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Summary

Recent studies have used fMRI signals from early visual areas to reconstruct simple geometric 

patterns. Here, we demonstrate a new Bayesian decoder that uses fMRI signals from early and 

anterior visual areas to reconstruct complex natural images. Our decoder combines three elements: 

a structural encoding model that characterizes responses in early visual areas; a semantic encoding 

model that characterizes responses in anterior visual areas; and prior information about the 

structure and semantic content of natural images. By combining all these elements, the decoder 

produces reconstructions that accurately reflect both the spatial structure and semantic category of 

the objects contained in the observed natural image. Our results show that prior information has a 

substantial effect on the quality of natural image reconstructions. We also demonstrate that much 

of the variance in the responses of anterior visual areas to complex natural images is explained by 

the semantic category of the image alone.
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Introduction

Functional magnetic resonance imaging (fMRI) provides a measurement of activity in the 

many separate brain areas that are activated by a single stimulus. This property of fMRI 

makes it an excellent tool for brain reading, in which the responses of multiple voxels are 

used to decode the stimulus that evoked them (Haxby et al., 2001; Carlson et al., 2002; Cox 
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and Savoy, 2003; Haynes and Rees, 2005; Kamitani and Tong, 2005; Thirion et al., 2006; 

Kay et al., 2008; Miyawaki et al., 2008). The most common approach to decoding is image 

classification. In classification, a pattern of activity across multiple voxels is used to 

determine the discrete class from which the stimulus was drawn (Haxby et al., 2001; Carlson 

et al., 2002; Cox and Savoy, 2003; Haynes and Rees, 2005; Kamitani and Tong, 2005).

Two recent studies have moved beyond classification and demonstrated stimulus 

reconstruction (Thirion et al., 2006; Miyawaki et al., 2008). The goal of reconstruction is to 

produce a literal picture of the image that was presented. The Thirion et al. (2006) and 

Miyawaki et al. (2008) studies achieved reconstruction by analyzing the responses of voxels 

in early visual areas. To simplify the problem, both studies used geometric stimuli composed 

of flickering checkerboard patterns. However, a general brain reading device should be able 

to reconstruct natural images (Kay and Gallant, 2009). Natural images are important targets 

for reconstruction because they are most relevant for daily perception and subjective 

processes such as imagery and dreaming. Natural images are also very challenging targets 

for reconstruction, because they have complex statistical structure (Field, 1987; Karklin and 

Lewicki, 2009; Cadieu and Olshausen, 2009) and rich semantic content (i.e., they depict 

meaningful objects and scenes). A method for reconstructing natural images should be able 

to reveal both the structure and semantic content of the images simultaneously.

In this paper, we present a Bayesian framework for brain reading that produces accurate 

reconstructions of the spatial structure of natural images, while simultaneously revealing 

their semantic content. Under the Bayesian framework used here, a reconstruction is defined 

as the image that has the highest posterior probability of having evoked the measured 

response. Two sources of information are used to calculate this probability: information 

about the target image that is encoded in the measured response, and pre-existing, or prior 
information about the structure and semantic content of natural images.

Information about the target image is extracted from measured responses by applying one or 

more encoding models (Nevado et al., 2004; Wu et al., 2006). An encoding model is 

represented mathematically by a conditional distribution, p(r|s), which gives the likelihood 

that the measured response r was evoked by the image s (here bold r denotes the collected 

responses of multiple voxels; italicized r will be used to denote the response of a single 

voxel). Note that functionally distinct visual areas are best characterized by different 

encoding models, so a reconstruction based on responses from multiple visual areas will use 

a distinct encoding model for each area.

Prior information about natural images is also represented as a distribution, p(s), that assigns 

high probabilities to images that are most natural (Figure 1, inner bands of image samples) 

and low probabilities to more artificial, random or noisy images (Figure 1, outermost band 

of image samples).

The critical step in reconstruction is to calculate the probability that each possible image 

evoked the measured response. This is accomplished by using Bayes theorem to combine the 

encoding models and the image prior:
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The posterior distribution, p(s|r), gives the probability that image s evoked response r. The 

encoding models and voxel responses from functionally distinct areas are indexed by i. To 

produce a reconstruction, p(s|r) is evaluated for a large number of images. The image with 

the highest p(s|r) (or posterior probability) is selected as the reconstruction, commonly 

known as the maximum a posteriori estimate (Zhang et al., 1998).

In a previous study we used the structural encoding model without invoking the Bayesian 

framework in order to solve image identification (Kay et al., 2008). The goal of image 

identification is to determine which specific image was seen on a certain trial, when that 

image was drawn from a known set of images. Image identification provides an important 

foundation for image reconstruction, but it is a much simpler problem because the set of 

target images is known beforehand. Furthermore, success at image identification does not 

guarantee success at reconstruction, because a target image may be identified on the basis of 

a small number of image features that are not sufficient to produce an accurate 

reconstruction.

In this paper we investigate two key factors that determine the quality of reconstructions of 

natural images from fMRI data: encoding models and image priors. We find that fMRI data 

and a structural encoding model are insufficient to support high-quality reconstructions of 

natural images. Combining these with an appropriate natural image prior produces 

reconstructions that, while structurally accurate, fail to reveal the semantic content of the 

target images. However, by applying an additional semantic encoding model that extracts the 

information present in anterior visual areas, we produce reconstructions that accurately 

reflect semantic content of the target images as well. A comparison of the two encoding 

models shows that they most accurately predict the responses of functionally distinct and 

anatomically separated voxels. The structural model best predicts responses of voxels in 

early visual areas (V1, V2 and so on), while the semantic model best predicts responses of 

voxels anterior to V4, V3A, V3B, and the posterior portion of lateral occipital. Furthermore, 

the accuracy of predictions of these models is comparable to the accuracy of predictions 

obtained for single neurons in area V1.

Results

Blood-oxygen-level-dependent (BOLD) fMRI measurements of occipital visual areas were 

made while three subjects viewed a series of monochromatic natural images (Kay et al., 

2008). Functional data were collected from early (V1, V2, V3) and intermediate (V3A, 

V3B, V4, lateral occipital) visual areas, and from a band of occipital cortex directly anterior 

to lateral occipital that we refer to here as anterior occipital cortex (AOC). The experiment 

consisted of two stages: model estimation and image reconstruction. During model 

estimation subjects viewed 1,750 achromatic natural images while functional data were 

collected. These data were used to fit encoding models for each voxel. During image 

Naselaris et al. Page 3

Neuron. Author manuscript; available in PMC 2017 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



reconstruction functional data were collected while subjects viewed 120 novel target images. 

These data were used to generate reconstructions.

Reconstructions that use a structural encoding model for early visual areas and an 
appropriate image prior

Our Bayesian framework requires that each voxel be fit with an appropriate encoding model. 

In our previous study we showed that a structural encoding model based upon Gabor 

wavelets could be used to extract a large amount of information from individual voxels in 

early visual areas (Kay et al., 2008). Therefore, we began by using this model to produce 

reconstructions.

Under the structural encoding model, the likelihood of a voxel's response r to an image s is 

determined by its tuning along the dimensions of space, orientation, and spatial frequency 

(Kay et al., 2008). The model includes a set of weights that can be adjusted to fit the specific 

tuning of single voxels. These weights were fit for all of the voxels in our dataset using a 

coordinate-descent optimization procedure (see Experimental Procedures). This procedure 

produced a separate encoding model, p(r|s), for each voxel. Those voxels whose responses 

could be predicted accurately by the model were then selected (see Experimental 
Procedures for specific voxel selection criteria) for use in reconstruction. The individual 

models for each of the selected voxels were then combined into a single multi-voxel 

structural encoding model, p(r|s) (see Experimental Procedures for details on how 

individual models are combined into a multi-voxel model). The majority of selected voxels 

were located in early visual areas (V1, V2, and V3).

The Bayesian framework also requires an appropriate prior. The reconstructions reported in 

Thirion et al. (2006), and Miyawaki et al. (2008) used no explicit source of prior 

information. To obtain comparable results to theirs, we began with a flat prior that assigns 

the same probability to all possible images. This prior makes no strong assumptions about 

the stimulus, but instead assumes that noise patterns are just as likely as natural images (see 

Figure 1). Thus, when the flat prior is used, only the information encoded in the responses of 

the voxels is available to support reconstruction. (Formally, using the flat prior amounts to 

setting the prior, p(s), in equation (1) to a constant).

To produce reconstructions, the structural encoding model, the flat prior, and the selected 

voxels were used to evaluate the posterior probability (see equation 1) that an image s 
evoked the responses of the selected voxels. A greedy serial search algorithm was used to 

converge on an image with a high (relative to an initial image with all pixels set to zero) 

posterior probability. This image was selected as the reconstruction. Typical reconstructions 

are shown in the second column of Figure 2. In the example shown in row one the target 

image (first column, red border) is a seaside cafe and harbor. The reconstruction (second 

column) depicts the shore as a textured high-contrast region, and the sea and sky as smooth 

low-contrast regions. In row two the target image is a group of performers on a stage, but the 

reconstruction depicts the performers as a single textured region on a smooth background. In 

row three the target image is a patch of dense foliage, which the reconstruction depicts as a 

single textured region that covers much of the visual field.
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All of the example reconstructions obtained using the structural model and the flat prior 

have similar qualities. Regions of the target images that have low contrast or little texture are 

depicted as smooth gray patches in the reconstructions, and regions that have significant 

local contrast or texture are depicted as textured patches. Local texture and contrast are 

apparently the only information about natural images that can be recovered reliably from 

moderate-resolution BOLD fMRI measurements of activity in early visual areas. 

Unfortunately, reconstructions based entirely on texture and contrast do not provide enough 

information to reveal the identity of objects depicted in the target images.

To improve reconstructions we sought to define a more informative image prior. A 

distinguishing feature of natural images is that they are composed of many smooth regions, 

disrupted by sharp edges. These characteristics are captured by two lower-level statistical 

properties of natural images: they tend to have a 1/f amplitude spectrum (Field, 1987), and 

they are sparse in the Gabor-wavelet domain (Field, 1994). In contrast, unnatural images 

such as white noise patterns generally have much different power spectra and are not sparse. 

We therefore designed a sparse Gabor prior that biases reconstructions in favor of images 

that exhibit these two well-known statistical properties (see Figure 1).

To produce a new set of reconstructions, the structural encoding model, the sparse Gabor 

prior, and the same set of voxels selected above were used to evaluate posterior probabilities 

(see equation 1). The same greedy serial search algorithm mentioned above was used to 

converge on an image with a relatively high posterior probability. This image was selected as 

the reconstruction. Results are shown in the third column of Figure 2. The main effect of the 

sparse Gabor prior is to smooth out the textured patches apparent in the reconstruction with 

a flat prior. As a result, the reconstructions are more consistent with the lower-level 

statistical properties of natural images. However, these reconstructions do not depict any 

clearly identifiable objects or scenes, and thus fail to reveal the semantic content of the target 

images.

Because the sparse Gabor prior did not produce reconstructions that reveal the semantic 

content of the target images, we sought to introduce a more sophisticated image prior. 

Natural images have complex statistical properties that reflect the distribution of shapes, 

textures, objects, and their projections onto the retina, but thus far theorists have not 

captured these properties in a simple mathematical formalism. We therefore employed a 

strategy first developed in the computer vision community to approximate these complex 

statistical properties (Hays and Efros, 2007; Torralba et al., 2008). We constructed an 

implicit natural image prior by compiling a database of six million natural images selected at 

random from the internet (see Experimental Procedures). The implicit natural image prior 

can be viewed as a distribution that assigns the same probability to all images in the database 

and zero probability to all other images.

To produce reconstructions using the natural image prior, the posterior probability was 

evaluated for each of the six million images in the database (note that in this case the 

posterior probability is proportional to the likelihood given by the encoding model); the 

image with the highest probability was selected as the reconstruction. Examples are shown 

in the fourth column of Figure 2. In row one both the target image and the reconstruction 
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depict a shoreline (compare row one, column one to row one, column four). In row two both 

the target image and the reconstruction depict a group of performers on a stage. In row three 

both the target image and the reconstruction depict a patch of foliage. In all three examples, 

the spatial structure and the semantic content of the reconstructions accurately reflect both 

the spatial structure and semantic content of the target images (also see Supplemental Figure 

3A). Thus, these particular reconstructions are both structurally and semantically accurate.

The examples shown in Figure 2 were selected to demonstrate the best reconstruction 

performance obtained with the structural encoding model and the natural image prior. 

However, most of the reconstructions obtained this way are not semantically accurate. 

Several examples of semantically inaccurate reconstructions are shown in the second column 

of Figure 3. In row one the target image is a group of buildings, but the reconstruction 

depicts a dog. In row two the target image is a bunch of grapes, but the reconstruction 

depicts a hand against a checkerboard background. In row three the target image is a crowd 

of people in a corridor, but the reconstruction depicts a building. In row four, the target 

image is snake, but the reconstruction depicts several buildings.

Close inspection of the reconstructions in the second column of Figure 3 suggests that they 

are structurally accurate. For example, the target image depicting grapes in row two has high 

spatial frequency, while the reconstruction in row two contains a checkerboard pattern with 

high spatial frequency as well. However, the reconstruction does not depict objects that are 

semantically similar to grapes, so it does not appear similar to the target image. This 

example reveals that structural similarity alone can be a poor indicator of how similar two 

images will appear to a human observer. Because human judgments of similarity will 

inevitably take semantic content into account, reconstructions should reflect both the 

structural and semantic aspects of the target image. Therefore, we sought to incorporate 

activity from brain areas known to encode information about the semantic content of images.

A semantic encoding model

There is evidence that brain areas in anterior visual cortex encode information that is related 

to the semantic content of images (Kanwisher et al., 1997; Epstein and Kanwisher, 1998; 

Grill-Spector et al., 1998; Haxby et al., 2001; Grill-Spector and Malach, 2004; Downing et 

al., 2006; Kriegeskorte et al., 2008). In order to add accurate semantic content to our 

reconstructions, we designed a semantic encoding model that describes how voxels in these 

areas encode information about natural scenes. The model automatically learns—from 

responses evoked by a randomly chosen set of natural images—the semantic categories that 

are represented by the responses of a single voxel.

To fit the semantic encoding model, all 1750 natural images used to acquire the model 

estimation data set were first labeled by human observers with one of 23 semantic category 

names (see Supplemental Figure 1). These categories were chosen to be mutually exclusive 

yet broadly defined, so that the human observers were able to assign each natural image a 

single category that best described it (observers were instructed to label each image with the 

single category they deemed most appropriate and reasonable; see Experimental 
Procedures for details). Importantly, the images had not been chosen beforehand to fall into 
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pre-defined categories; rather, the categories were designed post-hoc to provide reasonable 

categorical descriptions of randomly selected natural images.

After the images in the model estimation set were labeled, an Expectation Maximization 

optimization algorithm (EM) was used to fit the semantic model to each voxel (see 

Experimental Procedures and Appendix 1 for details). The EM algorithm learned the 

probability that each of the 23 categories would evoke a response either above, below or near 

the average of each voxel. The resulting semantic model reflects the probability that a voxel 

“likes”, “doesn't like” or “doesn't care about” each semantic category. This information is 

then used to calculate p(r|s)—the likelihood of the observed response, given a sampled 

image (see Supplemental Figure 2, and Experimental Procedures for more details). We fit 

the semantic model to all of the voxels in the dataset and then inspected those voxels whose 

responses could be predicted accurately by the model (see Experimental Procedures for 

specific voxel selection criteria).

Examples of the semantic encoding model fit to three voxels (one from each of the three 

subjects in this study) are shown in Figure 4. Gray curves show the overall distribution of 

responses to all images in the model estimation set. The colored curves define responses that 

are above (blue curve), below (red curve), or near (green curve) the average response. The 

bottom boxes give the probability that an image from a specific semantic category (category 

names at left; names are abbreviated, see Supplemental Figure 1 for full names) will evoke a 

response above (blue boxes), below (red boxes) or near (green boxes) the average response. 

For each of these voxels most categories that pertain to non-living things—such as textures, 

landscapes, and buildings—are likely to evoke responses below the average. In contrast, 

most categories that pertain to living things—such as people, faces, and animals—are likely 

to evoke responses above the average. Average responses tend to be evoked by a fairly 

uniform distribution of categories. Thus, at a coarse level, activity in each of these voxels 

tends to distinguish between animate and inanimate things.

To determine how the representations of structural and semantic information are related to 

one another, we compared the prediction accuracy of the structural model with that of the 

semantic model (Figure 5, left panels). We quantified prediction accuracy as the correlation 

(cc) between the response observed in each voxel and the response predicted by each 

encoding model for all 120 images in the image reconstruction set. The points show the 

prediction accuracy of the structural encoding model (x-axis) and semantic encoding model 

(y-axis) for each voxel in our slice coverage. The distribution of points has two wings. One 

wing extends along the y-axis, and the other extends along the x-axis. This indicates that 

there are very few voxels whose responses are accurately predicted by both models. Most 

voxels whose responses are accurately predicted by the structural model (cc > 0.353; blue 

voxels; see Experimental Procedures for criteria used to set this threshold) are not 

accurately predicted by the semantic model. Most voxels whose responses are accurately 

predicted by the semantic model (cc > 0.353; magenta voxels) are not accurately predicted 

by the structural model. The wings have similar extents, indicating that the semantic model 

provides predictions that are as accurate as those provided by the structural model. 

Remarkably, the predictions for both the structural and semantic voxels can be as accurate as 

those obtained for single neurons in area V1 (David and Gallant, 2005; Carandini et al., 
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2005). Note that there is a large central mass of voxels (gray); these voxels either have poor 

signal quality or represent information not captured by either the structural or semantic 

models.

In order to determine the anatomical locations of the voxels in the two separate wings, we 

projected voxels whose responses are accurately predicted by the structural (blue) and 

semantic (magenta) models onto flat maps of the right and left occipital cortex (Figure 5, 

right panels). Most of the voxels whose responses are accurately predicted by the structural 

model are located in early visual areas V1, V2 and V3. In contrast, most of the voxels whose 

responses are accurately predicted by the semantic model are located in the AOC, at the 

anterior edge of our slice coverage.

Our results show that the semantic encoding model accurately characterizes a set of voxels 

in anterior visual cortex that are functionally distinct and anatomically separated from the 

structural voxels located in early visual cortex. The structural voxels in early visual areas 

encode information about local contrast and texture, while the semantic voxels in anterior 

portions of lateral occipital and in the AOC encode information related to the semantic 

content of natural images. Therefore, a reconstruction method that uses the structural and 

semantic encoding models to extract information from both sets of voxels should produce 

reconstructions that reveal both the structure and semantic content of the target images.

Reconstructions using structural and semantic models and a natural image prior

To incorporate the semantic encoding model into the reconstruction algorithm, we first 

selected all of the voxels for which the semantic encoding model provided accurate 

predictions. Most of these voxels were located in the anterior portion of lateral occipital and 

in the AOC (see Experimental Procedures for details on voxel selection). The individual 

models for each selected voxel were then combined to into a single, multi-voxel semantic 

encoding model, p(r|s) (see Experimental Procedures for details).

To produce reconstructions, the semantic and structural encoding models (with their 

corresponding selected voxels), were used to evaluate the posterior probability (see equation 

1) of each the six million images in the natural image prior. For convenience, we refer to the 

use of the structural model, semantic model and natural image prior as the hybrid method.

Reconstructions obtained using the hybrid method are shown in the third column of Figure 

3. In contrast to the reconstructions produced using the structural encoding model and 

natural image prior, the hybrid method produces reconstructions that are both structurally 

and semantically accurate. In the example shown in row one, both the target image and the 

reconstruction depict buildings. In row two, the target image is a bunch of grapes, and the 

reconstruction depicts a bunch of berries. In row three, the target image depicts a crowd of 

people in a corridor, and the reconstruction depicts a crowd of people on a narrow street. In 

row four, the target image depicts a snake crossing the visual field at an angle, while the 

reconstruction depicts a caterpillar crossing the visual field at a similar angle. (In 

Supplemental Figure 3, we also present the second and third most probable images in the 

natural image prior. The spatial structure and semantic content of these alternative 

reconstructions is consistent with the best reconstruction.)
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Objective assessment of reconstruction accuracy

To quantify the spatial similarity of the reconstructions and the target images we used a 

standard image similarity metric proposed previously (Brooks and Pappas, 2006). This 

metric reflects the complex wavelet-domain correlation between the reconstruction and the 

target image. We applied this metric to the four types of reconstruction presented in Figures 

2 and 3. As shown by the plots on the left side of Figure 6, the structural accuracy of all the 

reconstruction methods that use a non-flat prior is significantly greater than chance for all 

three subjects (p < 0.01, t-test; comparison is for each individual subject). Reconstruction 

with the structural model and the natural image prior is significantly more accurate than 

reconstruction with a sparse Gabor prior, (p < 0.01, t-test; comparison is for each individual 

subject). These results indicate that prior information is important for obtaining accurate 

image reconstructions. The structural accuracy of the structural model with natural image 

prior and the hybrid method are not significantly different (p > 0.3, t-test; comparison is for 

each individual subject), so structural accuracy is not affected by the addition of the 

semantic model.

To quantify the semantic similarity of the reconstructions and the target images we 

formulated a semantic accuracy metric. In this case we estimated the probability that a 

reconstruction obtained using some specific reconstruction method would belong to the 

same semantic category as the target image. (Because calculating semantic accuracy requires 

time-consuming labeling of many images, we calculated semantic accuracy for only the first 

30 images in the image reconstruction set; see Experimental Procedures for details). We 

considered semantic categories at four different levels of specificity, from two broadly 

defined categories (“mostly animate” vs. “mostly inanimate”), to 23 narrowly defined 

categories (see Supplemental Figure 1 for complete list). Semantic accuracies for the 

structural model with natural image prior and the hybrid method are shown by the plots on 

the right side of Figure 6 (note that semantic accuracy cannot be determined for methods 

that did not use the natural image prior). The semantic accuracy of the hybrid method is 

significantly greater than chance for all three subjects, and at all levels of specificity (p < 

10-5, binomial test, for subjects TN and SN; p < .002, binomial test, for subject KK). The 

semantic accuracy of the reconstructions obtained using the structural model and natural 

image prior are rarely significantly greater than chance for all three subjects (p > 0.3, 

binomial test). The hybrid method is quite semantically accurate. When two categories are 

considered accuracy is 90% (for subject TN), and when the full 23 categories are considered 

accuracy is still 40%. In other words, reconstructions produced using the hybrid method will 

correctly depict a scene whose animacy is consistent with the target image 90% of the time, 

and will correctly depict the specific semantic category of the target image 40% of the time.

Discussion

We have presented the first reconstructions of natural images from BOLD fMRI 

measurements of human brain activity. These reconstructions were produced by a Bayesian 

reconstruction framework that uses two different encoding models to integrate information 

from functionally distinct visual areas: a structural model that describes how information is 

represented in early visual areas, and a semantic encoding model that describes how 
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information is represented in anterior visual areas. The framework also incorporates image 

priors that reflect the structural and semantic statistics of natural images. The resulting 

reconstructions accurately reflect the spatial structure and semantic content of the target 

images.

Relationship to previous reconstruction studies

Two previous fMRI decoding papers presented algorithms for reconstructing the spatial 

layout of simple geometrical patterns composed of high-contrast flicker patches (Thirion et 

al., 2006; Miyawaki et al., 2008). Both these studies used some form of structural model that 

reflected the retinotopic organization of early visual cortex, but neither explored the role of 

semantic content or prior information. Our previous study on image identification from brain 

activity (Kay et al., 2008) used a more sophisticated voxel-based structural encoding model 

that reflects the way that spatial frequency and orientation information are encoded in brain 

activity measured in early visual areas. However, the image identification task does not 

require the use of semantic information.

The study reported here is the first to present a solution to a more general problem: 

reconstructing arbitrary natural images from fMRI signals. It is much more difficult to 

reconstruct natural images than flickering geometrical patterns because natural images have 

a complex statistical structure and evoke signals with relatively low signal-to-noise. Our 

study employed a structural encoding model similar to that used in our earlier image 

identification study (Kay et al., 2008), but we found that this model is insufficient for 

reconstructing natural images, given the fMRI signals collected in our study. Successful 

reconstruction requires two additional components: a natural image prior and a semantic 

model. The natural image prior ensures that potential reconstructions will satisfy all of the 

lower and higher-order statistical properties of natural images. The semantic encoding model 

reflects the way that information about semantic categories is represented in brain responses 

measured in AOC. Our study is the first to integrate structural and semantic models with a 

natural image prior to produce reconstructions of natural images.

Under the Bayesian framework, each of the separate sources of information used for 

reconstruction are represented by a separate encoding model or image prior. This property of 

the framework makes it an efficient method for integrating information from disparate 

sources in order to optimize reconstruction. For example, adding the semantic model to the 

reconstruction process merely required adding an additional term to equation 1. However, 

this property also has value even beyond its use in optimizing reconstructions. Because the 

sources of structural and semantic information are represented by separate models, the 

Bayesian framework makes it possible to disentangle the contributions of functionally 

distinct visual areas and prior information to reconstructing the structural and semantic 

content of natural images (see Figure 6).

But is this really reconstruction?

Reconstruction using the natural image prior is accomplished by sampling from a large 

database of natural images. One obvious difference between this sampling approach and the 

methods used in previous studies (Thirion et al., 2006; Miyawaki et al., 2008) is that 
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reconstructions will always correspond to an image that is already in the database. If the 

target image is not contained within the natural image prior then an exact reconstruction of 

the target image cannot be achieved. The database used in our study contains only six 

million images, and with a set this small it is extremely unlikely that any target image 

(chosen from an independent image set) can be reconstructed exactly. However, as the size 

of the database (i.e., the natural image prior) grows it becomes more likely that any target 

image will be structurally and/or semantically indistinguishable from one of the images in 

the database. For example, if the database contained many images of one person's personal 

environment, it would be possible to reconstruct a specific picture of her mother using a 

similar picture of her mother. In this case, the fact that the reconstruction was not an exact 

replica of the target image would be irrelevant.

It is important to emphasize that in practice exact reconstructions are impossible to achieve 

by any reconstruction algorithm on the basis of brain activity signals acquired by fMRI. This 

is because all reconstructions will inevitably be limited by inaccuracies in the encoding 

models and noise in the measured signals. Our results demonstrate that the natural image 

prior is a powerful (if unconventional) tool for mitigating the effects of these fundamental 

limitations. A natural image prior with only six million images is sufficient to produce 

reconstructions that are structurally and semantically similar to a target image. There are 

many other potential natural image priors that could be used for this process, and some of 

these may be able to produce reconstructions even better than those demonstrated in this 

study. Exploration of alternative priors for image reconstruction and other brain decoding 

problems will be an important direction for future research.

New insights from the semantic encoding model

Many previous fMRI studies have investigated representations in the anterior regions of 

visual cortex, beginning in the region we have defined as AOC and extending beyond the 

slice coverage used here to more anterior areas such as the fusiform face area and the para-

hippocampal place area (Kanwisher et al., 1997; Epstein and Kanwisher, 1998). These 

anterior regions are more activated by whole images than by scrambled images (Malach et 

al., 1995; Grill-Spector et al., 1998), and some specialized regions appear to be most 

activated by specific object or scene categories (Kanwisher et al., 1997; Epstein and 

Kanwisher, 1998; Downing et al., 2001; Downing et al., 2006). A recent study using 

sophisticated multivariate techniques revealed a rough taxonomy of object representations 

within inferior temporal cortex (Kriegeskorte et al., 2008). Together, these studies indicate 

that portions of anterior visual cortex represent information related to meaningful objects 

and scenes—what we have referred to here as “semantic content”.

This result forms the inspiration for our semantic encoding model, which assigns a unique 

semantic category to each natural image in order to predict voxel responses. This aspect of 

the model permits us to address one very basic and important question that has not been 

addressed by previous studies: what proportion of the variance in the responses evoked by a 

natural image within a single voxel can be explained solely by the semantic category of the 

image? Our results show that for voxels in the region we have defined as AOC, semantic 

category alone can explain as much as 55% of the response variance (see Figure 5). An 
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important direction for future research will be to apply the semantic encoding model to 

voxels in cortical regions that are anterior to our slice coverage. Recent work on a competing 

model that is conceptually similar to our semantic encoding model (Mitchell et al., 2008) 

suggests that the semantic encoding model will be useful for predicting brain activity in 

these more anterior areas .

The results in Figure 5 show that the particular structural features used to build the structural 

encoding model are very weakly correlated with semantic categories. However, it is 

important to bear in mind that all semantic categories are correlated with some set of 

underlying structural features. Although structural features underlying some categories of 

natural landscape (Greene and Oliva, 2009) have been discovered, the structural features 

underlying most semantic categories are still unknown (Griffin et al., 2007). Thus, it is 

convenient at this point to treat semantic categories as a form of representation that is 

qualitatively different from the structural features used for the structural encoding model.

One notable gap in our current results is that neither the structural nor semantic models can 

adequately explain voxel responses in intermediate visual areas such as area V4 (see Figure 

5). These intermediate areas are thought to represent higher-order statistical features of 

natural images (Gallant et al., 1993). Because the structural model used here only captures 

the lower-order statistical structure of natural images (Field, 1987; Field 1994) it does not 

provide accurate predictions of responses in these intermediate visual areas. Development of 

a new encoding model that accurately predicts the responses of individual voxels in 

intermediate visual areas would provide an important new tool for vision research, and 

would likely further improve reconstruction accuracy.

Future directions

Much of the excitement surrounding the recent work on visual reconstruction is motivated 

by the ultimate goal of directly picturing subjective mental phenomena such as visual 

imagery (Thirion et al., 2006) or dreams. Although the prospect of reconstructing dreams 

still remains distant, the capability of reconstructing natural images is an essential step 

toward this ultimate goal. Future advances in brain signal measurement, the development of 

more sophisticated encoding models, and a better understanding of the structure of natural 

images will eventually make this goal a reality. Such brain reading technologies would have 

many important practical uses for brain-augmented communication, direct brain control of 

machines and computers, and for monitoring and diagnosis of disease states. However, such 

technology also has the potential for abuse. Therefore, we believe that researchers in this 

field should begin to develop ethical guidelines for the application of brain reading 

technology.

Experimental Procedures

Data Collection

The MRI parameters, stimuli, experimental design, and data pre-processing are identical to 

those presented in a previous publication from our laboratory (Kay et al., 2008). Here, we 

briefly describe the most pertinent details.
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MRI parameters—All MRI data were collected at the Brain Imaging Center at UC-

Berkeley, using a 4 T INOVA MR (Varian, Inc., Palo Alto, CA) scanner and a quadrature 

transmit/receive surface coil (Midwest RF, LLC, Hartland, WI). Data were acquired in 18 

coronal slices that covered occipital cortex (slice thickness 2.25 mm, slice gap 0.25 mm, 

field-of-view 128 × 128 mm2). A gradient-echo EPI pulse sequence was used for functional 

data (matrix size 64 × 64, TR 1 s, TE 28 ms, flip angle 20°, spatial resolution 2 × 2 × 2.5 

mm3).

Stimuli—All stimuli were grayscale natural images selected randomly from several 

photographic collections. The size of the images was 20° × 20° (500 px × 500 px). A central 

white square served as the fixation point( 0.2° × 0.2°; 4 px × 4 px). Images were presented in 

successive 4-s trials. In each trial, a photo was flashed at 200 ms intervals (200 ON, 200 

OFF) for one second, followed by 3 s of gray background.

Experimental Design—Data for the model estimation and image reconstruction stages of 

the experiment were collected in the same scan sessions. Three subjects were used: TN, KK, 

and SN. For each subject, five scan sessions of data were collected. Scan sessions consisted 

of five model estimation runs and two image reconstruction runs. Runs used for model 

estimation were 11 minutes each, and consisted of 70 distinct images presented 2 times 

each. Runs used for image reconstruction runs were 12 min each, and consisted of 12 

distinct images presented 13 times each. Images were randomly selected for each run and 

were not repeated across runs. The total number of distinct images used in the model 

estimation runs was 1,750. For image reconstruction runs, the total was 120.

Data preprocessing—Functional brain volumes were reconstructed and then coregistered 

across scan sessions. The time-series data was used to estimate a voxel-specific response 

timecourse; deconvolving this timecourse from the data produced, for each voxel, an 

estimate of the amplitude of the response (a single value) to each image used in the model 

estimation and image reconstruction runs. Retinotopic mapping data collected in separate 

scan sessions was used to assign voxels to their respective visual areas based on criteria 

presented in (Hansen et al., 2007).

Notation

All sections below use the same notational conventions. The response of a single voxel is 

denoted r. Bold notation is used to denote the collected responses of N separate voxels in an 

Nx1 voxel response vector: r = (r1,…,rN) T . Subscripts i applied to voxel response vectors, 

ri , are used to distinguish between functionally distinct brain areas. In practice, images are 

treated as vectors of pixel values, denoted s. These vectors are formed by columnwise 

concatenation of the original 2D image; unless otherwise noted, s is 1282 x 1 column vector.

Encoding models

Our reconstruction algorithm requires an encoding model for each voxel. Each encoding 

model describes the voxel's dependence upon a particular set of image features. Formally, 

this dependence is given by a distribution over the possible responses of the voxel to an 

image: p(r|s). We presented two different types of encoding models: a structural encoding 
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model, and a semantic encoding model. Each model is defined by a transformation of the 

original image s into a set of one or more features. For the structural encoding model, these 

features are spatially localized orientations and spatial frequencies (which can be described 

using Gabor wavelets). For the semantic model, these features are semantic categories 

assigned to the images by human labelers. The conditional distributions p(r|s) for both 

models are defined by one or more Gaussian distributions. For the structural models, p(r|s) is 

a Gaussian distribution whose mean is a function of the image s; for the semantic model, p(r|
s) is a weighted sum of Gaussian distributions, each of whose means is function of the 

image. Each model can be used to predict the specific response of a voxel to an image by 

taking the expected value of r with respect to p(r|s). Note that if a voxel has a very weak 

dependence on the features assumed by the model, the expected value of r with respect to 

p(r|s) will poorly predict the actual response of the voxel. Note also that both the structural 

and semantic models have a number of free parameters that must be estimated using a 

suitable fitting procedure.

Structural encoding model—The structural encoding model used in this work is similar 

to the Gabor Wavelet Pyramid model described in our previous publication (Kay et al., 

2008). The model describes the spatial frequency and orientation tuning of each voxel. 

These attributes can be efficiently described by Gabor wavelets. A Gabor wavelet is a 

spatially localized filter with a specific orientation and spatial frequency. To construct the 

structural encoding model, all images are first filtered by a set of Gabor wavelets that cover 

many spatial locations, orientation, frequencies, and scales. The filtered signals are then 

passed through a fixed nonlinearity. This nonlinear transformation of the image defines the 

feature set for the structural encoding model. Formally, the features are defined as:

where f is an F x 1 vector containing the features (F =10921, the number of wavelets used 

for the model), and W denotes a matrix of complex Gabor-wavelets. W has as many rows as 

there are pixels in s, and each column contains a different Gabor wavelet; thus, it's 

dimension is 1282 x 10921. The features are the log of the magnitudes obtained after 

filtering the image by each wavelet. The log is applied because we have found that a 

compressive nonlinearity improves prediction accuracy.

The wavelets in W occur at six spatial frequencies: 1, 2, 4, 8, 16, and 32 cycles per field-of-

view (FOV = 20°; images were presented at a resolution of 500×500 pixels, but were 

downsampled to 128×128 pixels for this analysis). At each spatial frequency of n cycles per 

FOV, wavelets are positioned on an n × n grid that tiles the full FOV. At each grid position 

wavelets occur at eight orientations, 0°, 22.5°, 45°, …, and 157.5°. An isotropic Gaussian 

mask is used for each wavelet, and its size relative to spatial frequency is such that all 

wavelets have a spatial frequency bandwidth of 1 octave and an orientation bandwidth of 

41°. A luminance-only wavelet that covers the entire image is also included.
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As mentioned above, the conditional distribution for the structural encoding model is a 

Gaussian distribution whose mean is defined by a weighted sum of the features f:

where h (F × 1) is the set of weighting parameters, and σ (a scalar) is the standard deviation 

of voxel responses.

The encoding model's predicted response to an image s is defined as the mean response with 

respect to p(r|s). This mean is just the feature transform (which is the same for all voxels) 

multiplied by the weighting parameters h (which are fit independently for all voxels):

Coordinate descent with early stopping was used to find the parameters h that minimized the 

sum-of-square-error between the actual and predicted responses. For each voxel, this 

minimization was performed on three sets of M-l training samples (M=1750, l = M*0.1), 

selected randomly without replacement. Each set produced a separate estimate hj (j=[1, 2, 

3]). h was set equal to the arithmetic mean of (h1, h2, h3).

Semantic encoding model—The features used for the semantic encoding are quite 

different from those used for the structural encoding model. Instead of features that are 

defined by a wavelet transformation, the features for the semantic model are semantic 

categories assigned to each image by human labelers.

The semantic categories used for the model were drawn from a semantic basis. The semantic 

basis is a set of categories designed to satisfy two key properties. First, the categories are 

broad enough that any natural image can be assigned to at least one of them. Second, 

categories in the semantic basis are non-overlapping, so that a human observer can 

confidently assign any arbitrary image to only one of them. We developed the semantic basis 

using a tree of categories, shown in Supplemental Figure 1. In the first layer of the tree, all 

possible images are divided into mutually exclusive categories: “mostly animate” and 

“mostly inanimate”. In subsequent layers, each category is again divided into two or three 

exclusive categories. At the bottom of the tree (rightmost layer in Supplemental Figure 1) is 

a set of 23 categories; this is the semantic basis. The inputs to the model are natural images 

that have been labeled with one of these 23 categories by two human observers. The 

observers did not know whether the images they labeled were target images, training images, 

or potential reconstructions sampled from the natural image prior. Observers were instructed 

to label each image by working their way down the semantic tree: first they assigned the 

correct label from the first level, then the second level, and so on until reaching the bottom 

of the tree. In a few cases the labels assigned by different labelers were inconsistent, and in 
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these cases they discussed the images between themselves in order to arrive at a consistent 

conclusion.

The form of the conditional distribution for the semantic encoding model is slightly more 

complex than for the structural model. In order to make the model easily interpretable, we 

designed it so that it would clearly delineate the semantic categories that a voxel likes 

(categories that are likely to evoke above average responses), doesn't like (categories that are 

likely to evoke below average responses), or doesn't care about (categories that are likely to 

evoke near average responses). This clear delineation is achieved by decomposing the 

overall voxel response distribution (the gray curves in the top panels of Figure 4) into a 

mixture of sub-distributions that span the above, below, and near average response ranges:

where z ∈[1, 2,3]is an indicator variable used to delineate the ranges, and c(s) denotes the 

semantic category assigned to the image s (this notation is used throughout to make the 

model's dependence on semantic categories explicit. However, the more general notation 

used for the structural model, p(r|s), is applicable here as well). Each of the sub-

distributions, p(r|z) is a Gaussian (colored curves in top panels of Figure 4) with it's own 

mean and variance, μz and σz:

Each of these Gaussian sub-distributions are weighted by a multinomial mixing distribution, 

p(z|c(s)), that gives the probability that the voxel's response will be driven into response 

range z when presented with an image from category c (bar charts in bottom panels of 

Figure 4).

The predicted response of the semantic model to an image s is the mean of p(r|c(s)). This 

mean is a weighted sum of the means of each of sub-distribution:

The free parameters of the semantic encoding models are the mean and variance of p(r|z) for 

each value of z, and the parameters of the multinomial mixture distribution p(z|c(s)). We 

estimated these parameters for each voxel using an Expectation Maximization algorithm that 

we present in Appendix 1.

Voxel selection and multi-voxel encoding models—To perform reconstruction using 

the responses of many voxels, it is necessary to first select a set of voxels for use in 
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reconstruction, and then combine the individual encoding model for each selected voxel into 

a single multi-voxel encoding model for the entire set.

Voxels were selected for reconstruction on the basis of the predictive accuracy of their 

encoding models. If the prediction accuracy of the structural encoding model was above 

threshold (see below), it was considered a structural voxel, and it was used for all 

reconstructions that involved the structural encoding model. If the prediction accuracy of the 

semantic encoding model for a voxel was above threshold (see below) it was considered a 

semantic voxel, and it was used for all reconstructions that involved the semantic encoding 

model. In the rare cases where both the structural and the semantic encoding models were 

above the selection thresholds for both models the voxel was used for both structural and 

semantic reconstruction.

For the structural model, the threshold was a correlation coefficient of > 0.353. This 

correlation coefficient corresponds to a p-value < 3.9x10-5, which is roughly the inverse of 

the number of voxels in our dataset. For the semantic model, the threshold was a correlation 

coefficient of > 0.26. This correlation coefficient was chosen because it optimized semantic 

accuracy on an additional set of 12 experimental trials obtained for subject TN (none of 

these trials were part of the model estimation or image reconstruction sets used here.)

In order to control for a possible selection bias, the correlation values for both the structural 

and semantic encoding models were calculated separately for each of the image 

reconstruction trials. To reconstruct the jth image, the correlation coefficients were calculated 

using the remaining 119 image reconstruction trials. Thus, a slightly different set of voxels 

was selected for each reconstruction trial. The average number of voxels selected by the 

structural model was 788 (average taken across all three subjects and all reconstruction 

trials). The average number of voxels selected by the semantic model was 579. The average 

number of voxels selected by both was 73.

Once voxels were selected for each reconstruction trial, multi-voxel versions of the 

structural and semantic encoding models were constructed using the univariate model for 

each of the selected voxels. The multi-voxel versions of the structural and semantic encoding 

models are given by the following distribution:

where Λ is an N x N covariance matrix. Let μˆi (s) ≔ 〈ri|s〉 be the predicted response for the 

ith voxel, given an image s (the predicted mean response for the structural and semantic 

encoding models are defined above). Let μˆ(s) = (μˆ1 (s,…,μˆN (s)) be the collection of 

predicted mean responses for N voxels. We define rˆ as the normalized predicted mean 

response vector:
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where the sidebars denote vector normalization and the columns of the matrix P contain the 

first p principal components of the distribution over μ (p=45 for the structural model; p = 21 

for the semantic model. For all subjects and both models, these values of p occur at or near 

the inflection point of the plot of rank-ordered eigenvalues). The prime notation denotes the 

same linear transformation and scaling of measured response vectors:

To estimate P for the structural encoding model, we generated predicted mean response 

vectors to a gallery of 12000 natural images, and applied standard principal components 

analysis to this sample. For the semantic encoding model, we used a smaller gallery of 3000 

images labeled according to the scene categories shown in Supplemental Figure 1 (rightmost 

layer of the tree). The reduction of dimensionality achieved by projection onto the first p 
principal components of the predicted responses, and the normalization after projection, act 

to stabilize the inverse of the covariance matrix, Λ. The elements of Λ give the covariance of 

the residuals (i.e., the difference between the responses and predictions, r′ − rˆ(s)) for each 

pair of N voxels. We used the 1750 trials in the model estimation set to estimate Λ.

General reconstruction algorithm

All of the reconstructions presented in the paper are special cases of a general Bayesian 

algorithm, summarized by the following equation:

On the left hand side is the posterior distribution, p(s|r). The posterior gives the probability 

that an image s evoked the measured response r. The goal of reconstruction is to find the 

image with the highest posterior probability, given the responses (this is often referred to as 

maximum a posteriori decoding). The formula on the right hand side shows how the 

posterior probability is calculated. The first term, p(s), is the image prior. It reflects pre-

existing, general knowledge about natural images, and is independent of the responses. We 

consider three separate priors in this study: the flat prior, the sparse Gabor prior, and natural 

image prior. The image prior is followed by a product of encoding models, pi, each of which 

is applied to the responses, ri, of voxels in a functionally distinct brain area. To produce 

reconstructions, we used either one (structural) or two (structural and semantic) encoding 

models.
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The four different reconstruction methods presented in the main text differ only by the 

particular choice of priors and encoding models used to calculate the posterior probability. 

For reconstructions that use the structural model and a flat prior, the posterior is:

where p1 is the structural encoding model, and r1 are the structural voxels (selected 

according to the voxel selection procedure defined above: see Voxel selection and multi-
voxel encoding models). Note that the image prior, p(s), does not appear here because the 

flat prior is simply a constant that is independent of both images and responses.

For reconstruction with the structural encoding model and sparse Gabor prior, the posterior 

is:

where pSG(s) is the sparse Gabor prior described in detail below.

For reconstructions with the structural model and natural image prior, the posterior is:

where pNIP(s)is the natural image prior.

Finally, for the hybrid reconstructions, the posterior incorporates two encoding models:

where p2 is the semantic encoding model, and r2 are the semantic voxels (selected according 

to the procedure defined above: see Voxel selection and multi-voxel encoding models).

Once a posterior distribution is defined, a reconstruction is produced by finding an image 

that has a high posterior probability. In general, it is not possible to determine the image that 

maximizes the posterior distribution analytically. Thus, a search algorithm must be applied 

to search the space of possible images for potential reconstructions that have high posterior 

probability.

Reconstructions using the structural encoding model and a flat prior

For the reconstructions presented in the second column of Figure 1, a set of voxels located 

primarily in the early visual areas V1, V2, and V3 (see above for explanation of how these 

voxel were selected), and a multi-voxel structural encoding model, were used.
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The prior used for this type of reconstruction was the trivial or “flat” prior:

This prior assigns the same value to all possible images, including those with randomly 

selected pixel values. In this case, the posterior probability p(s|r), and the likelihood, p(r|s), 

are proportional.

To produce reconstructions, a greedy serial search algorithm was use to maximize the 

posterior distribution. At each iteration of the algorithm, a small group of pixel values in the 

reconstruction was updated. If the newly updated pixel values increased the posterior 

probability, they were retained as part of the reconstructed image. Otherwise, they were 

rejected. The procedure halted when the change in posterior probability remained below a 

small threshold (4 bits) for a number of iterations. A formal description of the procedure is 

given in Appendix 2 (see Supplemental Materials)

Reconstructions using the structural encoding model and a sparse Gabor prior

For the reconstructions presented in the third column of Figure 2, we used the same selected 

voxels and structural encoding model as above (see Reconstructions using the structural 
encoding model and a flat prior). Instead of a flat prior, we used a sparse Gabor prior. The 

sparse Gabor prior places high probability on images that have the 1/f amplitude spectrum 

characteristic of natural images. In other words, this prior prefers images in which nearby 

pixels are somewhat correlated. The distribution also assigns high probability to images that 

are sparse in the Gabor wavelet domain. Suppose that:

is the transformation of an image s into the Gabor domain, where G is a matrix of real-

valued Gabor wavelets, and a = (a1, …, ag), is a vector whose elements, ai , denote the 

“activation” of the ith Gabor wavelet in G. To say that images are “sparse” in the Gabor 

domain means that their Gabor activations obey a distribution with a sharp peak and a steep 

falloff (in other words, a distribution with high kurtosis). This aspect of natural images was 

captured using a Laplace distribution:

where ui , and βi determine the mean and variance of the distribution.

To generate an image from the sparse Gabor prior, activations for all of the wavelets in the 

Gabor basis G are sampled independently from the above Laplace. The activations are then 

linearly transformed back into the pixel domain to obtain an image. Finally, this image is 
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transformed again by an “unwhitening” matrix, U, and offset by μs ,the mean of all natural 

images:

Effectively, the application of U smooths the image so that it possesses the 1/f structure 

characteristic of natural images.

The Laplace distribution, along with the transformation from Gabor activations into the pixel 

domain, together define an explicit formula for the sparse Gabor prior:

where p(s | a) = 1 whenever s = UG−1a + μs and is set to zero otherwise. The Gabor 

activations are assumed to be independent of each other, so . This equation is 

just a formal way of stating that under the sparse Gabor prior, the probability of sampling an 

image s is proportional to the probability of sampling its underlying Gabor activations a. 

(Note that this model has a number of free parameters that must be chosen or estimated 

empirically. Explicit formulas for estimating these parameters are given in Appendix 3.)

Reconstructions with the structural model and sparse Gabor prior were generated using a 

search algorithm identical to the one used for reconstruction with a flat prior, except that in 

this case, reconstructions were updated at each iteration of the algorithm by incrementing 

the activation for a single Gabor by ± 0.1. The updated reconstruction was transformed into 

pixel space, and its posterior probability was evaluated using the sparse Gabor prior.

Reconstructions using the structural encoding model and a natural image prior

To produce the reconstructions shown in the fourth column of Figure 2, the second column 

of Figure 3, and Supplemental Figure 3A, we used the structural encoding model and 

corresponding structural voxels. Instead of a sparse Gabor prior, we used an implicit natural 

image prior, pNIP(s). Informally, the natural image prior is simply a large (6 million samples) 

database of natural images. Formally, it is a distribution that assigns a fixed value to all the 

images in the database, and a zero value to all images that are not:

where C is the total number of images in the database, and δs
(i) is the delta function that 

returns 1 whenever s = s(i) (the ith image in the database) and a 0 otherwise.
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Reconstruction was performed by simply evaluating the posterior probability for each of the 

images in the database (note that for images in the natural image prior, the posterior is 

proportional to the likelihood p(r | s)), and choosing the one that resulted in the highest 

posterior probability. Evaluating the posterior is computationally intensive. As a time-saving 

approximation, we first evaluated each image in the database using the voxel-wise 

correlation between the measured responses and the responses predicted by the encoding 

model. This metric was used in Kay et al. (2008) for image identification. For each target 

image, we retained the 100 images with the highest correlation. We then evaluated each of 

these 100 images under p (s | r). The image with the highest p (s | r) was retained as the 

reconstruction.

Reconstructions using the structural encoding model, the semantic encoding model, and 
the natural image prior (hybrid method)

To produce reconstructions shown in the third column of Figure 3 (and in Supplemental 

Figure 3B) the posterior probabilities were evaluated for each of the images in the natural 

image prior using both the structural encoding model and the semantic encoding model. 

Reconstruction using this hybrid method was performed for 30 of the image reconstruction 

trials (all of these were from the first scan session.)

To evaluate the semantic encoding model for a given image s, the image must be assigned a 

semantic category from the semantic basis set (Supplemental Figure 1). Because it is not 

feasible to label all 6 million images in the natural image prior, we labeled only those 

images with relatively high likelihoods under the structural encoding model. For a single 

reconstruction trial this set of images was defined as

where S is the database of images. βr was chosen so that Sr contained 100 images.

Reconstruction accuracy

Structural accuracy—Structural accuracy of the reconstructions was assessed using the 

weighted complex wavelet structural similarity metric (Brooks and Pappas, 2006). The 

metric uses the coefficients of a complex wavelet decomposition of two images in order to 

compute a single number describing the degree of structural similarity between the two 

images. To produce the structural accuracy metrics in Figure 6 (left panels), the similarity 

between each target image and its reconstruction was averaged across all 120 reconstruction 

trials. (For the case of the hybrid method, averages were taken over the smaller set of 30 

reconstructions.) Note that this metric is not the same as the posterior probability of an 

image. Thus, a rank-ordering of images according to this metric may not perfectly 

correspond to a rank-ordering of images according to their posterior probabilities (as in 

Supplemental Figure 3).

Semantic accuracy—To assess the semantic accuracy of the reconstructions, the 

probability of a semantic category, α , given a response, r, was calculated for each of the 30 
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reconstruction trials used for the hybrid method. If the most probable category was also the 

category of the target image, the trial was considered to be semantically accurate. Semantic 

accuracy for each type of reconstruction (Figure 6, right panels) is the fraction of 

semantically accurate reconstruction trials.

The probability of a semantic category given a response, p(α | r), is calculated via a linear 

operation on the encoding models:

where p(r|s) can refer to either the structural encoding model, the semantic encoding model, 

or the product of the two (as in Equation 1). The distribution p(s | α) is the probability of an 

image, given a category. This probability was set to 0 if the image was not a member of the 

category, and a constant value otherwise. The prior on categories, p(α), was assumed to be 

flat. Thus, the above equation has a very intuitive explanation: the probability of a semantic 

category given a response is proportional to the average likelihood of all the images from 

that category within a subset (Sr; see above for definition) of the database.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The Bayesian reconstruction framework
The goal of this experiment was to reconstruct target images from BOLD fMRI responses 

recorded from occipital cortex. Reconstructions were obtained by using a Bayesian 

framework to combine voxel responses, structural and semantic encoding models and image 

priors. Target images were grayscale photographs selected at random from a large database 

of natural images. The fMRI slice coverage included early visual areas V1, V2 and V3; 

intermediate visual areas V3A, V3B, V4 and lateral occipital (labeled LO here); and a band 

of occipital cortex anterior to lateral occipital (here called AOC). Recorded voxel responses 

were used to fit two distinct encoding models: a structural encoding model (green) that 

reflects how information is encoded in early visual areas, and a semantic encoding model 
(blue) that reflects how information is encoded in the AOC. Three image priors were used to 

bias reconstructions in favor of those with the characteristics of natural images: a flat prior 

that does not bias reconstructions, a sparse Gabor prior that ensures reconstructions possess 

the lower-order statistical properties of natural images, and a natural image prior that ensures 

reconstructions are natural images. Several different types of reconstructions were obtained 
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by combining the encoding models and priors in different ways: the structural model and a 

flat prior; the structural model and a sparse Gabor prior; the structural model and a natural 

image prior; and the structural model, the semantic model and a natural image prior (hybrid 

method). These various methods produced reconstructions with very different structural and 

semantic qualities, as shown in Figures 2 and 3.
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Figure 2. The effect of prior information on reconstruction with a structural encoding model
Three target images are shown in the first column. The second through fourth columns show 

reconstructions obtained using the structural encoding model and three different types of 

prior information. Column two shows reconstructions obtained using a flat prior that does 

not bias reconstructions. Regions of the target images that have low texture contrast are 

depicted as smooth gray patches, and regions that have substantial texture contrast are 

depicted as textured patches. Thus, the flat prior reconstructions reveal the distribution of 

texture contrast in the target images, but cannot readily be interpreted. Column three shows 

reconstructions obtained using a sparse Gabor prior that ensures reconstructions possess the 

lower-order statistical properties of natural images. These reconstructions appear to be 

smoothed versions of those obtained with the flat prior, and they also cannot be readily 

interpreted. Column three shows reconstructions obtained using a natural image prior that 

ensures reconstructions are natural images. These reconstructions accurately reflect the 

structure of the target images (numbers in bottom right corner of each reconstruction 
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indicate structural accuracy, see main text for details). The example in row one is from 

subject TN; rows two and three are from subject SN.
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Figure 3. The effect of semantic information on reconstructions
Four target images are shown in the left hand column. The second column shows 

reconstructions obtained using the structural encoding model and the natural image prior. 

These reconstructions are structurally accurate (numbers in bottom right corner indicate 

structural accuracy, see main text for details). However, the objects depicted in the 

reconstructions are not from the same semantic categories as those shown in the target 

images. Thus, although these reconstructions are structurally accurate they are not 

semantically accurate. The third column shows reconstructions obtained using the structural 
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encoding model, the semantic encoding model and the natural image prior (the hybrid 
method). These reconstructions are both structurally and semantically accurate. The 

examples in rows from one through three are from subject TN; row four is from subject SN.
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Figure 4. The semantic encoding model fit to single voxels from three subjects
A, The top panel shows response distributions of one voxel for which the semantic encoding 

model produced the most accurate predictions (subject TN). The gray curve gives the 

distribution of z-scored responses (x-axis) evoked by all images used in the model 

estimation data set. This distribution was modeled in terms of three underlying Gaussian 

distributions (colored curves). Responses below average are shown in red (z=1), responses 

near average in green (z=2), and above average in blue (z=3). The black bars in the bottom 

panels give the probability that each semantic category, c, (abbreviated labels at left) will 

evoke a response below the average (red box), near the average (green box) or above the 

average (blue box). (Note that there are no probabilities for the text category because there 

were no text images in the model estimation data set.) Images depicting living things tend to 

evoke a large response from this voxel, while those depicting non-living things evoke a small 

response. Thus, this voxel discriminates between animate and inanimate semantic categories. 

B, The same analysis shown in A, applied to the single voxel from subject KK for which the 

semantic encoding model produced the most accurate predictions. Semantic tuning for this 

voxel is similar to the one shown in A. C, The same analysis shown in A and B, applied to 

the single voxel from subject SN for which the semantic encoding model produced the most 

accurate predictions. Semantic tuning for this voxel is similar to those shown in A and B.
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Figure 5. Structural versus semantic encoding models
A, The left panel compares the accuracy of the structural encoding model (x-axis) versus the 

semantic encoding model (y-axis) for every voxel within the slice coverage (subject TN). 

Here accuracy is defined as the correlation (cc) between the response observed in each voxel 

and the response predicted by each encoding model for all 120 images in the image 

reconstruction set. The distribution of points has two wings. One wing extends along the y-

axis and another extends along the x-axis, indicating that very few voxels are accurately 

predicted by both models. The voxels whose responses are accurately predicted by the 
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structural model but not the semantic model are shown in blue (cc > 0.353, p < 3.9*10-5; see 

Experimental Procedures for criteria used to set this threshold). The voxels whose 

responses are accurately predicted by the semantic model but not the structural model are 

shown in magenta (same statistical threshold as above). Most voxels are poorly predicted by 

both models (gray), either because neither model is appropriate, or because of poor signal 

quality. The right panel shows flat maps of the left and right hemispheres of this subject. 

Visual areas identified using a retinotopic mapping procedure (see Experimental 
Procedures) are outlined in white. Voxels whose responses are accurately predicted by the 

structural (blue) or semantic (magenta) models are plotted on the flat maps (the few voxels 

for which both models are accurate are shown in white). Most structural voxels are located 

in early visual areas V1, V2 and V3. Most semantic voxels are located in the anterior portion 

of lateral occipital (labeled LO), and in the anterior occipital cortex. B, Data for subject KK, 

format same as in A. Most structural voxels are located in early visual areas V1, V2 and V3. 

Semantic voxels are located in the anterior occipital cortex. C, Data for subject SN, format 

same as in A and B. Structural voxels are located in early visual areas V1, V2 and V3. 

Semantic voxels are located in the anterior occipital cortex.
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Figure 6. Structural and semantic accuracy of reconstructions
A, The left panel shows the structural accuracy of reconstructions using several different 

methods (subject TN). In each case structural reconstruction accuracy (y-axis) is quantified 

using a similarity metric that ranges from 0.0 to 1.0. From left to right the bars give the 

structural similarity between the target image and reconstruction (mean ± s.e.m, image 

reconstruction data set) for the structural model with a flat prior; the structural model with a 

sparse Gabor prior; the structural model with a natural image prior; and the hybrid method 
consisting of the structural model, the semantic model, and the natural image prior. The red 
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line indicates chance performance. Reconstructions produced using the sparse Gabor or 

natural image prior are significantly more accurate than chance (p < 0.01, t-test; for this 

subject only, the reconstructions produced using a flat prior are also significant at this level). 

Reconstruction with the structural model and the natural image prior is significantly more 

accurate than reconstruction with a sparse Gabor prior (p < 0.01, t-test). These results 

indicate that prior information is important for obtaining structurally accurate image 

reconstructions. The structural accuracy of the structural model with natural image prior and 

the hybrid method are not significantly different (p > 0.3, t-test), so structural accuracy is not 

affected by the addition of the semantic model. The right panel shows semantic accuracy of 

reconstructions obtained using the structural model with natural image prior (blue) and the 

hybrid method (black). In each case semantic reconstruction accuracy (y-axis) is quantified 

in terms of the probability that a reconstruction will belong to the same semantic category as 

the target image (errorbars indicate bootstrapped estimate of s.d.). The number of semantic 

categories in the classification tree varies from 2 broadly defined categories to the 23 

specific categories shown in Figure 4 (x-axis). The red curve indicates chance performance. 

The semantic accuracy of the reconstructions obtained using the structural model and natural 

image prior are rarely significantly greater than chance (p > 0.3, binomial test). However, the 

semantic accuracy of the hybrid method is significantly greater than chance regardless of the 

number of semantic categories (p < 10-5, binomial test). B, Data for subject KK, format 

same as in A. Prior information is important for obtaining structurally accurate image 

reconstructions (p-values of structural accuracy comparisons same as in A). The semantic 

accuracy of the hybrid method is significantly greater than chance (p < .002, binomial test). 

C, Data for subject SN, format same as in A. Prior information is important for obtaining 

structurally accurate image reconstructions (p-values of structural accuracy comparisons 

same as in A). The semantic accuracy of the hybrid method is significantly greater than 

chance (p < 10-5, binomial test).
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