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Abstract

Despite the fact that ischemic stroke has been considered a leading cause of mortality in the world, 

recent advances in our understanding of the pathophysiological mechanisms underlying the 

ischemic injury and the treatment of acute ischemic stroke patients have led to a sharp decrease in 

the number of stroke deaths. However, this decrease in stroke mortality has also led to an increase 

in the number of patients that survive the acute ischemic injury with different degrees of disability. 

Unfortunately, to this date we do not have an effective therapeutic strategy to promote neurological 

recovery in these growing population of stroke survivors. Cerebral ischemia not only causes the 

destruction of a large number of axons and synapses but also activates endogenous mechanisms 

that promote the recovery of those neurons that survive its harmful effects. Here we review 

experimental evidence indicating that one of these mechanisms of repair is the binding of the 

serine proteinase urokinase-type plasminogen activator (uPA) to its receptor (uPAR) in the growth 

cones of injured axons. Indeed, the binding of uPA to uPAR in the periphery of growth cones of 

injured axons induces the recruitment of β1-integrin to the plasma membrane, β1-integrin-

mediated activation of the small Rho GTPase Rac1, and Rac1-induced axonal regeneration. 

Furthermore, we found that this process is modulated by the low density lipoprotein receptor-

related protein (LRP1). The data reviewed here indicate that the uPA-uPAR-LRP1 system is a 

potential target for the development of therapeutic strategies to promote neurological recovery in 

acute ischemic stroke patients.
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Introduction

Ischemic stroke is the fifth cause of death in USA and a leading cause of morbidity and 

disability in the world [1]. Accordingly, the World Health Organization estimates that each 

year 15 million people worldwide and 795 000 in USA suffer stroke. Remarkably, the 

successful development of new therapeutic approaches to treat acute ischemic stroke 

patients, including thrombolysis with tissue plasminogen activator (tPA) [2] and mechanical 

removal of the occluding clot [3], has led not only to a 33.7% and 18.2 % drop in the relative 

rate of stroke death and the actual number of stroke deaths, respectively [1], but also to an 

increase in the number of patients that survive an acute ischemic stroke with different 

degrees of neurological disability. Unfortunately, to this date there is no effective therapeutic 

strategy to promote neurological recovery in this growing population of stroke survivors.

The degree of functional disability following an ischemic stroke depends to a great extent on 

the capacity of neurons to withstand and recover from the harmful effects of the ischemic 

insult. Indeed, it is estimated that one minute of cerebral ischemia is enough to destroy 1.9 

million neurons, 14 billion synapses and 7.5 miles of myelinated axons [4]. Despite these 

appalling effects on neuronal integrity and function, the ischemic injury also activates 

endogenous mechanisms that promote the recovery of those neurons that have survived the 

acute stages of the ischemic injury. Our recent work indicates that one of these mechanisms 

is the binding of the serine proteinase urokinase-type plasminogen activator (uPA) to its 

receptor (uPAR). These findings are of significant importance because they indicate that the 

uPA-uPAR system is a potential target for the development of effective therapeutic strategies 

to promote neurological recovery in the rapidly growing population of ischemic stroke 

survivors. Furthermore, these observations have a high translational relevance because it is 

well known that in contrast with the peripheral nervous system, the central nervous system 

has a limited capacity for regeneration. Therefore, the discovery of a potential therapeutic 

target to promote neurological recovery may have a significant impact on the quality of life 

and productivity of a large number of ischemic stroke patients.

The uPA-uPAR system

uPA is assembled by an amino terminal epidermal growth factor (EGF)-like domain that 

contains the uPAR binding residues, a kringle domain and a carboxy-terminal proteolytic 

domain [5]. The first two regions form the amino terminal fragment (ATF), which contains 

the interaction site with the receptor but lacks the enzymatic activity. As it will be discussed 

below, we found that ATF promotes axonal regeneration via activation of the Rho family 

small GTPase Rac1, thus indicating that uPA induces neurorepair by plasminogen-

independent activation of an intracellular cell signaling pathway [6]. Besides its biological 

significance, this finding has important translational implications because it indicates that 
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the potential administration of uPA’s ATF to promote neurological recovery in ischemic 

stroke patients is devoid of plasmin-induced complications, namely intracerebral 

hemorrhage.

uPAR is an extracellular receptor assembled by three globular domains anchored to the 

membrane through a glycosylphosphatidylinositol (GPI) tail [7]. uPAR not only interacts 

with pro-uPA, uPA, uPA’s ATF, and the extracellular matrix (ECM) protein vitronectin 

(VN) [8], but also can be released from the plasma membrane by the cleavage of either its 

GPI tail or different sites of its globular domains to produce a soluble form (suPAR) [9]. It 

has been demonstrated that uPAR modulates cell adhesion, differentiation, apoptosis, 

proliferation and migration not only through its proteolytic function but also by activating 

intracellular cell signaling pathways [10–12]. These observations will be discussed below and 

are in line with our findings indicating that the binding of either recombinant uPA (ruPA) or 

endogenous uPA to uPAR promotes axonal recovery in the ischemic brain. Importantly, 

because uPAR is bound to the plasma membrane by a GPI tail, it requires transmembrane 

co-receptors to activate intracellular cell signaling pathways [8]. As it also will be discussed 

below, we found that two co-receptors, namely β1-integrin and the low-density lipoprotein 

receptor-related protein (LRP1), mediate the effect of uPA-uPAR binding on axonal 

recovery.

uPA-uPAR expression in the central nervoussystem

The expression of uPA and uPAR in the developing central nervous system (CNS) is 

particularly high in neurons [6, 13, 14], microglia [15] and astrocytes [16]. However, during 

maturation it progressively decreases to reach very low levels in the adult brain. During 

development uPA-uPAR binding promotes neuritogenesis and neuronal migration via a 

combination of proteolytic and non-proteolytic mechanisms [17, 18]. More specifically, 

during the early stages of development uPAR regulates the reorganization of the 

cytoskeleton in post-mitotic neurons via activation of integrins and the focal kinase adhesion 

(FAK) pathway [17], thus promoting axonal growth, and neuronal migration [19] and 

branching [20]. Interestingly, it has also been reported that uPAR participates in the formation 

of those neuronal circuits that underlie language and cognition, and that dysregulation of the 

uPA-uPAR signaling pathway is related with the development of epilepsy [21]. As stated 

above, the expression of neuronal uPAR varies according to the developmental stage. Hence, 

while in DIV 3 neurons uPAR is abundantly found in the cell body and neurites, at DIV 7 is 

mainly detected in the axon shaft and growth cones, and at DIV 16 its expression is 

restricted to the distal segment of some axons and very few growth cones [6]. Remarkably, 

following axonal injury the expression of uPAR in adult neurons increases again, 

particularly in growth cones of injured axons, to levels comparable to those observed during 

the early stages of development [6]. The expression of uPA in the adult brain follows a 

pattern very similar to uPAR: low in the healthy brain and high following an injury [13]. In 

summary, the experimental evidence available to this date indicates that the expression of 

neuronal uPA and uPAR is high in the early stages of development and decreases to almost 

undetectable levels in mature cells. However, the expression of both, the ligand and its 

receptor, increases in neurons following different forms of injury. These findings are in line 

with observations by others indicating that the expression of uPAR increases within the first 
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few hours of peripheral nerve [22], spinal cord [23] and cortical neurons [6, 13] injury, and has 

led to propose that uPAR is a marker of central nervous system damage and a potential 

therapeutic target to promote neurorepair.

uPA and uPAR in the ischemic brain

Because cerebral ischemia is one of the most frequent causes of brain injury [24], then to 

study the role of uPA and uPAR in the injured brain we used an in vitro model of hypoxia in 

which neurons are exposed to oxygen and glucose deprivation (OGD) conditions, and an in 
vivo model of cerebral ischemia in which the middle cerebral artery is occluded (MCAO) 

with a suture during different periods of time. First we measured the release of uPA from 

wild-type (Wt) adult cerebral cortical neurons exposed to 60 minutes of OGD. 

Unexpectedly, we found that neurons do not release uPA while they are exposed to OGD but 

6 – 24 hours after they begin recovering from the hypoxic injury [13]. To characterize the in 
vivo significance of these findings we quantified the expression of uPA in the ischemic 

tissue of Wt mice immediately after 30 and 60 minutes of MCAO, and 1 – 24 hours after 60 

minutes of MCAO and successful reperfusion (recovery). As observed with neuronal 

cultures, we failed to detect an increase in uPA expression in the ischemic tissue during the 

acute phase of the ischemic injury. However, we detected a progressive increase in the 

concentration of uPA 3 – 24 hours later.

These observations, and studies by others proposing that uPAR as a predictor of ischemic 

stroke [25], led to postulate that the expression of uPA and uPAR in the ischemic brain may 

underlie the development of the pathophysiological processes that lead to ischemic cell 

death. Surprisingly, this hypothesis was proven wrong as we failed to detect a difference in 

the volume of the ischemic lesion between mice genetically deficient in uPA (uPA−/−) and 

their Wt littermate controls 24 hours after 60 minutes of MCAO. In contrast, we found that 

compared to Wt littermate controls, uPA−/− and uPAR−/− mice have a protracted recovery in 

neurological function following MCAO, and that treatment with ruPA or the release of 

endogenous uPA induces recovery in Wt and uPA−/−, but not in uPAR−/− mice [6, 13]. In 

summary, these data indicate that the expression of uPA and uPAR increase in the sub-acute, 

recovery stages of ischemic stroke, and suggest that uPA binding to uPAR plays a central 

role in the process of neurorepair following an acute ischemic injury. These observations are 

supported by reports from other groups indicating that uPAR modulates peripheral nerve 

regeneration after a crush nerve [21], and that genetic deficiency of uPA aggravates the motor 

deficit and increases neuronal death in an animal model of traumatic brain injury [26].

uPAR and the axon growth cone

Axons are particularly vulnerable to CNS injury and our data indicate that the expression of 

uPAR increases in the growth cone of injured adult axons, and that uPA binding to uPAR 

improves neurological function following an ischemic injury [6, 13]. Thus, based on these 

data we postulated that uPA binding to uPAR induces axonal recovery via a direct effect on 

the growth cone. The formation of growth cones plays a pivotal role not only during 

development but also in the initial stages of axonal regeneration. Indeed, the recovery and 

regeneration of an injured axon requires the establishment of a polarized extension guided 
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by a newly formed growth cone that harbors three well-defined areas (Figure 1): a) a 

peripheral domain with F-actin bundles that form filopodia and lamellipodia; b) a central 

domain with microtubules that enter the growth cone from the axon shaft; and c) a transition 

area between the peripheral and central domains that contains actomyosin contractile 

structures [27]. To study the effect of uPA binding to uPAR on the growth cones of injured 

axons, we developed an in vitro system in which a wound injury is performed on a mantle of 

axons that radially grows from neurosphere-like aggregates (NLA) prepared from cerebral 

cortical neurons [6]. With this model we found that the axonal injury is followed by a rapid 

increase in the expression of uPAR in the filopodia of newly formed growth cones, and that 

the binding to uPAR of either ruPA [administered at the same doses used to treat acute 

ischemic stroke patients [28]], or endogenous uPA, accelerates the regrowth of new axons 

from these growth cones [6].

uPA-uPAR binding promote axonal recovery in the ischemic brain

As stated above, myelinated axons are particularly sensitive to the deleterious effects of 

cerebral ischemia. Thus, to investigate whether uPA-uPAR binding also promotes axonal 

recovery in vivo in the ischemic brain, we used an animal model in which the stereotaxic 

injection of endothelin-1 induces a well-defined area of ischemia in the internal capsule (IC), 

a subcortical structure formed by bundles of axons of pyramidal neurons that project from 

the cerebral cortex and other structures to the spinal cord, and that is frequently affected in 

ischemic stroke patients. Using this experimental design we found that cerebral ischemia 

increases the expression of axonal uPAR in vivo and that the binding of either ruPA or 

endogenous uPA to uPAR promotes axonal recovery and functional improvement.

Membrane recruitment of β1-integrin mediates uPA/uPAR-induced 

neurorepair

As stated above, uPAR is a GPI-anchored protein that needs transmembrane co-receptors to 

activate intracellular cell signaling pathways. A first clue to identify the co-receptor that 

mediates the observed effect of uPA/uPAR on neurorepair was provided by the finding that 

uPA induces axonal regeneration in vitro in the presence of fibronectin, but not vitronectin, 

laminin or collagen [6]. This finding indicates that the interaction between a co-receptor, 

most likely an integrin, and the extracellular matrix (ECM) is required for uPA/uPAR to 

induce axonal recovery.

Integrins are a family of (α-β) heterodimeric receptors that mediate both cell-cell and cell-

matrix interactions in a wide variety of cell types [29]. In the brain, integrins have been 

studied during development, where they participate in neuroblasts migration [30] and axonal 

and dendritic outgrowth, via their ability to interact with the ECM [31]. An interaction 

between uPAR and different integrin subunits, mostly β1, β3 and β6, has been described by 

biochemical and computational technics [32–35]. Because the β1 integrin subunit is the 

receptor for fibronectin [36–38], and since fibronectin is required in our system for uPA/uPAR 

to promote axonal regeneration, then we postulated that β1 integrin was the co-receptor that 

mediates the effect of uPA/uPAR on neurorepair. Our hypothesis was further supported by 

reports from other groups indicating that neuronal β1 integrin expression increases after 
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ischemic stroke [39] and that β1 integrin promotes the regeneration of sensorial axons at long 

distances in the spinal cord [40]. In line with our hypothesis and these observations, we found 

that treatment with uPA induces the recruitment of β1 integrin to the plasma membrane of 

cerebral cortical neurons, and that co-treatment with β1 integrin neutralizing antibodies 

blocks the effect of uPA-uPAR binding on axonal repair. Together, these data indicate that 

the interaction between β1 integrin and fibronectin mediates uPA-induced neurorepair.

The low-density lipoprotein receptor associated protein-1 (LRP1) 

modulates uPA-uPAR- β1-integrin-mediated axonal repair

LRP1 is a member of the LDL receptor gene family assembled by a 515 kDa heavy chain 

non-covalently bound to an 85 kDa light chain containing a transmembrane and a 

cytoplasmic domains [41], that has been implicated not only in the internalization of multiple 

ligands but also in the activation of cellular signal transduction pathways. A growing body of 

experimental evidence indicates that LRP1 plays a pivotal role in neurotransmission, 

synaptic plasticity and neurite outgrowth [42]. Furthermore, it has been demonstrated that 

LRP1 promotes axonal regeneration following peripheral nerve injury [43]. Our data indicate 

that, as described for uPAR, following a mechanical injury LRP1 expression is also up-

regulated in the filopodia of newly formed growth cones [6].

Based on these observations and the fact that LRP1 is an endocytic receptor for the complex 

assembled by plasminogen activator inhibitor-1, uPA and uPAR [44], then we postulated that 

treatment with the receptor associated protein (RAP), an endoplasmic reticulum resident 

chaperone that prevents the interaction between LRP1 and its ligands [45–47], would 

potentiate the beneficial effect of uPA on axonal recovery by preventing uPAR endocytosis. 

Surprisingly, our data proved that our hypothesis was incorrect and, instead, that treatment 

with RAP prevents uPA-induced recruitment of β1-integrin to the neuronal membrane and 

uPA/uPAR-induced axonal regeneration. Together, these results indicate that LRP1 does not 

act as an endocytic receptor in our model of axonal regeneration, but instead that it is a 

signaling receptor that promotes axonal repair.

Rac-1 mediates the effect of uPA to uPAR binding on axonal regeneration

Axonal regeneration requires the reorganization of the actin cytoskeleton in the periphery of 

newly formed growth cones where we detected an increase in uPAR and LRP1 expression 

following an axonal injury [6]. Because the small Rho family GTPases are known regulators 

of cytoskeletal rearrangement, and since RhoA and Rac1 mediate uPA-directed cell 

migration, then we postulated that either RhoA or Rac1, or both, mediate the effect of uPA 

on axonal repair. To test this hypothesis we quantified axonal regeneration in the presence of 

uPA and either Rac1 or RhoA inhibitors. We found that uPA activates Rac1 in neurons, and 

that this effect is abrogated by treatment with RAP. Moreover, Rac1 but not RhoA inhibition 

prevents the effect of uPA on axonal regeneration. Together, these data indicate that binding 

of uPA to uPAR promotes LRP1-mediated Rac1 activation and Rac1-mediated axonal 

regeneration. Furthermore, it confirmed our hypothesis that LRP1 acts as a signaling 

receptor that promotes axonal regeneration by inducing Rac1 activation.
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Conclusion

Based on the data discussed above we propose a model (Figure 2) in which the interaction 

between uPA and uPAR in the growth cone of injured axons activates an intracellular 

signaling pathway that promotes axonal regeneration. More specifically, the axonal injury 

causes the release of uPA and an increase in the expression of uPAR and LRP1 in the 

peripheral zone of the growth cones. The binding of uPA to uPAR leads to LRP1-mediated 

recruitment of β1-integrin to the neuronal membrane, β1-integrin-mediated Rac1 activation, 

and Rac1-induced axonal regeneration. These observations indicate that the uPA-uPAR-

LRP1 system is a potential target for the development of therapeutic strategies to promote 

axonal recovery in the central nervous system.
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Figure 1. Structure of a growth cone
Schematic representation depicting three well-defined areas in a growth cone: a. peripheral 

domain (blue) with F-actin bundles (red) that form filopodia and lamellipodia. b. central 

domain (gray) with microtubules that enter the growth cone from the axon shaft (yellow); 

and c. transition domain (gray) with contractile structures.
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Figure 2. Schematic representation of the proposed model for uPA-induced axonal recovery in 
the ischemic brain
Axonal injury causes the release of uPA and an increase in the expression of uPAR and 

LRP1 in the peripheral zone of the growth cones. The binding of uPA to uPAR leads to 

axonal regeneration via LRP1-mediated recruitment of β1-integrin to the neuronal 

membrane, β1-integrin-mediated Rac1 activation, and Rac1-mediated cytoskeleton 

reorganization. Importantly, the role of uPAR in microglia and astrocytes is still unclear.
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