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Abstract

Purpose of review—To date, the only curative treatment for end-stage liver disease is liver 

transplantation, which is limited by the shortage of available organs. Cell therapy, in the form of 

cell transplantation or cell-based extracorporeal support devices, may in the future offer an 

alternative to transplantation, or at least provide liver function support as a bridging therapy until 

surgery may be performed. The purpose of this review is to highlight the most recent advances 

made in the field of cell therapy and regenerative medicine for the treatment of chronic liver 

disease (CLD).

Recent findings—After hepatocyte transplantation, long-term engraftment in the liver and 

spleen may be achieved, which can be stimulated through preconditioning, multiple infusions, and 

inflammatory response blockade. Mesenchymal stem cells are promising candidates for cell 

transplantation, as they have been shown to reduce liver fibrosis and support endogenous 

regeneration. Adipose tissue-derived stem cells are also being tested in this setting, due to their 

ready availability. Bioartificial liver (BAL) devices are being built that allow for effective 

preservation of hepatocytes, and one such device has recently demonstrated survival benefit in a 

porcine model of liver failure.

Summary—Cell transplantation of primary hepatocytes or stem cell-derived hepatocyte-like cells 

(HLCs) for the treatment of CLD holds promise. BAL systems may in the future be able to bridge 

acute-on-chronic liver failure patients to liver transplantation.
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Introduction

Chronic liver disease (CLD), or cirrhosis, is the gradual destruction of liver parenchyma over 

time as a result of any chronic injury to the liver. Numerous different pathophysiological 

mechanisms result in a final common pathway of functioning hepatic tissue being replaced 

by scar tissue, or fibrosis, leading to impaired hepatic function (1). For years, the medical 

treatment of CLD has been centered on symptom control and the prevention of 

complications. Although by definition cirrhosis cannot be resolved completely, it is possible 

to slow, halt, and even reverse progression of fibrosis (2). Nevertheless, once 

decompensation becomes refractory to medical therapy the only proven treatment for end-

stage liver disease is liver transplantation regardless of original etiology (3).

Liver transplantation as a form of definite treatment for CLD, however, is limited by the 

shortage of organs available for transplantation. As the demand for donor organs grows, 

therapeutic alternatives to liver transplantation must be sought out. One such possible 

alternative is cell therapy, or the administration of live, whole cells for the treatment of a 

disease. The role that cell therapy may play in the treatment of CLD is two-fold. By 

stimulating endogenous regeneration and inhibiting fibrosis, cell therapy may curb disease 

progression, thus ideally eliminating the need for liver transplantation (4). In the cases where 

liver transplantation cannot be avoided, cell therapy may serve as a means for liver function 

support and act as a bridge to surgery, in theory decreasing waitlist mortality rates.

The aim of this review is to highlight the most recent advances made in the field of cell 

therapy and regenerative medicine for the treatment of CLD.

Cell Therapy

Cells have the ability to perform complex biological functions, and at the same time their 

behavior can be engineered (5). Cell-based therapeutics attempt to harness this power to 

treat problems that fall beyond the scope of traditional pharmacology. These cells can be 

administered directly into the patient's body in a procedure known as cell transplantation, but 

may also be used to populate extracorporeal assist devices (4). Cell therapy can be 

categorized according to the type of cell used and its duration within the body (Table 1).

Primary Hepatocytes

Cell therapy for CLD has traditionally been based on the use of primary hepatocytes. 

Unfractionated, genetically unmodified hepatocyte transplantation through splenic or portal 

venous infusion has been tested in both animal models and humans, with modest reductions 

in ammonia levels and encephalopathy (8). However, there are several important barriers to 

the use of human hepatocytes.

Engraftment of transplanted cells in the liver parenchyma can be problematic, as a large 

number of the delivered cells are cleared by activation of the inflammatory cascade. 

Numerous methods for liver preconditioning have been studied to achieve more successful 

liver repopulation (9). In a recent study, the administration of multiple hepatocyte infusions, 

coupled with pharmacological blockage of the inflammatory response, has shown promise in 
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decreasing transplanted cell clearance, improving engraftment, and accelerating repopulation 

(10). Hepatocytes have the ability to engraft and survive for extended periods of time in the 

spleen, as well as in the liver: in a five-year follow-up study of intrasplenic hepatocyte 

transplantation for acute-on-chronic liver failure, living hepatocyte signals were observed in 

the spleen at 48 months post-transplantation (11).

The most important limitation to the use of human hepatocytes is isolation of a sufficient 

quantity of high-quality, metabolically active cells. Hepatocytes are typically harvested from 

livers not suitable for transplantation, with the variability in quantity and quality that this 

entails (12). Furthermore, storage of hepatocytes is not without its complications, as these 

cells are sensitive to freeze-thaw damage so that viability and engraftment are affected by 

cryopreservation (13). Consequently, alternative sources of cells are being actively sought 

after.

One such possible alternative hepatocyte source is xenotransplantation of animal-derived 

hepatocytes, namely porcine cells. A number of studies have shown hepatocyte engraftment 

and function across a species barrier, but while the exclusion of vascular structures may 

address some of the immunological issues associated with xenotransplantation, the 

possibility of xenozoonosis remains (14). Another viable option in the future may be the use 

of fumarylacetoacetate hydrolase (FAH) deficient pigs as incubators for in vivo expansion of 

human hepatocytes, as in utero cell transplantation can lead to postnatal engraftment of 

functional human cells in the xenogeneic recipient, possibly allowing for large-scale 

expansion of human hepatocytes in genetically-engineered pigs (15). Stem cells are also a 

potential source of hepatocyte-like cells (HLCs), and will be discussed in the following 

section.

However, a recent study suggested that in an FAH-deficient mouse chronic liver failure 

model adult hepatocytes were superior to other cell lines in lessening liver injury, recovering 

liver function, and promoting liver regeneration (16). Another recent study showed that 

periportal hepatocytes are capable of replenishing the entire hepatic parenchyma after 

chronic hepatocyte damage without giving rise to hepatocellular carcinoma, and therefore 

may represent a relevant method to restore tissue function while avoiding tumorigenesis 

(17). A phase I-II matched case-control study of human fetal liver cell transplantation has 

also been published that shows significant difference in MELD and Child-Pugh scores for 

those patients receiving intrasplenic fetal hepatocyte infusions as compared to standard 

therapy (18).

Stem Cells

Stem cells have various potential applications in the treatment of liver disease: modulation 

of the liver's regenerative processes to reduce scarring in cirrhosis, down-regulation of 

immune-mediated liver damage, and supply of HLCs for cell transplantation or use in 

extracorporeal bioartificial liver systems (19). Fetal hepatic stem cells, or hepatoblasts, have 

the advantage of being less immunogenic and more propagative than adult stem cells, but 

their isolation and cryopreservation poses a greater challenge (20). It has been suggested 

fetal liver stem cells can replace liver mass with advanced cirrhosis to a greater extent than 
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hepatocytes (21). Human fetal biliary tree stem cells have been tested in a small number of 

cirrhosis patients, with clinical and biochemical improvement (22). Liver progenitor cells 

and the cell signaling involved in their reconstitution of liver parenchyma is still being 

studied, so that in the future extracellular matrix factors may be used to facilitate their 

induction (23). Human induced pluripotent stem cells have also emerged as a way of 

bypassing the ethical and immune concerns associated with the use of embryonic stem cells, 

and efforts are being made to achieve significant liver repopulation through their 

transplantation (24).

The cells that have shown the most promise for the treatment of cirrhosis, however, are 

mesenchymal stem cells (MSCs). MSCs are able to provide both metabolic and trophic 

support due to their capacity for hepatocytic differentiation, as well as their secretion of anti-

inflammatory, anti-apoptotic, immunomodulatory, and pro-proliferative factors (25) (Figure 

1). This means that aside from restoring liver function through substitution of damaged 

tissue, MSCs are able to suppress lymphocyte activity (26) and avoid further immune 

destruction of the liver, as well as stimulate endogenous regeneration through their paracrine 

effects (27-29). In rat liver cirrhosis models, bone marrow-derived MSC (BM-MSC) therapy 

decreased alanine and aspartate aminotransferase, albumin, hyaluronic acid, laminin, and 

procollagen type III levels significantly through either portal or peripheral venous 

administration (30), and resulted in histological attenuation of liver fibrosis (31). A study by 

the same group analyzed the effects of autologous BM-MSC administration in alcoholic 

cirrhosis patients, demonstrating histological improvement as measured by the Laennec 

fibrosis system, as well as a significant reduction in transforming growth factor-β1, type 1 

collagen and α-smooth muscle actin levels (32). Before MSCs reach clinical application a 

number of issues must be addressed. Recent meta-analyses have concluded that although no 

serious side effects or complications have been reported, and therefore MSC therapy may be 

considered safe, study methodology is in general deficient, making multicenter randomized 

prospective trials necessary to develop standardized protocols for MSC transplantation (33, 

34). Optimal cell dosage, route of administration, number of injections, and therapeutic 

timing have yet to be determined (35), and the questions of MSC therapy's long-term 

effectiveness and potential tumorigenic risk have yet to be answered (36).

Other cell lines have also been evaluated. In fact, bone marrow-derived CD45 cells have 

been suggested to be superior candidates to adipose tissue-derived MSCs for the treatment 

of liver cirrhosis due to their higher capacity for structural and functional improvement of a 

CCl4-induced fibrotic liver mouse model (37). Intrahepatic transplantation of adipose tissue-

derived stem cells has also been proposed as a therapeutic approach for the treatment of 

NAFLD, as it may reduce lipid metabolism and oxidative stress, as well as improve liver 

function (38). A phase I/IIa clinical trial testing intrahepatic injection of these cells for the 

treatment of cirrhosis will begin shortly (39). Similarly, transplantation of human adipose 

tissue-derived multi-lineage progenitor cells in a CCl4-injured mouse model was shown to 

be linked to a reduction in liver fibrosis, measured through Sirius Red staining, as well as in 

serum glutamic pyruvate transaminase and total bilirubin levels (40). These studies show 

that stem cells may be a viable alternative to the use of primary hepatocytes in CLD.

Nicolas et al. Page 4

Curr Opin Gastroenterol. Author manuscript; available in PMC 2017 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Cell-based Extracorporeal Support Devices

Whether primary hepatocytes, immortalized cell lines, or stem cell-derived HLCs are used, 

cell-based extracorporeal support devices are an alternative to cell transplantation for the 

treatment of acute-on-chronic liver failure (ACLF). ACLF is defined as an acute 

deterioration in liver function in patients with preexisting cirrhosis (41), and is associated 

with organ failure and high mortality rates (42). The goal of extracorporeal support systems 

is to maintain liver function in order to bridge the patient until a liver is available for 

transplantation or until the native liver is allowed to spontaneously recover through 

endogenous regeneration (43). In the case of ACLF, the need for liver transplantation in the 

long-term will most likely remain due to the underlying CLD, but extracorporeal support 

therapy may in the future be used to increase survival during acute decompensation. Both 

artificial and bio-artificial devices are being developed for this purpose.

Artificial liver support systems (ALSS) contain no cellular material, and therefore remove 

toxic substances from the blood through albumin dialysis without sustaining synthetic liver 

function (44). Studies involving ALSS such as MARS and Prometheus have shown 

improvements in bilirubin levels and hepatic encephalopathy, but none have demonstrated 

survival benefit (45). Research in this area is still active, and efforts are being made to 

improve these devices' capacity for albumin dialysis and endotoxemia reduction (46, 47). On 

the other hand, bioartificial liver (BAL) support systems (Figure 2) are able to better 

simulate liver function by virtue of protein synthesis and ureagenesis, as well as blood 

detoxification, through the incorporation of live, functioning hepatocytes into the device 

(48).

As discussed earlier, hepatocyte culture is not without its difficulties due to the tendency of 

these cells to dedifferentiate in vitro (49). Consequently, many studies have focused on 

developing hepatocyte carriers that allow for high seeding densities and hepatocyte-specific 

functions, such as macroporous cryogels and blood-compatible polymers (50, 51), as well as 

on methods of monitoring hepatocyte status in bioreactors in order to improve function and 

viability (52). Microcapsule-based bioreactors are being built that may in the future be 

incorporated into the design of BAL systems (53, 54). Another method for hepatocyte 

preservation within the BAL is the use of spheroids. Earlier this year, a spheroid reservoir 

BAL was tested in a porcine model of drug-induced acute liver failure, demonstrating a 

significant survival benefit when compared to no-cell device therapy or standard therapy 

alone (55).

The availability of primary human hepatocytes is also an issue. A recent study showed no 

transmission of porcine endogenous retrovirus following treatment with a hybrid BAL 

containing porcine hepatocytes, opening the door to the use of these cells for extracorporeal 

liver support in humans (56). Stem cells may also be a viable option for the replacement of 

primary hepatocytes (57). Out of the two bioartificial liver devices with the most extensive 

human trials, the Extracorporeal Liver Assist Device (ELAD) uses C3A human 

hepatoblastoma cells, while HeptaAssist uses porcine hepatocytes (58). None of the 

randomized controlled trials have shown survival benefit with either of these devices to date, 

and meta-analysis results are inconclusive (59, 60). More studies are necessary to evaluate 
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the effectiveness and safety of the new generation of BAL systems in humans, and to 

identify the optimal cell line to supply it with (61).

Conclusions

Cell therapy in CLD works by supporting liver function and curbing fibrosis while 

endogenous regeneration takes place or as a bridge to liver transplantation. It can involve 

cell transplantation or BAL devices, using either primary hepatocytes or stem cell-derived 

HLCs. Current strategies focus on effective engraftment and in vitro preservation; efforts are 

also being made to find alternatives to hepatocytes, such as MSCs, with immunomodulative 

properties and trophic paracrine activity. Standardized protocols must be developed to obtain 

more robust clinical data on cell transplantation. In the case of BAL systems, clinical studies 

have yet to show survival benefit in humans with ACLF.
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Key points

• Cell therapy for the treatment of chronic liver disease is based on cell 

transplantation or cell-based extracorporeal support devices for metabolic 

support while endogenous regeneration takes place, or as a bridge to liver 

transplantation.

• Primary human or porcine hepatocytes may be used, with current research 

focusing on improving expansion and engraftment, as well as finding 

alternative sources of cells.

• Stem cells are an alternative to the use of primary hepatocytes, with 

mesenchymal stem cells holding the greatest promise due to the added benefit 

of their anti-inflammatory, anti-apoptotic, immunomodulatory, and pro-

proliferative effects.

• Bioartificial liver devices for the treatment of acute-on-chronic liver failure 

have yet to demonstrate survival benefit in humans, although the latest animal 

trials have shown encouraging results.
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Figure 1. 
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Figure 2. 
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Table 1

Types of cell therapy based on cell line, source, and in vivo duration.

Types of Cell Therapy Description

Based on method of delivery

 Cell transplantation Intrahepatic, intrasplenic or peripheral injection of whole cells

 Bioartificial liver Use of whole cells in an extracorporeal support device

Based on cell line

 Primary cell Mature hepatocytes

 Stem cell Hepatic, mesenchymal, adipose tissue-derived stem cells

Based on cell source (6)

 Allogeneic Human donor

 Autologous Patient

 Xenogeneic Animal donor, i.e. pig

Based on cell in vivo half-life (7)

 Transient dosing Days or weeks

 Permanent implantation Years
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