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From the generalized reflection law to the realization of
perfect anomalous reflectors
Ana Díaz-Rubio,* Viktar S. Asadchy, Amr Elsakka, Sergei A. Tretyakov

The use of the generalized Snell’s law opens wide possibilities for the manipulation of transmitted and reflected
wavefronts. However, known structures designed to shape reflection wavefronts suffer from significant parasitic
reflections in undesired directions. We explore the limitations of the existing solutions for the design of passive
planar reflectors and demonstrate that strongly nonlocal response is required for perfect performance. A new
paradigm for the design of perfect reflectors based on energy surface channeling is introduced. We realize and
experimentally verify a perfect design of an anomalously reflective surface using an array of rectangular metal
patches backed by a metallic plate. This conceptually new mechanism for wavefront manipulation allows the design
of thin perfect reflectors, offering a versatile design method applicable to other scenarios, such as focusing reflec-
tors, surface wave manipulations, or metasurface holograms, extendable to other frequencies.
INTRODUCTION
The classical approach to design of wave-shaping reflectors for light or
microwave radiation is based on geometrical optics. A flat mirror obvi-
ously obeys the usual reflection law: In the absence of dissipation, all
reflected rays go in the specular direction (the incidence and reflection
angles are equal, qi = qr) without changing the field amplitude. The
distribution of reflected field intensity can be engineered by shaping
the reflecting surface. Because of the differences in ray propagation path
lengths, the phase distribution at the reflector aperture can be tuned so
that, for example, all rays converge at a point, forming a focal spot. Gen-
eralizing the phased-array antenna principle, the same function can be
realized in a planar reflector if the reflection phase is made nonuniform
over the reflector surface. In antenna applications, these nonuniform
reflectors are called reflectarrays and are usually realized as arrays of res-
onant antennas (1). Most commonly, patch antennas are used and the
reflection phase from every element is tuned either by reactive loads or
by varying patch size or shape. Reflectarrays with subwavelength distances
between the array elements are called high-impedance surfaces (2, 3) or
metasurfaces (4).

We consider the anomalous reflection scenario illustrated in Fig. 1A.
According to the phased-array principle, to reflect an incident plane
wave into another plane wave, breaking the usual reflection law (the
reflection angle qr ≠ qi), the reflection phase should depend linearly
on the corresponding coordinate along the reflector plane. In this situ-
ation, one can expect that reflections from all the points interfere con-
structively in a plane wave propagating in the desired direction.
Recently, this simple design principle was formulated in the form of
the “generalized Snell’s law” (5). To understand this law, let us assume
that a plane wave is incident at a planar reflecting surface at the inci-
dence angle qi and introduce a Cartesian coordinate system with the x
axis along the projection of the wave vector to the reflector plane. If the
reflected plane wave is propagating at the reflection angle qr and its am-
plitude is the same as in the incident wave, then the ratio of the tangen-
tial electric fields in the reflected wave and in the incident wave at the
reflector surface is given by exp ( jFr) = exp [ j(sin qi − sin qr)k1x]. Here,
k1 ¼ w

ffiffiffiffiffi
me

p
is the wave number in the background isotropic medium,

andwe assume the time-harmonic dependency e jwt. The local reflection
coefficient R = (Zs(x) − h1)/(Zs(x) + h1) = exp ( jFr), where h1 is the
wave impedance of the incident plane wave (ratio between the tangen-
tial components of the electric and magnetic fields), defines a periodi-
cally modulated boundary surface. The surface impedance Zs(x),
defined as the ratio between the tangential components of the total
electric and magnetic fields (incident and scattered) at the surface, is
purely imaginary and can be expressed as

ZsðxÞ ¼ j
h1

cos qi
cot ½FrðxÞ=2� ð1Þ

Equation 1 is a well-known solution that has been used in numerous
studies (6–13). Nevertheless, the sum of the incident and one reflected
plane wave is not a valid solution for the Maxwell equations with the
surface impedance given by Eq. 1. Thismeans thatwhenwe illuminate a
metasurface characterized by surface impedance (Eq. 1) given by the
generalized reflection law with a plane wave at qi, in addition to the
desired anomalously reflected plane wave at qr, more plane waves will
be excited in the system to satisfy the power conservation and the
boundary conditions, leading to parasitic reflections or energy absorp-
tion in the reflector (14, 15).

Figure 1B shows the numerical estimate of the efficiency (the ratio
between the power sent into the desired direction and the incident
power) for a metasurface based on the generalized Snell’s law modeled
by the impedance boundary as in Eq. 1. We can see that in all known
realizations, the power efficiency is lower than the numerical prediction
due to imperfections in fabrication and discretization problems. It is also
worth noting that the efficiency markedly decreases when the desired
reflection angle deviates more and more from the specular reflection
angle. At optical frequencies, traditional diffraction gratings are periodic
surfaces engineered for controlling the percentage of energy reflected
into each diffraction mode. In principle, for a certain incidence angle
qi, the surface profile can be tailored to send the energy into some
reflection angle qr. These devices work efficiently for retroreflection
(qi = −qr) or with small differences between the incidence and reflection
directions (qi ≈ −qr) (16, 17), but the efficiency decreases when the
difference between the incidence and reflection angles increases.

Let us look into this important feature in more detail. The period of
the metasurface Dx is defined by requiring that the reflection phase is
2p-periodic:Fr(x) =Fr(x +Dx) + 2p, and considering the phase shift in
reflection dictated by the generalized Snell’s law, it can be expressed as
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Dx = l/|sin qr − sin qi|, where l = 2p/k1 is the wavelength. The period
will define the directions where the reflected energy can flow. For exam-
ple, considering normal incidence, qi = 0° and qr > 30°, the energy can
only be reflected as plane waves in three different directions (Fig. 1A):
the specular direction (qi), the desired direction (qr), and the symmetric
direction (−qr). Numerical simulations have been donemodeling a me-
tasurface with the impedance boundary described by Eq. 1. In particu-
lar, the impedance boundary has been designed to reflect the energy
from qi = 0° to qr = 70°. Figure 2A shows the distribution of the real
part of the scattered electric field, where we see an interference pattern
produced by these three plane waves. As previously stated, the energy is
distributed into three directions, producing a modulation of the real
part of the Poynting vector, as shown in Fig. 2D. It is important to notice
that the amplitude of the reflectedwave in the desired direction is higher
than the incident amplitude, Er/Ei = 1.5, so the metasurface not only is
adding a linear phase shift as it was expected but also changes the am-
plitude. This property agrees with the conclusion that more than two
propagating plane waves must exist in the system. The efficiency of this
conventional design is xP = Pr/Pi = 0.76, and the residuary energy is sent
to the other directions. In this definition of the power efficiency, Pr and
Pi are the amplitudes of the Poynting vector of the plane wave reflected
in the desired direction and that of the incident planewave, respectively.

Parasitic reflections can be suppressed by allowing power absorption
in the metasurface. As shown by Asadchy et al. (14) and Estakhri and
Alù (15), a solution for the Maxwell equations, where Er = Ei, can be
found and the corresponding surface impedance [for transverse electric
(TE)–polarized waves] reads

ZsðxÞ ¼ h1
1þ e jFrðxÞ

cos qi � cos qre jFrðxÞ ð2Þ

The impedance given by Eq. 2 is a complex number with some pos-
itive real part and the same period as in the conventional design (Eq. 1).
The real part in the surface impedance represents losses in the meta-
surface. Figure 2 shows the results of numerical simulations of a meta-
surface defined by Eq. 2 when qi = 0° and qr = 70°. The real part of the
scattered field is represented in Fig. 2B. We can see that a perfect plane
wave with the same amplitude as the incident wave is reflected into the
Díaz-Rubio et al., Sci. Adv. 2017;3 : e1602714 11 August 2017
desired direction. The real part of the Poynting vector is represented in
Fig. 2E, wherewe can see the power entering into themetasurface due to
nonzero values of the real part of the impedance (the metasurface is
lossy). The efficiency of this metasurface is xP = Pr/Pi = 0.34, and the
absorption is A = 1 − Pr/Pi = 0.66. Figure 2E shows that the magnitude
of the power is modulated in the x-z plane with a flat wavefront. From
the comparison between the spatial distributions of the electric field and
the Poynting vector, it is easy to see that the tilt angle defining thismod-
ulation, qpower, is different from the direction of the reflectedwave phase
front, qr. The reader is referred to the SupplementaryMaterials formore
information.

Very recently, it was shown that it is, in principle, possible to realize
anomalously reflectingmetasurfaces that operate perfectly, that is, with-
out any parasitic reflections, scattering, and absorption (14, 18). To
achieve perfect anomalous reflection, the power carried in the desired
direction must be equal to the power of the incident plane wave, so the

amplitude of the reflectedwave should be Er ¼ Ei
ffiffiffiffiffiffiffiffi
cos qi

pffiffiffiffiffiffiffiffiffi
cos qr

p (14). Consider-

ing this condition, the surface impedance can be written as

ZsðxÞ ¼ h1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos qi cos qr

p
ffiffiffiffiffiffiffiffiffiffiffiffi
cos qr

p þ ffiffiffiffiffiffiffiffiffiffiffiffi
cos qi

p
e jFrðxÞffiffiffiffiffiffiffiffiffiffiffiffi

cos qi
p � ffiffiffiffiffiffiffiffiffiffiffiffi

cos qr
p

e jFrðxÞ ð3Þ

The analysis of this expression shows that the input impedance is a
complex number, whose period is equal to the conventional design
(Eq. 1) and the lossy design (Eq. 2). The real part of the input impedance
periodically takes positive (corresponding to loss) and negative (gain)
values. The power that passes through the input surface in the “lossy”
regions is reradiated from the “active” regions so that the overall meta-
surface response is lossless. Figure 2 (C and F) shows the numerical
simulations for this designwhen qi = 0° and qr = 70°. The real part of the
scattered electric field is represented in Fig. 2C. In this case, the ratio
between the scattered and incident fields, Er/Ei = 1.7, fulfils the condi-
tion for the power conservation previously mentioned, and the power
efficiency equals 100%. Figure 2F shows the power flow where one can
visualize this behavior. Actual implementations of these perfect anom-
alous reflectors can be done by using the following approaches: (i) in-
cluding active and lossy elements in the metasurfaces (15), as it is
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Fig. 1. Anomalous reflective metasurface. (A) Illustration of the performance of a reflective metasurface. Propagating waves in the system when qi = 0° and qr > 30° are
represented in the scheme. (B) Comparative overviewof the efficiency of anomalous reflectionmetasurfaces andoptical gratings. Blue dots represent previous results found in the
literature (6, 8, 13, 16, 17, 20, 21); the black line represents the numerical estimation of the designs based on a linear 2p phase gradient calculated according to Eq. 1; the red star
represents the results obtained in this paper.
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dictated by Eq. 3 (however, the use of active elements is usually not de-
sirable for practical reasons and leads to potentially unstable structures);
(ii) using auxiliary evanescent fields for avoiding the modulation of the
normal component of the Poynting vector at the metasurface, as it was
theoretically demonstrated by Epstein and Eleftheriades (18) for pene-
trablemetasurfaces (metasurfaces allowing fields at both sides) (in these
theoretical designs, by engineering the evanescent fields excited at the
metasurface, one can ensure the local power conversation at each point
of themetasurface); and (iii) creating passive but nonlocal metasurfaces
and engineering the interactions between the constitutive elements (that
is, the effects of evanescent fields generated in the array) to allow proper
energy channeling along the metasurface. In this last scenario, the cell-
averaged normal component of the Poynting vector equals to zero,
whereas the local behavior appears either lossy or active.

Inspired by the physical principle of leaky-wave antennas, we intro-
duce a new approach based on the modulation of the reactive imped-
ance of the metasurface. We demonstrate that a perfect anomalous
reflector can be realized as a simple metal pattern on a thin grounded
dielectric slab. In this scenario, engineered modulations of the surface
reactance ensure the required nonlocal reflections, which are eventually
perfectly launched only in the desired direction. We present and clarify
themain conceptual differences between local and nonlocal approaches
Díaz-Rubio et al., Sci. Adv. 2017;3 : e1602714 11 August 2017
in the use of evanescent fields to realize perfect anomalous reflectors. On
the basis of the developed theory, we design, manufacture, and experi-
mentally study a metareflector prototype, which reflects a normally in-
cident plane wave into a plane wave at the tilt angle qr = 70°. The
experimental results confirm that this first prototype of metasurfaces
for perfect control of reflections operates according to expectations:
The realized power efficiency is close to 100%, limited only by dissipa-
tion in the metal patches and the dielectric substrate. Parasitic reflec-
tions into the specular direction and other directions are seen to be
negligible. The proposed simple topology allows cheapmass production
manufacturing based on the conventional printed circuit board technol-
ogy (microwave frequencies) or various lithography techniques (terahertz
and beyond).
RESULTS
Theoretical local design of a lossless perfect
anomalous reflector
First, we consider a surface impedance model of the metasurface and
study the problem by using locally responding impedance boundaries.
We propose that themost reasonable approach to obtain the impedance
boundary, which realizes perfectly reflecting lossless reflectors, is to use
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Fig. 2. Comparison between the different reflective metasurface proposals when qi = 0° and qr = 70°. Conventional design: Real part of the scattered electric field
(A) and total power density distribution (D). Lossy design: Real part of the scattered electric field (B) and total power density distribution (E). Active design: Real part of
the scattered electric field (C) and total power density distribution (F).
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inhomogeneous leaky-wave surfaces, generalizing the concept of
leaky-wave antennas. Leaky-wave antennas are formed by perturbed
waveguides or transmission lines, naturally offering the needed
channel for transporting power from receiving areas to transmitting
areas. Even more importantly, tuning the inhomogeneity profiles
along the antenna surface, it appears possible to realize regimes where
the receiving areas receive power predominantly from the illumina-
tion direction while the radiating areas send the waves predominantly
in the desired direction of anomalous reflection. Thus, tuning the
phase synchronism of free-space waves and leaky waves on the sur-
face, we can realize directive power transfer along the surface without
using any nonreciprocal elements.

We start the study by considering the surface impedance model
of a leaky-wave structure. Within this model, lossless reflectors are
described by a reactive surface impedance, Zs0. To allow propaga-
tion of a surface wave of the considered TE polarization along the
surface, Ey ¼ E0e�jbsx�az , we demand that the reactance is negative
(capacitive) at every point of the surface Zs0 = Ey/Hx = − jwm0/a.
The tangential wave number of the surface wave can be found using
the relation b2s ¼ k21 þ a2. Thus, the tangential wave number can be
written as

bs ¼ k1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h21

Z2
s0

s
ð4Þ
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To couple the surface wave to free space, the reactance should be
nonuniform over the reflector surface. In conventional leaky-wave
antennas, where the goal is to launch a wave in a specific direction,
the surface is periodically perturbed. This perturbation generates spatial
harmonics, whose tangential wave number can be expressed as

bn ¼ bs þ n
2p
Dx

ð5Þ

where n = ± 1, ± 2, …. The corresponding vertical wave number, kzn,
can be found using

kzn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1

2 � bn
2

q
ð6Þ

Knowing the vertical and tangential wave numbers, the direction of
the propagating waves is calculated using

sin qn ¼ bn
k1

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h21

Z2
s0

s
þ n sin qr ð7Þ

Panels B and C of Fig. 3 represent the tangential and vertical wave
numbers, respectively, for different values of the surface impedance
Zs0 = jXs0.
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Fig. 3. Local design of a lossless perfect anomalous reflector. (A) Schematic representation of the proposed design methodology for the perfect reflecting metasurface
based on the leaky-wave antenna behavior with amodulation in the impedance profile. Tangential (B) and vertical (C) wave numbers introduced in the system due to a periodic
perturbation with period Dx = l/|sin qi − sin qr| as a function of the surface impedance Zs = jXs. (D) Surface impedance of the metasurface when qr = 70° and qi = 0°. Blue line
represents the initial estimation of the surface reactance (Eq. 11), and orange dots represent the optimized values of the surface reactance on the discretized surface. Dashed line
represents the impedance of conventional design described by Eq. 1. Numerical results of a perfect reflectarray based on the linearly modulated leaky-wave antenna structure:
Real part of the scattered electric field (E) and total power density flow distribution (F).
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The impedance surface should be chosen to couple the energy to free
space through leaky waves. For example, if we choose Xs0 = −124 W,
only the harmonics n = −3 and n = −4 propagate in free space. In
particular, for Xs0 = −124 W, the waves propagate in the directions
specified by q−3 = 22.3° and q−4 = −34°. Once we have determined the
surface impedance that allows surface wave propagation and cou-
pling with free-space waves, the reactance should be modulated.
Conventional periodical modulations (usually with a sinusoidal profile)
provide coupling to the waves along these two directions (in this exam-
ple). But as we saw above, to realize perfect anomalous reflection, in the
areas where the surface should receive power from the incident field, the
wave along the surface should be in phase synchronism with the inci-
dent plane wave. In contrast, in the areas where the energy should be
launched into the desired direction, the synchronization should hold for
the reflected plane wave.

To realize this operation, we propose to modulate the reflection
phase linearly using the generalized reflection law separately for these
two parts of the metasurface period. The required derivative of the local
phase can be estimated by considering the additional effective “momen-
tum” along the surface, in analogywith the generalized law of reflection.
The required linear phase dependence can be written as

FrðxÞ ¼ Dqr k1x �F0 0 ≤ x < x1
Dqi k1ðx � DxÞ � F0 x1 ≤ x < Dx

�
ð8Þ

where Dqr = sin qr − sin qn and Dqi = sin qi − sin qn. In our particular
example, the derivative has the opposite sign in the two parts of the sur-
face period (shifting the angle q−3 = 22. 3° to zero and 70°, respectively),
and x1 ¼ Dx

sin qn� sin qi
sin qr� sin qi

is the pointwhere the derivative of the reflection
phase changes from positive to negative. The initial phase shift reads

F0 ¼ 2p
ðsin qr � sin qnÞðsin qn � sin qiÞ

ðsin qr � sin qiÞ2
� 2 arctan

Xs0

h1
ð9Þ

Notice that Frðx1Þ ¼ 2 arctan Xs0
h1

corresponds to the phase of the
reflection coefficient for the homogeneous surface impedance Zs0 =
jXs0. The relation between the phase gradient and themodulated surface
impedance can be found through the reflection coefficient

FrðxÞ ¼ 2 arctan
XsðxÞ
h1

≈ 2
XsðxÞ
h1

ð10Þ
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where the approximation holds for small values ofXs /h1. Using Eq. 10,
we can estimate themodulations needed for themetasurface input im-
pedance using the following expression

XsðxÞ ¼
h1
2
ðk1Dqr x �F0Þ 0 ≤ x < x1

h1
2
ðk1Dqi ðx � DxÞ �F0Þ x1 ≤ x < Dx

8<
: ð11Þ

The blue line in Fig. 3D represents the surface reactance profile
defined by Eq. 11 when Xs0 = −124 W, n = −3, qi = 0°, and qr = 70°.
Obviously, this analytical estimation of the perfect reactance profile is
rather approximate, because we make use of the homogeneous reac-
tance model in case when the assumption that the metasurface is
uniform on the wavelength scale is not properly justified. For this rea-
son, we then perform numerical optimization of the surface reactance,
setting these estimations of the required reactance profile as the initial
guess and using 15 elements for the discretization as a piecewise homo-
geneous reactive impedance boundary. As a result, we find the profile
shown in Fig. 3D with the red dots (one dot corresponds to one homo-
geneous reactive surface element). As expected from the above theory, it
is everywhere capacitive, growing in one half of the period and decaying
inside the other half. The differences with the analytically predicted
values are due to the approximations in the models and are caused
mainly because of the periodic conditions imposed over the unit cell
and the piecewise constant numerical model of the surface that force
generation of more complex evanescent field structure than assumed
in the analytical analysis.

Numerical simulations of the corresponding field and the Poynting
vector distributions are shown in Fig. 3 (E and F). We see that a surface
wave propagating along the surface is formed. If we now define a
reference plane above the volume filled by the surface mode fields
(which is our “input port” to the metasurface structure) and look at
the input impedance there, we see that it satisfies the requirements of
perfect operation: It is a complex value given byEq. 3, and the real part is
properly varying, emulating “loss” where the power is received by the
leaky-wave structure and “gain” in the areas where it is launched back.

Table 1 summarizes the field amplitudes and the power sent
into the three directions (qi, qr, −qr) when the metasurface is illu-
minated by a normally incident plane wave for the different design
options. It is clear that the inhomogeneous leaky-wave antenna de-
sign promises perfect performance.

To complete the study of this metasurface, we consider the frequen-
cy bandwidth (Fig. 4A) and give a comparison with the conventional
Table 1. Numerical results and comparison between the different design possibilities for reflectarrays. Amplitude/power of waves sent into the re-
spective directions, absorption coefficient, and power efficiency.
qi
 qr
 −qr
 Absorption
 Efficiency
Generalized reflection law (Eq. 1)
 0.24/0.06
 1.50/0.76
 0.73/0.18
 0.00
 75.7%
Lossy design dictated by Eq. 2
 0.00/0.00
 1.00/0.34
 0.00/0.00
 0.66
 34.0%
Active-lossy design dictated by Eq. 3
 0.03/0.00
 1.77/1.04
 0.11/0.00
 0.00
 104.4%
Inhomogeneous leaky-wave antennas introduced in this paper
 0.04/0.00
 1.70/0.99
 0.03/0.00
 0.00
 99.7%
Implementation with metal patches (lossy materials)
 0.04/0.00
 1.66/0.94
 0.03/0.00
 0.06
 94.0%
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designs (Fig. 4B). In both cases, below 7.5 GHz, no diffractedmodes are
allowed in the system, and consequently, all the energy is reflected back
in the normal direction. In the range of frequencies between 7.5 and
9 GHz, the behavior of the two designs is different. At these frequencies,
three diffraction modes are allowed (n = 0, ± 1), and the efficiency of
eachmode, xn, is calculated as the ratio between the power reflected into
the nth mode and the incident power. The values at 8 GHz correspond
to the values reported in Table 1. The conventional design based on a 2p
linear phase gradient along the period shows a broadband response in
the assumption that Eq. 1 is exactly satisfied at all frequencies (Fig. 4A).
The efficiency of the n = 1mode increases because of a reduction of the
reflection angle. Considering the relation between the frequency and the
reflection angle, this behavior is similar to a dispersive prism where
waves of different frequencies are sent into different directions (movie
S1).On the other hand, the design based on the inhomogeneous leaky-
wave antenna shows a completely different behavior (Fig. 4B). In this
case, the anomalous reflection is a relatively narrow-band phenomena
(x1 > 0.5 from 7.9 to 8.09 GHz), and the metasurface acts as a mirror
for other frequencies. This feature can be useful for narrow filtering or
monochromatic emitters. It is important to notice that, in both scenarios,
the model assumes that the boundaries are not dispersive with re-
spect to the frequency or the incidence angle. Thus, the frequency
dispersion of the response is caused only by the properties of the
phase gradient. In any physical implementation, the response will be
modified because of the frequency and spatial dispersion of the meta-
surface structure.

Figure 4 (C andD) compares the angular bandwidth of both designs
(that is, the power sent in each diffracted mode as a function of the in-
cidence angle). Here, the incidence angle varies from −40° to 40°. In this
Díaz-Rubio et al., Sci. Adv. 2017;3 : e1602714 11 August 2017
range, there are three different regions: from −3.5° to 3.5°, where three
diffractionmodes are allowed (n = 0, ± 1); from −40° to −3.5°, with only
two diffracted modes (n = 0, 1); and from 3.5° to 40°, also with two dif-
fraction modes (n = 0, − 1). Similar to the results for the frequency re-
sponse, the behaviors of the two designs are completely different. The
design introduced in this work has a sharp response with respect to the
angle, and the anomalous reflection only appears for ± 2° around the
normal incidence, whereas the surface behaves as a mirror for other in-
cidence angles. However, in the conventional design, power is always
coupled to n = ± 1 modes, and the amount of power reflected in the
specular direction is small. The maximum efficiency of this design is
achieved at qi = ± 28°. The reflection angle can be calculated as qr =
arcsin(sin qi + nsin 70°) = ∓28°. This particular case corresponds to
the retroreflection scenario, where all the energy is sent back in the di-
rection of the incident plane wave. It is also worth noting that retro-
reflection is the only scenario where the interaction between the two
existing plane waves does not produce power modulation, and the
conventional linear phase gradient produces perfect results.

To summarize this section, we can conclude that the physics behind
each of these designs is completely different, and consequently, that the
potential applications for each will also be different. In terms of the fre-
quency bandwidth and sensitivity to the incidence angle, conventional
designs based on the generalized reflection law lead to comparably more
broadband devices. On the other hand, devices that allow perfect anom-
alous reflection and transmission allow less frequency bandwidth and are
more sensitive to variations of the incidence angle. This means that the
applicability of nonlocal designs is limited to scenarios where the anom-
alous reflection is required for fields with a well-defined spatial spectrum,
or high angular sensitivity is desirable for the device operation.
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It is also important to notice the differences between conventional
metasurfaces based on a linear phase gradient and inhomogeneous
leaky-wave metasurfaces in terms of the implementation technique
used for the actual designs. Conventional designs have shown that it
is possible to implement the local impedance profile using nonlocal
elements (for example, grooves in metal plates). However, in any actual
realization of an inhomogeneous leaky-wave metasurface where the
performance strongly depends on the reactive near fields (Fig. 3E),
the existence of additional reactive fields due to the nonlocal behavior
of the array elements will complicate the implementation difficult. That
is, the design techniques used in the design of conventional metasurfaces
do not ensure proper implementation of the impedance profile of leaky-
wavemetasurfaces, although the impedance thatmodels themetasurface
is local.

Nonlocal design, physical implementation,
and experimental validations
The above results show the capability of surface waves propagating
along an engineered gradient-phase metasurface to redirect energy
and emulate the ideal “active-passive” behavior needed for the im-
plementation of perfect reflectarrays. These results are based on the as-
sumption that the metasurface behaves as a local impedance boundary,
where no fields are allowed behind this boundary. Within this model,
we can modify punctually one element of the metasurface without
affecting the characteristics of the neighbors. However, this idealistic
model does not provide guidelines for practical designs, because actual
realizations of reactive surfaces require the use of some physical
structures with a finite thickness so that there are fields behind the
Díaz-Rubio et al., Sci. Adv. 2017;3 : e1602714 11 August 2017
mathematical metasurface boundary that couple the elements. In this
case, the constituent elements cannot be designed individually using
the model of periodical arrays of each element.

We approach the problem of realization of the required in-
homogeneous leaky-wave surface by considering one of the simplest re-
active impedance surfaces: a subwavelength array of metallic patches
above a metal ground plane. A schematic representation of the pro-
posed system is shown in Fig. 5A. The modulation of the field is done
by changing the length of the patches. To obtain the proper response of
the whole unit cell, we use a local estimation according to the phase
gradient dictated by Eq. 3 as an initial guess (not considering the mag-
nitude of the reflection coefficient) and carry out an optimization pro-
cess for engineering the interactions between the elements and ensuring
the desired nonlocal response of the surface. It is important to note that
the optimization process does not aim to reproduce the local response
illustrated in Fig. 3, whereas we aim to design the array of elements that
will produce the overall “active-lossy” behavior described byEq. 3.More
information about the design process is available in Methods.

In particular, our design contains 10metal patches per unit cell, all of
them with the same width and centered along the y = 0 line (Fig. 5A).
For the operational frequency of 8 GHz, the lengths of the patches are
10.7, 10.3, 12.3, 12, 11.8, 8.7, 10.2, 5.4, 11, and 10.9 mm. The patches are
placed over a grounded dielectric slab with the permittivity Dr ¼ 2:2 and
the loss tangent tan d = 0.0009. Figure 5 (C and E) shows numerical
simulations of the electric field distribution of the designedmetasurface.
Figure 5D shows the simulated total Poynting vector distributions in the
xz plane when y =Dy/2. The Poynting vector is distributed according to
our predictions, the power is guided below the patches, and then it is
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launched into the desired direction. The power distribution in the plane
that contains the patches is shown in Fig. 5F.We can see how the power
is guided along the edges of the patches. An analysis of the evanescent
fields that allow the energy channeling is available in the Supplementary
Materials. Figure 5B shows the simulated frequency response. The be-
havior is similar to that of the local design (Fig. 4B), although the anom-
alous reflection frequency band is wider.

To experimentally verify the theory, we have designed and fabricated
a reflectarray at 8 GHz (see Methods). We carried out three different
experiments for the experimental validation. In the first experiment,
the platform with the metasurface was rotating at an angle f, whereas
the positions of the antennas were fixed. Angle fwas counted from the
line connecting the metasurface center and the transmitting antenna
toward the normal to the metasurface plane (positive f corresponded
to the clockwise rotation of the platform when seen from the top). The
signal reflected from the metasurface and measured by the receiving
antenna |S21,m| for different angles f is shown in Fig. 6C. The experi-
mental data were measured at the resonance of the metasurface
occurring at 8.08 GHz.

The main peak of reflection toward the receiving antenna occurs
when the metasurface is illuminated normally. This is an expected re-
sult, meaning that, in this case, most of the power impinging on the
surface is reflected at 70° from the normal. The second peak occurring
when f ¼ 35° corresponds to the specular reflection (incidence and
reflection angles are equal) from the metamirror. These small nonzero
specular reflections are acceptable because themetamirrorwas designed
to have zero specular reflections only when illuminated normally.

To estimate the amplitude efficiency of themetasurface xr (xP ¼ x2r),
in the second experiment, we replaced themetasurface by an aluminum
plate of the same size. The corresponding signal reflected from the plate
Díaz-Rubio et al., Sci. Adv. 2017;3 : e1602714 11 August 2017
andmeasured by the receiving antenna |S21,p| versus anglef is shown in
Fig. 6D. Now, the single peak of reflection occurs when the plate is illu-
minated at 35°, which corresponds to the specular reflection. To find the
reflection efficiency of the metasurface, we normalize its signal ampli-
tude |S21,m| for f ¼ 0° by the signal amplitude from the reference
uniform metal mirror |S21,p| for f ¼ 35°. We additionally divide the
obtained value by the correction factor x0 = |S21,0m|/|S21,0p|, which gives
the ratio between the theoretically calculated signal amplitudes from an
idealmetasurface (of the same size andmade of losslessmaterials) and a
perfect conductor plate. The correction factor x0 is less than unity be-
cause, in this scenario, the radiating effective area of the perfect conductor
plate is greater than that of the ideal reflectingmetasurfacedue to adifferent
orientation with respect to the antennas. At a frequency of 8.08 GHz in
our particular configuration, the correction factor is equal to x0 =−2.41 dB
(see the Supplementary Materials). Thus, the reflection efficiency of the
metasurface is calculated as

xr ¼
1
x0

jS21;mðf ¼ 0∘Þj
jS21;pðf ¼ 35∘Þj ¼ �0:28 dB ð12Þ

In the linear scale and expressed in terms of power, the reflection
efficiency reaches 93.8%. This result is in excellent agreement with
the 94% efficiency obtained using numerical solver (Table 1). The re-
maining 6.2% of power incident on the metasurface is mainly absorbed
by it.

In the third measurement, we fixed the orientation of the meta-
surface at f = 0° and used the transmitting antenna (fixed at the same
position as in previous measurements) as both the transmitter and re-
ceiver. Using conventional time-gating post-processing procedure, we
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could filter out all parasitic reflections received by the antenna (from the
walls, absorbers, and due to the impedance mismatch between the
antenna and the cables), retaining only the signal reflected from theme-
tasurface. The measured signal amplitude was normalized by the
corresponding amplitude from the reference uniform aluminum plate,
which was measured likewise. This ratio, plotted in Fig. 6E, represents
the level of specular reflection from the metasurface, xr , when illumi-
nated normally. As is seen, at a resonance frequency of 8.08 GHz, the
specular reflection is xr = − 23.33 dB, which corresponds to 0.5% of the
incident power. This result additionally confirms that the normally il-
luminatedmetasurface reflects all the power at a desired angle of 70°. As
seen from Fig. 6E, at frequencies below 7.2 GHz, where the metal strips
on the substrate are weakly excited, the metasurface behaves as a usual
mirror, obeying the simple reflection law.
DISCUSSION
Wehave demonstrated that by proper design of planar inhomogeneous
low-loss reflectors, it is possible to realize conceptually perfect anoma-
lous reflection, transforming a plane wave coming from an arbitrary di-
rection into a single plane wave propagating into any other direction.
Our approach fully removes the fundamental limitations on performance
of known reflectarray antennas and known metasurfaces designed with
the use of the generalized Snell’s law. The active-lossy behavior of concep-
tually perfect anomalously reflecting metasurfaces, caused by power os-
cillations associated with the coexistence of two interfering plane
waves in the same media, was realized with the use of carefully en-
gineered effects of strong spatial dispersion in an inhomogeneous
leaky-wave structure.

Although in this first demonstration we assumed that the incidence
is a single plane wave, the power modulation appears also with more
complex illuminations. Any arbitrary source and any metasurface re-
sponse (desired reflected field) can be expressed in terms of plane wave
expansions (19), and the superposition of those plane waves will require
nonlocal response of the metasurface. However, the design methodol-
ogy proposed in this study needs an optimization process for achieving
the ideal performance. Despite the fact that the method has been suc-
cessfully tested for different reflection scenarios (see section S2), the
results significantly depend on structure optimization. In addition,
one can expect that this dependence will increase with more complex
field patterns. To simplify the optimization processes and reduce the
simulation time, the interferences between all the elements of a unit cell
should be modeled. This analysis could improve the design methodol-
ogy and even avoid the use of optimization algorithms.

We hope that this research can open possibilities for the creation of
various metasurfaces for shaping waves, such as holograms, focusing
metasurfaces, or thin-sheet antennas, without losing power for parasitic
scattering. In addition, the simple topology of metal patches printed on
a thin dielectric substratemakes the proposed designs attractive in prac-
tical applications.
METHODS
Modeling of reflective metasurfaces based on the
surface impedance
To verify the behavior of different reflective metasurfaces, we used nu-
merical simulations in ANSYS Electromagnetics Suite 15.0.2 (HFSS
2014.0.2). The simulation domain is Dx × l/10 × 2l (along the x, y,
and z directions, respectively), and it corresponds to one period of
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the metasurface contained within master and slave boundaries in the
x and y directions. The surface impedance was modeled as a piecewise
constant using a discrete number of elements. Each element imple-
ments the impedance boundary dictated by Eqs. 1 to 3. The number
of elements per period is 50 for the conventional design, 18 for the lossy,
and 8 for the active design. The effect of the discretization was studied,
and the number of elements was chosen to ensure the accuracy of the
results. The systemwas illuminated by a TE-polarized plane wave. Two
different simulationswere done: planewave excitation (extraction of the
scattered fields; results represented in Fig. 2) and Floquet port excitation
(study of the power scattered into each Floquet mode; results shown in
Table 1).

For the inhomogeneous leaky-wave antenna surface (results shown
in Fig. 3), the number of elements is 15. For the optimization process, we
used the optimization tool of HFSS and the quasi-Newton (gradient)
algorithm with the goal condition S11 = 1.

Design and modeling of a perfect reflectarray
The prototype presented in this work was designed for operation at
8 GHz. The unit cell consists of 10 rectangular copper patches above a
copper ground plane. The width of all the patches is w = 3.5 mm. The
thickness of the dielectric substrate is 1.575mm, and final dimensions of
each unit cell in the xy plane are Dx = 40 mm and Dy = 18.75 mm.

The first step in the design methodology was to determine the re-
quired reflected field for each element. To do that, we used the phase
gradient defined by Eq. 3. Then, we periodically arranged each element
(using a homogeneous array model) and calculated the length that
produced the desired phase shift. The simulation domain was Dx/10 ×
Dy × 2l (along the x, y, and z directions). The dielectric material used
in the simulations was Rogers 5880, with Dr ¼ 2:2, tan d = 0.0009, and
thickness = 1.575 mm. The rectangular patches and the ground plane
were modeled as cooper (s = 58 × 106 S/m) with a thickness of 70 mm.

Once we knew the dimensions of all the elements in the unit cells,
the second step was the optimization of the complete unit cell, which
consists of 10 different patches.We did a numerical optimization of the
structure that corrects the effects produced in the nonhomogeneous
array that was not accounted for in the initial locally homogeneous ap-
proximation. The simulation domain of the complete unit cell wasDx ×
Dy × 2l. The response of the inhomogeneous leaky-wave surface with
10 elements was optimized with HFSS. The quasi-Newton (gradient)
algorithm was used, and the goal was defined as S11 = 1. The optimized
dimensions of the patches are given in section S2B.

Perfect reflectarray realization and measurement
The metasurface sample designed to operate at a frequency of 8 GHz
was manufactured using conventional printed circuit board technology
on a 1.575-mm-thick Rogers 5880 substrate. The sample comprises
11 unit cells along the x axis and 14 unit cells along the y axis (Fig. 6A)
and has the size of 11.7l = 440 mm and 7l = 262.5 mm, respectively.

The operation of the designed nonlocal reflecting metasurface was
verified by measurements in an anechoic chamber emulating the free-
space environment. A vector network analyzer was connected to a
transmitting quad-ridged horn antenna with 11 dBi gain at 8 GHz
(Fig. 6B). The metasurface was located at a distance of 5.5 m (about
147l) from the transmitting antenna where the radiation from the
antenna can be approximated as a plane wave. To control the meta-
surface orientation, it was attached to a platform rotating around the
y axis. The receiving antenna, identical to the transmitting one, was
positioned at a distance of 2.387 m (about 64l) from the center of
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the metasurface. Both antennas and the metasurface form in space a
triangle with an angle of 70° at the metasurface center. The measured
results are presented in section S2B.
SUPPLEMENTARY MATERIALS
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fig. S3. Real part of the scattered electric field when the designed metasurfaces are illuminated
normally at f = 8 GHz.
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fig. S5. Real part of the total electric field.
fig. S6. Geometry of the problem with a metal plate.
fig. S7. Geometry of the problem with a metasurface.
table S1. Length of the strips, l, for different designs.
movie S1. Bandwidth analysis of conventional designs.
movie S2. Bandwidth analysis of nonlocal designs.
REFERENCES AND NOTES
1. J. Huang, J. A. Encinar, Reflectarray Antennas (Wiley, 2008).
2. D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopolous, E. Yablonovitch, High-impedance

electromagnetic surfaces with a forbidden frequency band. IEEE Trans. Microwave Theory
Tech. 47, 2059–2074 (1999).

3. D. M. Pozar, Wideband reflectarrays using artificial impedance surfaces. Electron. Lett. 43,
148–149 (2007).

4. S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, C. R. Simovski, Metasurfaces: From
microwaves to visible. Phys. Rep. 634, 1–72 (2016).

5. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, Z. Gaburro, Light
propagation with phase discontinuities: Generalized laws of reflection and refraction.
Science 334, 333–337 (2011).

6. S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung,
G.-Y. Guo, L. Zhou, D. P. Tsai, High-efficiency broadband anomalous reflection by gradient
meta-surfaces. Nano Lett. 12, 6223–6229 (2012).

7. A. Pors, M. G. Nielsen, R. L. Eriksen, S. I. Bozhevolnyi, Broadband focusing flat mirrors
based on plasmonic gradient metasurfaces. Nano Lett. 13, 829–834 (2013).

8. A. Pors, S. I. Bozhevolnyi, Plasmonic metasurfaces for efficient phase control in reflection.
Opt. Express 21, 27438–27451 (2013).

9. M. Farmahini-Farahani, H. Mosallaei, Birefringent reflectarray metasurface for beam
engineering in infrared. Opt. Lett. 38, 462–464 (2013).
Díaz-Rubio et al., Sci. Adv. 2017;3 : e1602714 11 August 2017
10. M. Esfandyarpour, E. C. Garnett, Y. Cui, M. D. McGehee, M. L. Brongersma, Metamaterial
mirrors in optoelectronic devices. Nat. Nanotechnol. 9, 542–547 (2014).

11. M. Kim, A. M. H. Wong, G. V. Eleftheriades, Optical Huygens’ metasurfaces with
independent control of the magnitude and phase of the local reflection coefficients.
Phys. Rev. X 4, 041042 (2014).

12. M. Veysi, C. Guclu, O. Boyraz, F. Capolino, Thin anisotropic metasurfaces for
simultaneous light focusing and polarization manipulation. J. Opt. Soc. Am. B 32,
318–323 (2015).

13. Z. Li, E. Palacios, S. Butun, K. Aydin, Visible-frequency metasurfaces for broadband
anomalous reflection and high-efficiency spectrum splitting. Nano Lett. 15, 1615–1621
(2015).

14. V. S. Asadchy, M. Albooyeh, S. N. Tcvetkova, A. Díaz-Rubio, Y. Ra’di, S. A. Tretyakov, Perfect
control of reflection and refraction using spatially dispersive metasurfaces. Phys. Rev. B
94, 075142 (2016).

15. N. M. Estakhri, A. Alù, Wave-front transformation with gradient metasurfaces. Phys. Rev. X
6, 041008 (2016).

16. M. Collischon, H. Haidner, P. Kipfer, A. Lang, J. T. Sheridan, J. Schwider, N. Streibl, J. Lindolf,
Binary blazed reflection gratings. Appl. Opt. 33, 3572–3577 (1994).

17. P. Lalanne, S. Astilean, P. Chavel, E. Cambril, H. Launois, Blazed binary subwavelength
gratings with efficiencies larger than those of conventional échelette gratings. Opt. Lett.
23, 1081–1083 (1998).

18. A. Epstein, G. V. Eleftheriades, Synthesis of passive lossless metasurfaces using auxiliary
fields for reflectionless beam splitting and perfect reflection. Phys. Rev. Lett. 117, 256103
(2016).

19. A. Epstein, G. V. Eleftheriades, Passive lossless Huygens metasurfaces for conversion of
arbitrary source field to directive radiation. IEEE Trans. Antennas Propag. 62, 5680–5695
(2014).

20. S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, L. Zhou, Gradient-index meta-surfaces as a bridge
linking propagating waves and surface waves. Nat. Mater. 11, 426–431 (2012).

21. G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, S. Zhang, Metasurface
holograms reaching 80% efficiency. Nat. Nanotechnol. 10, 308–312 (2015).

Acknowledgments: We would like to thank M. Ali and A. Manavi for technical help with the
experimental equipment. Funding: This work was supported in part by the Academy of
Finland (project 287894). Author contributions: A.D.-R. performed the numerical calculations.
A.D.-R. and V.S.A. designed the samples. V.S.A. and A.E. conducted the experiment and
analyzed the measurements. A.D.-R., V.S.A., and S.A.T. wrote the paper. S.A.T. supervised the
project. All authors contributed to the scientific discussion of the manuscript. Competing
interests: The authors declare that they have no competing interests. Data and materials
availability: All data needed to evaluate the conclusions in the paper are present in the
paper and/or the Supplementary Materials. Additional data related to this paper may be requested
from the authors.

Submitted 3 November 2016
Accepted 12 July 2017
Published 11 August 2017
10.1126/sciadv.1602714

Citation: A. Díaz-Rubio, V. S. Asadchy, A. Elsakka, S. A. Tretyakov, From the generalized
reflection law to the realization of perfect anomalous reflectors. Sci. Adv. 3, e1602714 (2017).
10 of 10

http://advances.sciencemag.org/cgi/content/full/3/8/e1602714/DC1
http://advances.sciencemag.org/cgi/content/full/3/8/e1602714/DC1

