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Dead-end complex, lipid 
interactions and catalytic 
mechanism of microsomal 
glutathione transferase 1, an 
electron crystallography and 
mutagenesis investigation
Qie Kuang1, Pasi Purhonen1, Johan Ålander2, Richard Svensson2, Veronika Hoogland2,  
Jens Winerdal2, Linda Spahiu   2, Astrid Ottosson-Wadlund2, Caroline Jegerschöld1,  
Ralf Morgenstern2 & Hans Hebert   1

Microsomal glutathione transferase 1 (MGST1) is a detoxification enzyme belonging to the Membrane 
Associated Proteins in Eicosanoid and Glutathione Metabolism (MAPEG) superfamily. Here we have 
used electron crystallography of two-dimensional crystals in order to determine an atomic model of rat 
MGST1 in a lipid environment. The model comprises 123 of the 155 amino acid residues, two structured 
phospholipid molecules, two aliphatic chains and one glutathione (GSH) molecule. The functional unit is 
a homotrimer centered on the crystallographic three-fold axes of the unit cell. The GSH substrate binds in 
an extended conformation at the interface between two subunits of the trimer supported by new in vitro 
mutagenesis data. Mutation of Arginine 130 to alanine resulted in complete loss of activity consistent 
with a role for Arginine 130 in stabilizing the strongly nucleophilic GSH thiolate required for catalysis. 
Based on the new model and an electron diffraction data set from crystals soaked with trinitrobenzene, 
that forms a dead-end Meisenheimer complex with GSH, a difference map was calculated. The map 
reveals side chain movements opening a cavity that defines the second substrate site.

Glutathione (GSH) is a γ−L-Glu-L-Cys-Gly tripeptide with a gamma peptide linkage between the amine group 
of cysteine and the carboxyl group of the glutamate side-chain. As a potent physiological reducing agent, GSH 
is the most abundant intracellular small molecule thiol, reaching millimolar concentrations in most cell types in 
higher organisms1. GSH plays a key role in redox regulation and the detoxification of a variety of electrophilic 
compounds and peroxides via catalysis by glutathione transferases (GST)2, glutathione peroxidases (GPx)3 and 
peroxiredoxins4.

GSTs constitute one of the most important groups of phase II detoxification enzymes. They are abundantly 
expressed throughout most life forms. GSTs catalyze the conjugation of GSH to a wide variety of endogenous 
and exogenous electrophilic compounds5 with hydrophobic character. Based on subcellular localization and 
structure, GSTs can be divided into the membrane bound microsomal/mitochondrial as well as soluble cytosolic 
and mitochondrial family members6. The integral polytopic membrane inserted GSTs are distinctly different 
from the soluble ones7. While the functional unit is a homotrimer in membranes, the dominant catalytically 
active organization of soluble GSTs is a dimer. It was observed that the most well studied membrane bound GST, 
microsomal glutathione transferase 1 (MGST1, EC number: 2.5.1.18) shared similarities with leukotriene C4 syn-
thase (LTC4S, EC number: 4.4.1.20), catalyzing the conjugation reaction between leukotriene (LT) A4 and GSH. 
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Recently, characterization of MGST2 has revealed similarities also to this enzyme regarding substrate specificity 
and third-of-the-sites-reaction mechanism8, 9. It is now well established that MGST1, MGST2 and LTC4S belong 
to the membrane associated proteins in eicosanoid and glutathione metabolism (MAPEG) superfamily7. In 
humans also MGST3 is a member of MAPEG, together with microsomal prostaglandin E synthase 1 (MPGES1) 
and 5-lipoxygenase activating protein (FLAP). The MGSTs and LTC4S catalyze conjugation reactions to GSH. 
While the structure of LTC4S defines this protein’s specificity for the LTA4 substrate10, 11, MGST1 is less exclusive; 
a property that is compatible with its function as a detoxification enzyme12. MPGES1 primarily catalyzes the 
GSH dependent isomerization of prostaglandin (PG) H2 to PGE2, but a low GST and GPx activity has also been 
demonstrated13. Among the six human members of MAPEG, FLAP is the only one for which no catalytic func-
tion has been detected. Instead FLAP is involved in leukotriene production by interacting with 5-lipoxygenase 
by an as yet undefined mechanism. A common theme of MAPEG proteins is their interaction with, and catalytic 
conversion of, endogenous reactive lipids in signaling or protection from lipid peroxidation.

Here we have studied the molecular structure of a GST in membrane bound form: MGST1. As for all GSTs, 
MGST1 has the capacity to lower the pKa value of the sulfhydryl group of bound GSH14. The enzyme stabilizes the 
thiolate anion at neutral pH and combines this capability with providing a binding pocket for hydrophobic elec-
trophiles at a site adjacent to the bound GSH15. Apart from this important role in phase II detoxification, MGST1 
has been shown also to have GSH peroxidase activity against lipid hydroperoxides16. The localization of MGST1 
to membranes thus suggested that this enzyme is important for protection against lipid peroxidation, as was 
demonstrated16. From studies in Drosophila it has been suggested that MGST1 activity may be linked to aging17. 
By disrupting a MGST1 like gene it was demonstrated that the mutant flies had a significantly reduced life-span as 
compared to controls. Since many clinical useful cytostatic drugs are also potential substrates for GSTs, develop-
ment of drug resistance e.g. in cancer treatment, can be an important factor leading to treatment failure. MGST1 
has18, 19, like the cytosolic GSTs, been linked with the development of resistance toward chemotherapy agents20, 21 
in humans and also pesticides22 in insects.

In order to shed light on the catalytic pathway of MGST1, analysis of the structural properties of MGST1 were 
investigated early on. We prepared two-dimensional (2D) crystals and eventually determined an atomic model 
of the protein with bound GSH15. The enzyme was purified from rat liver. The structure was based on phase and 
amplitude Fourier component information from cryo electron microscopy (cryoEM) images and electron diffrac-
tion, respectively. Already from projection maps we concluded that MGST1 assembles into a trimer in the mem-
brane23. Furthermore, the 3D model resolved the topology of the monomer as a four-helix bundle and placed 
the active site at the interface between monomers in the trimer15. X-ray structures of LTC4S10, 11 and MPGES124, 
with better completeness of experimental data and more revealing contribution of high resolution information, 
confirmed these observations and could map further details with regard to binding of GSH.

Three outstanding questions that need to be answered are: is the GSH conformation in MGST1 really different 
from that in other members of the MAPEG superfamily, can we get information on the access pathway of the 
lipophilic second substrates and is there a residue essential for catalysis (i.e. lowering the pKa of the GSH thiol 
in the active site) as has been shown for other MAPEGs? For the latter question, we present specific mutations 
of MGST1 influencing catalysis. In particular, Arginine 130 is here shown to be essential for catalysis in analogy 
with other MAPEGs.

In order to enable more extensive comparisons of structures within the MAPEG superfamily, including the 
opportunity to address possible influences of the surrounding environment (phospholipid vs detergent), we have 
now determined a refined structure of MGST1. It is based on electron diffraction recordings from 2D crystals 
of the p6 type. Instead of continuing with enzyme purified from rat liver we now used protein heterologously 
expressed in Escherichia coli (E. coli). The number of diffraction patterns was increased from 100 to 225. The new 
model comprises 123 of the 155 amino acid residues, two structured phospholipid molecules, two hydrocarbon 
chains and one GSH molecule. Interactions between subunits form trimers centered on the crystallographic 
three-fold axes of the unit cell. Also in our refined structure, the GSH substrate binds in an extended conforma-
tion at the interface between two subunits of the trimer.

We have also collected an electron diffraction data set from 2D crystals of MGST1 containing GSH following 
soaking with 1,3,5-trinitrobenzene (TNB). In the presence of this molecule it is known that the catalytic process 
is stalled at the formation of a Meisenheimer dead-end complex25 enabling studies of an otherwise transient inter-
mediate. Structural differences were observed based on amplitude differences between the Fourier components 
of the diffraction data sets yielding information on the second substrate access path and chemical mechanism.

Results
Extended conformation of glutathione and mutations in the active site.  MGST1 contains 155 
amino acids out of which 123 could be included in the model (Fig. 1, for the sequence, see Supplementary 
Fig. S1). The four transmembrane (TM) helices and two loops were sufficiently ordered to contribute to density 
that could be interpreted in terms of an atomic model whereas the connection between TM helices 1 and 2 was 
not (Supplementary Fig. S2). Residues 43 to 65 were therefore not included in the model. As was pointed out by 
Sjögren et al.24 for the corresponding loop in MPGES1 (denoted C-loop) a direct amino acid interaction to the 
GSH from this loop was not observed in the MPGES1 X-ray structure (PDB ID: 4AL0) and can neither be found 
in the MPGES1 structure obtained by 2D-crystallography (PDB ID: 3DWW)26. As the residue identity between 
MPGES1 and MGST1 is partly high for the TM1-TM2 loop (in this cytoplasmic loop, 5 out of 8 residues among 
K42-D49 are conserved between MGST1 and MPGES1), it may be the case also for MGST1 that this loop is not 
directly involved in GSH binding but serves other purposes.

The functional unit of MGST1 is a homotrimer (Fig. 1). A difference map calculated between observed (with 
GSH) and model (without GSH) amplitudes and using model phases had the strongest density at a position fac-
ing the cytoplasmic side and at the interface between adjacent monomers of the MGST1 trimer (Supplementary 
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Fig. S3). These densities were interpreted to arise from bound GSH molecules (Figs 1 and 2). The positions are 
similar to those observed for MGST115, LTC4S (PDB ID: 2UUH and 2PNO) and MPGES1 (PDB ID: 3DWW 
and 4AL0). In contrast, the shape of the density and subsequent modelling suggested that GSH is bound in an 
extended conformation (Fig. 2). Trials to fit a horseshoe shaped molecule, as has been observed both in LTC4S 
(PDB ID: 2UUH and 2PNO) and MPGES1 (PDB ID: 3DWW and 4AL0), were not successful and led to reduction 
of refinement statistical criteria. In the new structure, residues close to GSH are: A35, R38, L39, K42, R73, H76, 
L77, L80 from one subunit and R74, L77, N78, E81, Q127, N129, R130 from its neighbour.

A new feature in our model is the hydrogen bond between the cysteine thiol of GSH and R130 (Fig. 2b). 
Mutation of this residue to alanine resulted in complete loss of activity consistent with a role for Arginine 130 
in stabilizing the strongly nucleophilic GSH thiolate required for catalysis (Table 1). The position of GSH in the 
model is supported by data showing that mutation of two of the arginines, R73 and R74, results in complete loss 
of substrate saturation with GSH (with CDNB as the electrophilic second substrate). The mutant H76Q, which is 

Figure 1.  Helical packing of MGST1. Cross-eyed stereo views of the functional trimer with GSH in yellow. (a) 
Cytoplasmic view. (b) side view with cytoplasmic side facing down. (c) ER lumenal top view. GSH is located 
between subunits coloured differently.
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close to the active site, increases the Km for GSH, measurably 6–7 fold. Below, we include an extensive discussion 
of published and new in vitro mutagenesis data that support the assigned location of GSH.

Structural differences in the presence of an inhibitor: 1,3,5-trinitrobenzene.  In the presence of 
TNB as the second substrate, the catalysis is stalled after the conjugation of TNB on GSH (Fig. 3a and b). The 
dead-end complex formed between GSH and the bulky TNB remains bound in the active site allowing for a struc-
tural investigation. 2D crystals were soaked with TNB and electron diffraction patterns recorded for a 3D data set 
(Supplementary Table S4, TNB data set; Supplementary Figs S5 and S6 and Supplementary methods). A differ-
ence map was calculated using the amplitudes from the two data sets and phases from the present MGST1 model. 
The strongest difference peaks appeared close to the position of the GSH and residue Y138 on TM4 (Fig. 3c and 
Supplementary Fig. S7) while no significant changes were observed at other positions in the unit cell close to the 
atomic model. Mutation of tyrosine 138 to a phenylalanine resulted in a doubling of the specific activity (Table 1) 
indicating a specific role for this tyrosine27 as a gatekeeper and moderator of second substrate access.

Lipid location and overall structure details.  MGST1 molecules form two trimers centered on the 
three-fold axes of the p6 unit cell (Supplementary Fig. S8). At the interface between those two trimers, close 
to the two-fold axis, two independently ordered phospholipid molecules could be resolved (here modelled as 
di-stearoyl-3-sn-phosphatidylcholine) facing opposite sides of the membrane (Fig. 4). Figure 4a and b show the 
lipids to occupy specific, well defined volumes between trimers. The side view of MGST1 (Fig. 4c) shows that one 
lipid (with the head group facing the cytosol) occupies most of the area outside the cleft between TM1 and TM4 
of different subunits. One of the acyl chains covers phenylalanine F36 on TM1. This residue and F135 on TM2 
are shown as they are located where the substrate entry from the membrane is expected. The other lipid, with the 
head group facing the lumen, covers a region near the clefts between TM1-TM3 and TM3-TM4 (Fig. 4c).

As compared to the previous model of MGST115, built from weak side chain densities, there are frame shifts 
with regard to the new model for TM3 and TM4. Moreover, the C-terminal end of TM1 now continues further 
towards the cytoplasmic side. The present model was also compared to the human LTC4S structure (PDB ID: 
2UUH) in Supplementary Fig. S9a. The sequence alignment of rat MGST1, human MGST1, human LTC4S and 
human MPGES1 using the residue numbering specified for rat MGST1, including the N-terminal methionine, is 
shown in Supplementary Fig. S1. The root-mean-square deviations (rmsd in Å) after optimized fit of subsets of 

Figure 2.  Shape and binding of GSH in MGST1. (a) Binding pocket for GSH and (b) residues in the vicinity of 
GSH. Residues R38 and R73 from one subunit (suffix A) and R130 and Y138 from a neighbour subunit (suffix 
C) in the trimer are in close contact with the same GSH molecule.

Mutation
Specific activity 
(µmol min−1 mg−1)

Km GSH (mM) 
(0.5 mM CDNB)

Km GSH (mM) 
(0.5 mM CNAP)

Wt 6.4 ± 0.58 7.5 ± 0.4 2.1 ± 0.85e

R38A 5.5 ± 1.5

R73A 3.7 ± 1.2c NSb 33 ± 9.4

R74Q 2.4 ± 0.51c NS 220 ± 43

H76Q 1.2 ± 0.16d 45 ± 11 23 ± 3.8

N78T NDa,c

E81Q 0.51 ± 0.061c

R130A NDa

Y138F 13d

Table 1.  Specific activity and kinetic parameters of MGST1 mutants expressed in E. coli. aNot detectable, bNot 
saturable, c[ref. 57], d[ref. 27], e[ref. 58].
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Cα atoms in MGST1 and LTC4S were: TM1 (residues 10–42) 1.66, TM2 (65–95) 1.518, TM3 (104–120) 0.713, 
TM4 (133–155) 1.452 with an overall value of 2.42. Deviations varied along the helical stretches with largest 
rmsd-values towards both ends of TM1 and the luminal side of TM2. Analogous to MPGES1 and opposite to 
FLAP, the MGST1 structure shows a cone shaped cavity open to the cytoplasmic side of the ER whereas the lumi-
nal side shows no opening. This is due to differences in the position of a proline in TM2 (Supplementary Fig. S1).

Several specific contacts were identified within each monomer of MGST1. An ion-pair, K26/D79, located 
in the lipid bilayer region connects TM1 and TM2 (Supplementary Fig. S9b). Aromatic-aromatic interactions 
from closely positioned phenylalanine side chains are formed between TM2 and TM3 (Supplementary Fig. S9c). 
A hydrogen bonding network forms a tight interaction in the center of the MGST1 monomer (Supplementary 
Fig. S9d). Intermolecular contacts between monomers in the trimer are formed between H76 and E81 from two 
adjacent TM2s (Supplementary Fig. S9e). As mentioned above, mutation of the latter residues leads to a pro-
nounced lowering of the MGST1 activity and mutation of the former leads to an activity decrease as well as a 6–7 
fold increase in Km for GSH (Table 1).

Discussion
The glutathione conformation observed here in MGST1 is extended (Figs 1 and 2). Furthermore, the location 
of the GSH density in the present study is clearly supported by mutagenesis data of residues suggested to con-
tact GSH (Table 1). Functional studies have shown that MGST1 has one-third-of-the-sites-reactivity28, which 
may be coupled to conformational differences in the trimer and/or a combination of catalytically competent and 
non-competent binding modes for GSH. In spite of this, the GSH density peak had sufficiently high signal to 
noise ratio and shape for modelling the tripeptide in an extended conformation. Other MAPEG members, LTC4S 
and MPGES1, have been found to bind GSH in a unique horseshoe shape10, 11, 24, 26 and it has been suggested that 
MGST1 could also exhibit this binding conformation29. However, two arguments support a different GSH binding 
mode in MGST1: 1) in electron crystallography maps of MPGES1 the horseshoe shape of GSH could be observed 
at a similar resolution26, and 2) MGST1 has the unique ability to use N-acetyl-L-cysteine as substrate supporting a 
different GSH site (discussed further below). The extended conformation of GSH in the MGST1 structure is more 
similar to what has been found in soluble glutathione binding proteins including GSTs30. As MGST1 displays 
third-of-the-sites-reactivity the possibility remains that extended and horseshoe conformations can co-exist at 
different active sites in the trimer or transiently during catalysis.

Figure 3.  Formation of the reaction intermediate, the Meisenheimer complex. (a) Glutathione transferases act 
on lipophilic electrophiles bound to their hydrophobic binding site, positioning the substrate in close proximity 
to the activated thiol in GSH. (b)1,3,5-Trinitrobenzene (TNB), which lacks a good leaving group, is known to 
reversibly form a Meisenheimer complex. (c) Difference map between TNB and native data shows peaks in the 
difference map (σ = 2.6) close to the GSH molecule. (d) Side chain positions in the native model. (e) Tyr 138 
side chain movement to match the upper difference-peak as shown in (c) and position of the TNB moiety to 
match the lower peak. Putative position of Arg130 to open the binding site for TNB.
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It may seem surprising that so many residues in the GSH binding site can be mutated leaving the activity 
largely preserved. However, a more detailed analysis of the rate behavior upon varying GSH revealed striking 
effects (Table 1). The enzyme can no longer be saturated with GSH in the R73 and R74 mutants leading to the 
paradoxical situation that mutation decreases activity at low GSH but increases activity at very high GSH con-
centrations. R74 is conserved in all MAPEG with a catalytic GSH dependent activity whereas R73 is conserved 
in MGST1 only. Similarly a structural alteration in the second sphere GSH binding region (H76Q) resulted in a 
marked increase of the Km for GSH. Mutation of certain proximal residues did result in loss of activity (N78 and 
R130 discussed below). There is additional support for a unique character of the MGST1 GSH interaction. Several 
of the GSH interacting residues (R73R74-H76-N78-(I/L80)E81) are present in a conserved peptide sequence 
pattern that constitutes a specific diagnostic for MGST1 in phylogeny31.

Earlier we studied the GSH binding requirements of MGST1 using GSH analogues. We found that several 
analogues were substrates including N-acetyl-L-cysteine14. This analogue displays a very high Km and at high 

Figure 4.  Two specific lipids in MGST1, one on the luminal side and one on the cytosolic side. The latter 
covers the putative second substrate entry path. (a) Side view of the 2Fo-Fc map at 1.2 σ with transmembrane 
helices 3 and 4 in the foreground. Parts of the two modelled phospholipids can be seen to the right of the helical 
domains. (b) Side view of two trimers of MGST1 with two phospholipid molecules at the interface. (c) Side view 
of MGST1 showing the two lipids (bright green) and GSH (cyan). F36 in magenta and F135 in yellow. (d) Side 
view of MGST1 showing the dead-end complex of GSH-TNB (light blue). (e) and (f) increasingly tilted views of 
MGST1 indicating that the entry path is rather closed (e) and the active site well within the protein trimer (f).
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concentrations the activity with the analogue becomes comparable and even higher than that with GSH. From 
these observations we can conclude that the MGST1 GSH binding site appears to be rather malleable. This 
appears to be unique to MGST1 as soluble GSTs and MPGES1 do not accept N-acetyl-L-cysteine as substrate. 
Hence MGST1 displays unique structural elements and functional properties consistent with a different GSH 
binding conformation as compared to other MAPEG members.

MGST2 and LTC4S display a sequence identity as high as 44%. Both catalyse the conjugation of GSH to leu-
kotriene A4. Whereas LTC4S shows an all sites reactivity32, MGST2 shows a 1/3 sites reactivity33 akin to MGST1. 
The loop between TM1 and TM2 forms a lid over the active site in LTC4S and would have to fold away to allow for 
an extended conformation of GSH. The residue identity is high and the number of residues in the loop is identical 
in LTC4S and MGST2 pointing to GSH being shaped as a horseshoe also in MGST2. Thus, the extended confor-
mation of GSH might not to be a prerequisite for the 1/3 sites reactivity.

Nevertheless 1/3 of the sites reactivity implies conformational heterogeneity in MGST1. Our structure appears 
to capture a catalytically competent state where the GSH thiol is in proximity to an arginine, located in TM4, 
essential for catalysis.

A crucial step following GSH-binding in many GSH-dependent enzymes is stabilization of the thiolate anion 
at physiological pH34. For most GSTs the pKa of the GSH thiol is lowered from 935–37 to a value between 6 and 
714. In soluble GSTs belonging to the classes alpha, mu, pi, and sigma, the thiolate anion is being stabilized by 
hydrogen bonding with a tyrosine residue and by interactions with hydrating water molecules34 whereas in other 
GSTs a serine is utilized38. In LTC4S and MGST2 it has been shown that this role is taken by an arginine located 
in TM4 close to the loop connecting this helix to TM310, 11, 39. This arginine is conserved in the MAPEG super-
family except in FLAP, which does not bind GSH and lacks catalytic activity. In the present MGST1 structure this 
arginine corresponds to R130 (Fig. 2b) within hydrogen bonding distance of the GSH sulphur. Mutation of this 
residue resulted in an inactive protein (Table 1) consistent with a role in thiolate anion stabilization. Regarding 
MPGES1, the closest relative to MGST1 at 38% sequence identity, structural data from a high resolution struc-
ture24 revealed that serine-127 was in close contact with the GSH thiol. Consequently, the involvement of the 
R126 (corresponding to R130 in MGST1) was questioned. However, mutation of S127 in MPGES1 did not affect 
activity40. A dynamic Asp–Arg interaction is essential for catalysis in MPGES1 where mutation of R126 results in 
loss of PGE synthase activity40, 41. Supporting the lack of a role for S127 in MAPEG catalysis, the corresponding 
position in MGST1 is occupied by glycine or alanine (rat and human enzyme, respectively). In conclusion, spe-
cific arginines remain the strongest candidates for GSH thiolate stabilization in enzymatically active MAPEGs: 
MGST1 (R130); MPGES1 (R126)40, 42; LTC4S (R104)39 and MPGES2 (R104)32. In MGST3 the candidate to be 
investigated is R114.

We have observed that soaking 2D crystals of MGST1 with TNB results in a Meisenheimer complex absorp-
tion spectra and also demonstrated that the enzyme is catalytically active in the lipid/protein 2D crystals. 
Formation of the MGST1/Meisenheimer complex does not induce major conformational changes. However, as 
observed in the difference maps, a strong local negative/positive peak pair was observed in the vicinity of the GSH 
and could be interpreted as a movement of the Y138 side chain (Fig. 3, Supplementary Fig. S7). An additional 
strong positive peak appeared at a position expected to be occupied by the TNB moiety of the dead-end complex. 
Additional movements of the side chain of Arg 130 would be required to open the binding pocket for TNB. In 
consequence, it is suggested that the concerted movement of the side chains of Y138 and R130 is an essential step 
in the catalytic mechanism of MGST1 leading to accommodation and stabilization of a Meisenheimer complex in 
the case of activated chloroaryl compounds.

Regarding the chemical mechanism, the role of GSH thiolate anion stabilization has been well documented for 
most GSTs6. Another aspect of GST catalysis by necessity involves transfer of a negative charge en route to, and 
as part of, the transition state (as the nucleophilic GSH thiolate attacks the electrophilic substrate). We suggest 
that R130 plays an important role in stabilization of this transition state. We base this suggestion on the modelled 
position of Arg 130 in the MGST1-TNB-Meisenheimer complex, suitable for stabilizing the delocalized negative 
charge of the charge transfer complex.

Like for bacterial rhodopsin (PDB ID: 2AT9 and 2BRD)43, 44 and aquaporin 0 (PDB ID: 2B6O)45 we could 
now model ordered phospholipids into the structure. For the MGST1 2D crystals with p6 two-sided plane group 
symmetry, two phospholipid molecules were found at the interface between subunits of adjacent trimers of the 
protein (Fig. 4a and b, Supplementary Fig. S8). One of these has the phosphate of the head group facing the 
luminal membrane orientation in the vicinity of the loop between TM2 and TM3 (Fig. 4c). However, no specific 
charge-neutralizing side chain could be identified. Threonine 102, in a few species replaced by a serine, is the 
closest residue with around 6 Å from the threonine oxygen to either an oxygen on the phosphate or to a carboxyl 
oxygen on one of the attached fatty acids. Also on the cytoplasmic facing side no specific interaction was evident 
between the protein and the phosphate of the second lipid localized close to the loop between TM3 and TM4. On 
the cytoplasmic side, Threonine 40, conserved in MGST1, was the closest residue with 4.4 Å from the threonine 
oxygen to one of the fatty acid carboxyl oxygens.

The acyl chains of the phospholipids fill up parts of the hydrophobic region between the two adjacent trimers. 
Interestingly, the cytosol-facing lipid occupies an area right outside TM1 and TM4 of different subunits, i.e. just 
outside the substrate entry area (Fig. 4c). F36 and F135 in TM1 and TM4 respectively are on 4.4 Å distance effec-
tively closing the entry from the lipid bilayer. One acyl chain appears to cover the two phenylalanines keeping 
it closed. It is peculiar that the volume closed off behind the phenylalanines and lipid can house the TNB-GSH 
complex with such small changes in the organization of the active site (Fig. 4f). On the other hand, compared to 
MPGES1, the location of the cysteinyl sulfur is closer to the trimer center in MGST1. Possibly the extended and 
vertical shape in MGST1 allows the conjugation of second substrate within the enzyme in contrast to MPGES1 
where most of the substrate appears to remain outside the protein in the lipid bilayer (PDB IDs 4AL1, 4YL0, 
5BQH, 5BQG, 5K0I).
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The locations of the defined phospholipids are consistent with the width of biological membranes and show 
that MAPEG enzymes are deeply buried with active site access for hydrophobic second substrates at the head-
group hydrocarbon interphase region. The position of the Meisenheimer complex can be taken as an indication 
of the lipophilic second substrate entry path (Fig. 4d–f) and, judging from the position of bound phospholipid, 
would occur close to the lipid headgroup-hydrocarbon chain interphase. This is a region where typical lipophilic 
substrates (that always contain some hydrogen bonding capacity) tend to accumulate46.

In summary, we have characterized a refined structural model of MGST1 revealing a unique GSH conforma-
tion (compared to other MAPEG), catalytically important residues, reaction intermediate stabilization and the 
entry path for lipophilic substrates via the membrane.

Materials and Methods
Recombinant expression in E. coli.  The procedure of heterologous expression and purification of native 
rat MGST1 was described previously47, 48. Now, we expressed the recombinant rat MGST1 containing a six-his-
tidine-tag at the N-terminus in C43 (DE3) strain (Lucigen), which gives a higher yield than BL21 (DE3) pLys SL 
strain used previously. The culture in Terrific Broth medium was grown until OD600 = 0.25 at 37 °C and then the 
temperature was reduced to 30 °C for 20 minutes. At this time point, the cells were induced with 0.5 mM IPTG 
and followed by incubation overnight.

Purification.  The purification procedure is similar as in47 with the following modifications: 1) The membrane 
fraction was solubilized by addition of an equal volume of: 10 mM sodium phosphate (NaPi) at pH 8, 10% glyc-
erol, 0.1 mM EDTA, 1 mM GSH, and 6% Triton X-100 (Sigma) and followed by 45 minutes incubation in 4 °C; 
2) The hydroxyapatite affinity chromatography was replaced by immobilized metal ion affinity chromatography 
(IMAC), (column: Hitrap chelating, from GE healthcare). The unspecific proteins were washed in 10 mM NaPi at 
pH 8, 150 mM NaCl, 1 mM GSH, 10% glycerol, 50 mM imidazole, and 0.1% reduced Triton X-100 (Sigma) and 
rat MGST1 protein was eluted in 350 mM imidazole; 3) After IMAC, the eluted peak was immediately desalted 
(column: HiPrep 26/10, from GE healthcare) in buffer A: 10 mM NaPi at pH 8, 30 mM NaCl, 1 mM GSH, 10% 
glycerol, and 0.1% reduced Triton X-100. The desalted sample was further purified by cation exchange chroma-
tography (column: Hitrap SP, from GE healthcare) equilibrated with buffer A. Rat MGST1 protein was eluted 
with 300 mM NaCl in buffer A. The pooled fractions (approximate 6 ml) were concentrated (approximate 0.6 ml) 
(centrifugal tube: Amicon Ultra-4 centrifugal filter unit with 10 kDa cutoff, from Millipore) and followed by 2D 
crystallization trials. The activity measurement was performed according to49.

Mutant generation.  The N-terminal 6xHis version of plasmid pSP19T7LTMGST1, containing wild-type rat 
MGST1 was used as the template for site-directed mutagenesis47. Forward primers for mutagenesis were:

R38A: CTC CGC GAC TGC ATT CCA GGC GCT AAC CAA CAA GGT TTT TG
R130A: CCC TTC CTC AGC CAA ACG CGG GCT TGG CAT TTT TTG

Mutants were expressed and activity measured in membrane fractions as described47. Expression was verified 
and quantitated by Western blot47.

2D crystallization.  The crystallization procedure was performed as described15 with a different crystalliza-
tion buffer: 25 mM Tris-HCl at pH 7.4, 20% glycerol, 0.1 mM EDTA, 100 mM KCl, 1 mM GSH, and 50 mM CaCl2 
and crystallization was performed at 30 °C.

Formation of the Meisenheimer complex was made by mixing 0.3 μl of saturated TNB solution in ethanol with 
2.5 μl of MGST1 crystal suspension, which contains 1 mM GSH. For a single EM grid prepared as described below 
it normally took 5 min from mixing to freezing. Initially we also incubated suspensions of crystals with TNB for 
30 minutes prior to grid preparation but this did not improve diffraction. Stopped-flow measurements had also 
shown that formation of the complex is almost instantaneous50.

Electron diffraction recording.  The 2D crystals, both native and incubated with TNB, were embedded in 
trehalose and prepared for cryoEM using the inverted grid technique51 prior to freezing in liquid nitrogen and 
transferring to a JEOL 2100 F electron microscope (JEOL). Electron diffraction patterns (Supplementary Fig. S5) 
were recorded on a 4k × 4k CCD camera equipped with a software-controlled retractable beam stopper (TVIPS 
Video and Image Processing Systems, Gauting, Germany). Exposure times were 5–20 s and the stage goniometer 
was set at nominal tilt angles between 0° and 60°.

Data processing.  Selected diffraction patterns were processed with programs from the MRC suite52 in order 
to perform indexing and retrieve integrated, background corrected intensities. LATLINE was used to obtain equi-
distant samples along the adapted lattice line curves (Supplementary Fig. S6). Subsequent processing was per-
formed with programs from CCP453. Refmac554 was used for refinement and Coot55 for model building. Figures 
were made from Pymol (The PyMOL Molecular Graphics System, Version 1.3r1.edu Schrödinger, LLC) and 
Chimera56.

Coordinates and structure factors have been deposited in the Protein Data Bank with accession numbers 5I9K 
and 5IA9 for the MGST1/GSH and the MGST1/Meisenheimer structures, respectively. Corresponding 2Fo-Fc 
maps have been deposited in the Electron Microscopy Data Bank with ID codes EMD-8076 and EMD-8084.
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