.70) 78.20 (78.00 – 78.30)

a
Annual deaths per 100,000 persons.

b
Total number of deaths, identified using the International Classification of Diseases, 10th Version codes for lung cancer.
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